
. /

. ~

MORE CONSTRUCTIVE METHODS OF PROGRAM DESIGN

M.A . Jackson

Rapporteurs: Mr. M. King
Mr . M. Martin
Mr . D. McGlade

Abstract

A fundamental consideration in design is structure . Program

structure should be based on data structure for proper correspondence

between program and problem . Programs can be decomposed into 'simple

programs' implementable in ordinary languages . Real world entities

are modelled by processes of the same lifetime . Possible implement­

ations of systems are sugge s ted. The experience of teaching shows

that optimisation should be avoided at lower levels, and that

implementation and model l ing be kept separate at hi gher levels.

PART I

Consider first the general question of what is meant by design.

It could be said that it i s the activity of decomposition; of

recognising that the whole has parts and of saying what those parts

are 'and how they should be put together .

Suppose that one i s to construct an object, which by s ome estimate

is to have N parts, each part being chosen from P different part types .

Imagine , for example , writing a progTam of 1000 statements , making

N=1000 . The choice of statements wil l be from all the statements

of the programming language and s o P is between 10 and 1000 . The
N total number , P , of all such programs is t hus too large to think of

designing the program by simply putting together individual statements.

It is clear that some kind of hierarchical structure, for

example , hierarchi es of procedures, level s of abstraction or steps

of refinement effectively reduces N since no object has more than ,

say , five parts . 'Modular programming' certainly aims to offer these

benefits , but using a hierarchy of modules to reduce N alone does

not help if the number of different modules is possibl y infinite •

67

~

StructurEd programming (GO TO statement considered harmful and

so on) reduces P s ince only sequences , conditional constructs ,

iterative constructs and elementary obj ec t s of the programming

l anguage are a llowed. This is the benefi t to be gained from

adopting structuredcoding but in practice it is still possibl e to

have a large numb er of apparently attractive designs . Thi s situation

suggests that a more constructive approach to designing structured

programs is requi red . In the methodology proposed here a singl e

specific part type is put forward as a basis for design.

Cons ider a simple exampl e. There i s a deck of cards which

record some information, stock movements in an inventory system,

for exampl e. These have been sorted so that al l the details for

each stock item have been brought together and it is required to

make a summary report of the net movement for each it em.

In the propo sed methodology the first thing to do i s to

write down the structure of t h e data objects invol ved. Thi s may

be in the form of a diagram , as in Figu re 1 , or any other suitable

way.

Report

1 Titl e

Header Group
Body

* Detail

Figure 1

68

Report
Body

Total
Line

1

*

It can be seen from Figure 1 that a card file consists of zero

or more groups (an asteri sk in a box indicates an iteration of zero

or more of the items so marked) . Each group is made up of a header

card followed by a group body which i n turn is composed of zero or

more d etail cards . The output report is to consist of a title

followed by a r eport body composed of zero or more total lines .

F~---·
: Cardfile i

I

. Report ,.
, d

"-..

: Title I.
. ----...:::J _B_O_d~y_~] .

If Header')

\-

rr=

f-" --III derived from input
I data struc t ure

I

1'1 derived from output
--===:::.. data structure

* I Group

] I -+
Total .1 n e ::::!J

Group Body

* Detail

Figure 2

69

Total line

_1

The next step is to deduce the p rogram s tructure from the data

structures o Since the program must operate on this data it must in

some sense be identical to those structureso Such a pr ogram is

given in Figure 20 This indicates that in order to produce a report

from a card file the program must first p roduc e a title and then a

report body o To produce the report body it must read a group of

cards and write a total line zero or more times o To do this the

program must read the group header and the group body before writing

a total lineo Finally at the lowest level to r ead a group body the

program mu st read zero or more detail cards o

The program structure is in perfec t correspondence with the

data structure s in the following sense o Consider a given data

structure and delete each node of the program structure tree which

is not d e r ived from the given data stI'ucture , with the possible

exception that nodes with a single uniterated descendant may be

obtainedo These may be combined with their descendants to obtain

the required tree o

The next stage is to consider all the elementary operations

that are required to so l ve the problem o A list of these operations

is as follows:-

1) write title

2) write total line (group key , total)

3) total : :::.: total + detaiL amount

4) total := 0

5) group key := heade r okey

6) open cardfil e

7) read cardfile

8) close cardfile

These operations are dete rmi ned in a systematic way as follows o

In p roduc i ng t h e report t h e program must s omewhere write the title

and also write total lines consisting of a group key and total o To

obtain this total the amount c,f each stock movement on each detai l

card must be added to the total , the total must be initialised and

70

!

I
I

-,

so on. Only lists of elementary operations of a modest size are

ever required for even the largest programs o

The next step is to consider how these operations will fit into

the program structure . It is vital to find out at the earliest

possible moment whether the program structure is correct, and this

is answered by the ease with which these elementary operations fit

the program structure . For example, consider a program structure

which at the top level resembles Figure 3 . Here the program is to

be an iteration of processing cards . Now compare the ways in which

the operation of writing a total line will fit the two program

structures . In Figure 2 it clearly corresponds to the box which

says produce a total line . In Figure 3, however, some kind of

complex conditional is re~uired to incorporate that operation into

the program . From this one concludes that the program structure of

Figure 3 is wrong, and it is wrong because the program structure is

not in perfect correspondence with each of the data structures.

Moreover, similar difficulties will be encountered with any other

program structure for which this correspondence does not hold.

Cardfile
....

Report

I
* Process

Card

Figure 3

Finally the program given in Figure 4 is obtained by an obvious

transcription of Figure 2 with the elementary operations included in

their proper places . Here ~ - end encloses a compound group of

se~uential operations , and iter - end encloses a group of operations

to be iterated under the control of the given condition . At this

'71

.,

point the solution is essentially complete , but in practice it may

be nec essary to transform thi s text , either mechanically or by hand ,

into some language which can be run on a machine o

CARDFILE -- REPORT ~
open cardfile ; read cardfile; write title ;

REPORT _. BODY iter until cardfile . eof
total:=O ; groupkey: =h eader . key ; read cardfile;

GROUP - BODY iter until cardfile . eof I card. key ~ group key
total : ~total+detail. amount ; read cardfile

GROUP _. BODY ~;

write total line (group key, total)
REPORT - BODY end ;

cl ose cardfile
CARDFILE - REPORT end

Figure 4

Since the program s tructure derived in this way closely reflects

the data structures , great care must be taken to ensure that the

input data structure truly defines the expected input . This is

because these data struc tures define a valid set of input and if any

input does not have this structure then the program will produce

unspecified results . In the real world people make mistakes and so

Figure 1 is not really valid , and. should be changed to Figure 5 to

take account of such po ssibilities .

In Figure 5 a group is now either a good group or an error

group (circles in boxes with common parents indicates mutually

exclusive alternatives) . A good group is the same as a group in

Figure 1 whilst an error group is simply an iteration of cards .

No attempt should be made to define a data structure which

takes account of the way in which errors might be handled. This is

because the resulting program structure will be more related to the

solution of the error handling problem than to its true objectives .

72

..

1 Good

1 Grou~ Body I

"-L_/
; * ! Detail

Figure 5

o
Error Group

I Card Imag:-1

The trouble with the structure given in Figure 5 is that in

order to recognise either a good or an error group a potentially

infinite amount of look-ahead is required. In order to overcome

these difficulties a technique to be called 'backtracking' is

introduced and is applied in three stages .

At the first stage the assumption is made that it is possible

to determine whether a group is either a good or an error group at

any suitable moment . This enables the program to select whether it

must process a good or an error group . Such a program is given in

Figure 6 , where the key words select and £L perform such a function •

73

..

CARJlFlLE
FILE-BODY
CARD-GROUP

GROUP_BODY

GROUP-BODY
CARJl-GROUP
ERROR-GROUP

ERRO~GROUP

CARD-GROUP
FILE-BODY
CARD FILE

-,

~ 000

iter until cardfile . eDf • ••
select gDDd group

end' --,
end

process header; read cardfile ;
~ until cardfile . eof I card. key ~ group key

process detail; read cardfile
end

2L error group
iter until cardfile . eof I card. key I group key

process card; read cardfile

Figure 6

Although by using some kind of pre-processing scan of the

input data it might be possible to use the program of Figure 6, in

the second stage this assumption is dropped. Instead the program

explicitly assumes that it will process a good group, but as soon

as evidence to the contrary is discovered it is prepared to admit

that it i s processing an error group and take appropriate action.

Unfortunately performing some operations on the assumed good group

may interfere with the subsequent processing for an error group, so

that at stage three all side effects of the initial processing must

be r epealed. Thus the program given in Figure 7 is finally obtained.

CARDFlLE
FILE-BODY

GROUP-BODY

GROUP-BODY
CARD-GROUP

ERRO~GROUP

ERROR-GROUP
CARD-GROUP
FILE-BODY
CARD FILE

~ ...
iter until cardfile.eof

end' --,

posit good group
note cardfile;
quit CARJl-GROUP if, header;
process header; read cardfile;
iter until card group.eof I card. key t group key

quit CARJl-GROUP if, detail;
process detail; read cardfile

end
admit error group

restore cardfi l e;
iter until card group.eof I card. key I group key

process card; read cardfile

Figure 7

74

In Figure 7 posit is used to indicate an assumption. Quit

essentially performs a 'go to' the section of code where the

program admit's that an error has been made . The operations 'note

cardfile' and ' r es tore cardfile' are primitives of the programming

environment which allow the reading position of the cardfile to be

backed up by ' re store' to where it was last 'noted' . Thi s i s

re~uired to allow processing of error groups to proceed normally

and is an example of r epealing s ide effects .

The important point about this approach is that the program

structure i s determined at the f irs t stage, subse~uent stages being

textual modifications that allow such a structure to be u s ed.

So far the only problems di scu ssed have been those for which

a suitable program structure may be derived from the data structures

involved. Consider the situation where instead of the cards being

read one at a time , they must be read from magnetic tape in blocks

of some arbitrary number of card images. The input data structure

is now given in Figure 8; it is no longer po ssible to say anything

about the division into groups without conflicting with what we are

obliged to s ay about the divi s ion into blocks . Such a situation is

call ed a 'structure clash' and in this case a 'boundary clash ' since

the boundarie s of the blocks are not aligned with the boundaries of

the groups.

The solution to thi s particular problem i s immediately obvious

and supported by manufacturer's so ftware . In general, the method

of overcoming a single boundary clash is to introduce an inter-·

mediate file and to split the program into two , as given in Figure 9.

Pr ogram PA just deblocks the input and produces an unblocked

file x whose structure is that of earlier examples . The f i le x may

then be u sed as i nput to the program PB, the solution to earlier

problems.

75

"

Blocked
file

rl-c-a-r-d-:"'-:::U::::=-t-- I

p

l~

.,

Blocked
file

I

I

-~

Figure 8

Figure 9

76

Block Body

* Card Image

The overall program P is· called a 'complex program' because

it contains a structure clash. P is decomposed into the 'simple

programs' PA and PB which do not have structure clashes. The

decomposition of complex'programs into simpl e programs is of

primary importance in the design of any non-trivial system.

.,

Such a decomposition is possible in even more complex situations .

Suppose that instead of the card file being suitably sorted, it is

constructed by several users; each user first puts a header card

into the file and then Over a period of time adds successive

detail cards . Thus groups retain their overall order but are inter­

leaved with cards from other groups. This gives the input data

structure of Figure 10 .

o
Header

File of
Interleaved
Groups

1 Card *

Figure 10

[Detail 0

Once again this gives rise to a structure clash, referred to as

an 'interleaving clash'. It is resolved by undoing the interleaving

in a rather simple-minded way, given in Figure 11 . The simple program

PA produces a file for each group in the interleaved file. The

programs PG1, PG2, PGN recombine these files to obtain a fil e

with the same structure as the one in the original probl em.

77

.,

I:~2\ GP1)
.--" _.) PG1

, leaved ;

~le , -~ ,

~ ~.-~ "-

~ ~/_-{ ,n ;
line . --'->-. > PG2 file

, /
...... --- <.:::- -

\ ~:N-~ ... - - -7
Report

PGN

Fi gure 11

Such a solution is of course totally unimplementable in any

li teral sense, but nevertheless, it is the correct decomposition of

thi s probl em into simpl e program s . Thi s i s the decomposition that

should be sought in designing programs, as s impl e programs are the

only 'part types' in this approach to design .

As well as not containing any s tructure c l ashe s, simple program s

have some other important properties. They u se serial input and output

exclus i vely, there bei ng no concept of direct access transput within

them . Simple programs al so observe a standard. fi l e protocol . On

input the fi l e is opened , at l east one read i s p erform ed , r ec ords

being read in advance of any proce ssing, before finally the file is

closed. On ou tput the fi l e is opened , zero or more records are written

and finally t h e file is closed.

78

PART II

Because of the impracticability of the solution to the inter­

leaving clash, physical serial input and output i s not always desir­

able, although po ssibl e u s ing disks or drums . An elegant solution

might be to u se coroutines or classes , but in a commercial or

industrial environment languages with such features are not generally

available.

The technique of Program Inversion provides a crude implement­

ation of a system in the more common languages, such as COBOL and

PL/I. Consider, for example , the smal l part of a system shown

below in Figure 12.

X I / I y I
~ .~ /-7 ~ .----- --I F G

read-G I I wri te-F p

I

Figure 12

It repr esents a program X writing to a file F by invoking some

procedure or 'access method' write-F . Program P reads from file F

and writes to file G, whereas program Y reads from file G via some

read procedure read-G. X, P and Y are simple programs. In an

actual implementation of this system it might be desirable to

reduce the number of tape-drives needed, and an obvious way to do

this is (Figure 13) to replace the w-ri te-F procedure with a sub­

routine PF that writes directly to the file G. PF might be described

as being a 'plug-compatible replacement for write-F'.

79

ex I (
[~_}-----r-'----- ' -'>~~ __ _

y

read-G

\
Figure 13

Program X and file G perceive no difference between the situation in

Figure 13, and that in Figure ~ . PF is termed 'P inverted with

respect to the file F' . The symmetry of the situation allows as an

alternative P to be inverted with respect to the file G, producing

a replacement PG, for the procedure read-G as shown below. Again,
y cannot tell the difference between read-G and PG.

X Y

write-F 7 F PG

Two further alternatives would involve inverting X with respect to

file F producing a procedure that would be called by P and, the

symmetrical equivalent, inverting Y with respect to file G.

These different interpretations of the same system show the

absurdity of suggesting that top-down and bottom-up are absolute and

decidable directions, as some people seem to believe . Which of the

programs P, X and Y in the example above would be the top? Clearly,

such a small part of a system bears no relation to the fundamental

structure of the whol e .

Program Inversion can therefore be regarded as a mechanical

coding procedure: having written the program P, inversion consists

merely of deciding on a particular suitabl e implementation for read-F

and write-G. Were PF to be implemented in PL/I, it might appear as

follows:

80

-,

PF: proc edure • • •

declare L array of labels(10)static initial(L1, L2, ••• , L10);

declare N integer static initial(1);

goto L(N); L1: •• • • ••

N:=2; return; L2: /*read F */

N:=3; return; L3: /*read F */

Initially, X calls PF and since the ' switch variable' N i s 1 the code

after label L1 is executed until procedure PF wishes to execute a

read-F . Instead of a read, however, it merely remembers the text

pointer by setting N to (for example) 2, and returns to the calling

program X. When X next call s PF, the procedure will continue from

Label L2 due to the 'computed goto', having gained from X the inform­

ation it would have originally been given by a read-F. The method

is crude but feasible even in COBOL and PL/I, and remove s the need to

consider whether X is above or below P , but it has some unfortunate

side-effects. An obvious one is the tedium of hand-coding the method.

Use of a macro-processor or pre-processor is highly desirable.

However, a far worse implication of the technique is t hat sinc e the

run-time stack cannot be preserved after the return to X (just before

l abel L2, for example), the program must ensure that the stack is in

fact empty. Thi s means that the code must be 'fl attened', with all

the desirable control features (such as do-while) converted into the

equivalent set of goto's and if's. Here again, a macro or pre­

processor is desirable . So, whenever the procedure PF wishes to do

the equivalent of a read-F , the values of al l the variables, as well

as the text pointer, must be pre served . This set of value s is called

the state-vector, and since the language does not preserve and restore

it, the programmer must do so explicitly. It is important in the

procedure PF to interpret the read-F points not as in Figure 13 (a

subroutine returning to its invoking level) , but as in Figure 12,

where the read suspends the program P until the completion of the read

re-activates it.

81

The successful application of Program Inversion to the coroutine

oriented problem above is not, however, the whole of the matter. In

Data Processing, and apparently many other areas of Computing Science,

people are continually setting themselves gratuitous brain teasers

typical of those found in the Sunday papers where, for example, one

is given an incomplete set of relationships between members of a

family, and asked to determine which two members are brothers. This

very difficult teaser has an obvious solution once the family tree is

drawn . The situation occurs frequently in Data Processing and might

be termed 'arboricide' the murder of trees.

~ Consider as an example the specificati on of the file F given

below. The file can have four diffe rent types of record, and their

permitted interrelationship is given:

File F has records U, V, X, Y.

U may follow X, Y, V.

V may follow X, Y, V, U.

X may be first or follow X, Y, V.

Y may be first or follow X, Y, V.

V is always the last record.

However, the structure imposed i s not obvious until the corresponding

tree is drawn:

'~3
I V ,

82

-,

-,

-,

Here, it can be seen that the fil e F is defined to have the sequence

'A followed by B followed by C', where A, B, C and D are not

explicitly mentioned in the specification above . 'A ' is either an

X or Y, C i s a U followed by a V, and B is an iteration of D's, D

being either an X, Y or V. The u se of Program Inve r s ion is helpful

in avoiding this sort of arboricide. Consider the example in the

figur e below of a conversational system where the user types messages ,

the system re sponds, and the u ser enter s another message depending

on thi s reply.

User
Me ss ages

Conversation

Thi s could be implemented by writing a 'transaction processing

module' where there might be one module for each typ e of input

mes sage, but it is preferable to r egard the conversation program as a

' simple program' which can be implemented u sing Program Inversion.

If it i s inverted with respect to the file of user messages to

p roduce a procedure whose specification i s 'process the next message

in the next conversation' then to extend the system to allow more

than one conversation to be carried on only one copy of t hi s program

i s needed, together with a s tate-vector (or activation record) for

each user. The concern here is with where the de s i gn should start:

if the programmer do es not interpret the u se r mes s age 'fil e' as a

singl e data object whi ch has a s tructure whose leaves are individual

u ser messages, then he will be committing arboricide and will never

be able to impo se the right grammar on the user messages and system

response Sg

A similar example shown below is to provide an I/O procedure (Imown

to IBM as an access method) for reading from and writing to files.

83

I I/O "\

(,ReqUe,

"--- -

------,.
Input/Output

··-'-·· -i P rocedure --_ ... --.

It also is a 'simpl e program'. The correct way to interpret the

p r obl em therefore is to invert the I/O procedure with respect to the

file of I/O requests, producing an access method whose state-vector

i s a record of t he hi story of the requests previously made o Incid­

entally, in u sing more complex transput at the assembler level,

r equests su ch as Open, Close, Read , Point and Note might be u sed;

the programmer would therefore need to know the l egal sequences of

these requests o Wh en looking up the requests in a manufacturer's

manua l it will invariabl y be found that he has committed arboricide

by placing each pro cedu re definition on a separate page s o that the

interrelationship between the various requests is ve r y obs cureo

A somewhat different problem arises in t he next example, a

compiler i s needed for a language that distinguishes between numeric

and non-numeric variabl eso The operations allowed on a variable

depend on its t yp eo Fo r example, if it is declared to be numeric the

operations of Add, Subtract, and Mo ve might be a llowed, whereas a

non-numeric variable could onl y use Move o It is assumed that all

structure and boundary clash es i nvolved in disentangling the syntactic

units at various levels have been dealt with, and t he compiler has

now just to deal with the variables o The situation is then a classic

interleaving clash: it is easy to fo llow one particular variabl e

through its declaration and u se, but unfortunately the variables are

interleaved throughout the program text o The problem is dealt with

by reading the p rogram text i n to some phase of the compiler , and

splitting the input into several output files, VAR1, VAR2, 000, one

per variabl e as in the figure belowo

84

~-.- -

Compiler
Phase

VAR1 PV1

J PV2

l--I

I--i,_pv, ~
The appearance of any particular VARi file will be as in Figure 14:

VAR

~
1 Nwneric

0
o I Non- numeric

/ '~ / ~
.- -- ---

Numeric
Nwneric Non-num eric Non-nrun eric

Declaration
Reference Declaration Reference

Set Set

\
I * Reference Non-numeric

/ ~
Reference

--._.

Numeric
0

Non-numeric o I Reference Reference

Figure 14

85

*

In an actual implementation it would be desirable to reduce the number

of files needed, and so the programs PVi are each inverted with respect

to their VARi file . Only one copy of the resulting PV program needs

to be kept , together with an activation record (state-vector) for

each variable . The state-vector then effectively corresponds to

being just an entry in the symbol table . It should be noticed that

the symbol table must be indexed with a variabl e ' s name, implying that

the table is a direct access structure . We can perhaps venture the

converse gener al statement that whenever a name is needed to index a

direct access table, then the entries in the table can be interpreted

as the activation records of some p rogram inverted with respect to

s om e file .

Professor Whitfield suggested that in a more realistic exampl e of

a compiler it would not be easy to find an appropriate data structure

for the input or output , and to say that this would be solved by

spl itting the system into simple programs begged the issue since the

probl em of decomposition still remained. Mr . Jackson replied t hat i t

was not usually possible to express the syntax of a programming

l anguage in a single tree structure, and, fo r exampl e, Figure 14

could not be fitted into the tree representing the whole program

text that encompasses it. Quite incidentally, it is interesting to

note that the grammars of programming languages usually specify

syntacti cally correct programs . This is disastrous in t hat it leaves

open to an indeterminate stage of the design the defining of the

grammar of a s~ltactically i n correct program. For example , COBOL

diagnostics for the same error in a program differ wildly from

compiler to compiler because the data structure (grammar) for the

actual input is never specified.

The teclmique of keeping state-vectors in the above way may al so

b e applied in the case of what might be called a long-running

program. A bank requires a batch processing system t o ke ep account

of its loans to its customers . The history of anyone customer

starts with the negotiations over general terms, ending in some

s ort of agreement after which the customer may have any number of

86

·,

. I

., ., .,

loans , though only one at a time , each loan having an initiation

followed by a period of repayments, and a termination. The important

aspect of this problem is the timescale involved. Repayments can

span several decades ? and cus tomers can exis·t for even centuries ,

yet what is required is a batch processing system with daily

updating . The correct way to interpret this system is to consider

first of all the Case of just one customer, as represented below.

C1273tf P1273 1----711 C1 2730p I 'I
- ~

A program P1273 has been written for customer 1273 and runs on a

dedicated machine for the lifetime of the customer-bank relation,

say several decades . The program reads one record from the customer's

file of traJlsactionsC1273tf once every ten weeks, and produces output

such a s acknowledgements on the file C12730p.

This simply way of looking at the problem makes clear that the

structure of the file C1273tf is as shown below: there is a negot­

iation part consisting of several negotiations, followed by agree­

ment, and a loan part of many loans,each having an initiation and

termination with a body of many repayments .

yC1273tfl
~ -----~ - - Loan part

'N-e-g-o-t-i-a-t-,;""o'-n-p-a-r-t-', 1 agreement I

* Negotiation

87

* Repayment

Termination I

.,

-.

. -

-.

Having written the program P1 273 it can be applied to any other

customer, and a real implementation requi re·s only one copy of it to

be kept together with a state-vector for each customer which would

be preserved on some file, hence solving the problem.

Professor Whitfield wondered whether the Program Inversion method

was effective : even given the input and outpu t structu res, was there

an algorithm to dete~mine i f a stru cture clash exis t ed? Mr . Jackson

repli ed that the connection among data structures needed in order to

build a program stru cture has to be obtained from the sp ecification

of the probl em . The data stru ctures themse l ves are impo sed on the

input and output by the p rogrammer in su ch a way that the program

structure allows all the desired operations to be p erformed •

88

-.

., ., ., .,

PART III

In order to understand the environment into which we place both

the ideas proposed earlier and those now to be introduced it is

important to appreciate that in large Data Processing installations

it is u sual to form a group, commonly known as something like

'Systems Support' into which most of the more talented programmers

are drawn: here they concern themselves with the new releases of

software, not applications programming or analysis, which they often

consider as not worthy of their attentions.

To summarise what has been said so far, the objective is to teach

a d esign procedure, not an ' outlook', ' approach', or ' style ' . At its

simplest and most na1ve level when applied to a small problem and

small program there are three stages: first, design the data structures;

from these form the program structure, then form a list of operations

required and fit th ese i nto the p rogram structure.

This is sufficient if the p roblem can be solved by a single

' simple program', but if not, then it becomes necessary to recognise

the existence of a structure clash and de compose the problem as

indicated. There appear to be three catagories of structure clash:

boundary clashes, interleaving (which is extremely common), and an

ordering clash, in which two structures have the same elements but

not in the same order. It may be noted that should the elements be

partially ordered it is po ssibl e to blur. the distinction between

interleaving and ordering clashes. Certain sorting algorithms, for

example the pocke t sort, can be regarded in this way.

There is a third l eve l of design pro cedure which, as it is not yet

suffi ciently formalised, might be better classed as an approach, that

derive s from a less formal view of the second level. The second level

is simply inadequat e when required t o aid the design of a very large

system when the number of 'simple programs' , structure classes and

files may be several orders of magnitude above those for which the

second l evel is intended, and such a scale is typical of a Data

Proce ssing environment. When the problem of the blocked file was

89

J

-, -, -,

considered the solution corresponded to something 'in the real world'.

It was possible to imagine someone in a room stacking up cards group

by group, and in another r oom a compl etely different person independ­

ently putting these groups into blocks . These two people are operating

independently: the only thing passing between them is the complete

file of cards. Thi s independence is mirrored by the independence of

the two 'simple programs '. To generalise this, a model of ' the

real world' is constructed in which the individual independent entities

are recognised. Corre sponding to these shoul d be simple p r ograms.

Where it is possible to form meaningful and rel evant sets of entities

in the real world, it is also possible to form a set of p r ogr ams,

that is, a single program text with a number of activation records.

Relating these remarks to those taught on the course s , it should

be noted a number of points are stressed. Firstly, the programmer

should think about the static, rather than the dynami c, aspects of

the problem and, similarly, about the structures involved rather

than the logic flow. In concentrating on s tructure in this way the

aim is to avoid unwanted interactions. In 'the real wo rld ' the

entities are connected only by some flow of transactions, hence the

corre sponding programs must be connected only in that way. Experi­

ence indicates a considerable proportion of the errors in sys tem s

arise becau se of unwanted interactions. For example, if it was

attempted to s olve the blocked file probl em in the most obvious

manner by amking the deblocking ope rations part of the same program

as the disection into groups and formation of the total line, it

could arise that the result would be a program which worked correctly

except in the case when a block contains only one record, and that

record is a header for a group containing no detail records .

If, however, the program is decomposed according to the method­

ology advocated, t here is nothing passed between the two p r ograms

such that this could conceivably occur. The error is one of inter­

action between bl ocks and groups, and one p r ogram knows nothing about

blocks and the other nothi ng about groups.

90

..

•

But, as pointed out earlier, backtracking problems can arise,

and here this kind of error Can be introduced because in essence

one is forced to introduce 'GOTO' statements (albeit concealed).

The problem is eased, fortunately, by having the correct non-back­

tracking text as a guide, this being formed by assuming backtracking

can never occuro

When it was stated that the students were urged always to think

about data rather than function, Dr . Pyle felt this needed clarifying:

was function being used in the sense of specification? Mr. J·ackson

replied that the sense was that illustrated by maintaining the

decomposition from the original problem into the simple was a

functional decomposition. Dr. Pyle wished to contrast this, as

typified by ' Put X into Y' with the job specification explaining the

rationale . Mr. Jackson acknowledged the distinction but considered

both unsatisfactory in terms of the design process.

Two other essential points remained to be stressed to the students .

First, trees had to be considered, rather than leaves, in order to

avoid arboricide, and second, emphasise the correct approach to

optimisation.

The optimisation process was a fundamentally human process,

perhaps with mechanical assistance, at the current state of the art.

As an illustration, consider the following program fragment, assumed

to be structurally perfect •

91

.. .,

A sequence
AA .§iliQ condition-1

p : ='l ;
r! = s ;
t: =u ;

AA .2L condi tion-2
v: =w;
x : ;::;y ;

AA .2L c ondi ti on-3
r :=s ;
t :=u ;

AA end
AB iterate until condi tion-4

m! =.n;
read file ;
v: =w;
x: =yj

AB ~
A end

Cl earl y , some of the statements are repeated. By restructuring it is

possi ble to remove some of the rep etition:

A sequence
AA sequence

AAA select condition-1
p: ~'l ;

AAA~
Ail sel ect condition-2

v :=w;
x: =y ;

Ail .2.£ true
r! = s ;
t :::::u ;

Ail end
AA end
AB iterate until condition-4

m: =n ;
read file ;
v: =w;
x: =y ;

AB end
A.~

92

I
I

But this is confusing optimisation and program structure: moreover

it does not appear obvious how we can remove the remaining duplic­

ation and stay within the structure programming techniques . If one

is permitted the use of 'GOTO' statements it becomes t rivial to

remove both dupl ications:

A seguence

AA ",elect condition-1
p: ~q ;

go to OPT1 ;
AA .2.!. condition-2

goto OPT2 ;
AA .2.!. condi tion-3

OPT1: r::::::;s;
t::::;u;

AA ~
AB iterate until condition-4

m:=.l};
read in file
OPT2: v: :::::;w;

x: =y
AB ~

A .ill£

When should t hi s optimisation be done? If the software to do

it is not available then either it should not be done at al l or it

should be done in such a way that no-one is in any doubt that

optimisation has been done . I t is far better that software should

handle the optimisation, but there do not appear to be compilers

commonly available to do so, partly because it is a ssumed to be

too difficult , and partly because of the confusion between design

and optimisation.

The subject of the lecture was then widened to cover some of

the ideals, rather than the prac tice of Data Processing .

93

ONE DAY'S
TRANSACTIONS

DAILY
UPDA'£E

CUSTOMER
MASTER FILE

PRINTED
OUTPUT

The above represents a typical fragment of a Data Pro cessing

system, and it is conventional to present the problem in this way.

This is wrong approach: it should be viewed on a customer basis

paying attention to the program which simulates a single customer .

An exact analogy to the conventional approach would be a compiler

which takes cards from different locations in 20ms portions, compiles

those until the time slice is exhausted and repeats the process on

a possibly changing population of programs . A far better approach to

the data processing problem (of which the daily update program is a

fragment) is illustrated in Figure 15 . The system is seen i n a

standardised form, free from implementation and efficiency

considerations .

94

-,

Transactions Proces se s

=ill
I793 I-'-'------t~ I79 3 11

yj492 yj492

C861

Figure 15

Customers place orders containing order items. Each order item

ref er s to a part. The arrows are used to indicate 'many-to-one'.

Sets

For exampl e , one i tem can mention only one part. A price increase

in part 216 will be a transaction , generating a transactipn on item

793, (among others) which in its t urn generates a transaction on

order 492, hence to customer 861 who will receive a note stating

that, due to a price increase in part 216 ordered i n item 793 of

order 492 the total cost has increased, and s o on. Each of the

rectangles in the diagram above represents a process (simple program)

modelling the lifetime of the corresponding entity in the real world.

The implementation question then arises: how should the process be

scheduled? One common answer is provided by the ' transaction­

oriented' de sign of Figure 16 .

95

I

-< -<

~ --
.-

PMF k PROCESS
TRANSACTION

~ TXYZ
FOR PART

I

C"'J PROCESS *
>- TRANSACTION

TPQR
FOR ITEM

GJ~'
I

PROCESS

>- TRANSACTION
TABC
FOR ORDER

[CMF }
PROCESS
TRANSACTION

~ TGHI
FOR CUSTOMER

Figure 16

Notice that here only a part of each simple process has been

activated - the part relevant to a particular transaction: the

p ossibility of errors becomes significant .

Another solution commonly adopted is to store up transactions

for a period then process them as a group. This gives rise to a

c l ass i cal batch processing system as i.llustrated in Figure 17.

96

-,

.< .<

P-TRANS 1-----71 SORT

Figure 17 [_O::U,TJ

We can see both of these solutions as implementations (or , indeed,

optimisations) of the standardis ed form. It would be very desirable

to be able to produce the solutions by transforming the text of

standardi sed form into the particular program texts required.

Once recent piece of work in the field of optimisation which may

prove relevant is due to Burstall & Darlington.

It i s simply exemplified by the following . Suppose it is

desired to calculate

S: = (a • b) + (c . d)

where a, b , c and d are all vectors with the same number of elements.

The calculation of a.b and c . d are independent processe s . So the

natural calculation i s

97

., .,

Calculate
S

\

S:=O form a b ,.

I
* S:=S+aibi

But it is cl early possibl e to calculate it by

Cal culate
S

S:=S+a.b.
'- '­

+c.d.
'- '-

form S

\
* S:=S+c.d.

'- 1.

Thi s means that it is possible to find two totally different

control stru ctu res that have the same end effect. The work is

concerned with how to find these alternative structures; it should

have a major effect on programmi ng , particularly on those systems

whi ch can be viewed as a transformations of networks of simple

programs.

98

