
•

•

VIII. 53

A FIELD GUIDE TO BOXOLOGY:
PRELIMINARY CLASSIFICATION OF ARCHITECTURAL STYLES

FOR SOFTWARE SYSTEM

M Shaw

Supplementary pa per prov ided follo wing the Seminar

VIn . 54

•

VIII. 55

A Field Guide to Boxology:

Preliminary Classification of Architectural Styles for
Software Systems

Mary Shaw and Paul Clements

Computer Science Department and Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15213

April 1996

Abstract: Software architects use a number of commonly-recognized "styles"
to guide their design of system structures. Each of these is appropriate for
some classes of problems, but none is suitable for all problems. How, then,
does a software designer choose an architecture suitable for the problem at
hand? Two kinds of information are required: (1) careful discrimination among
the candidate architectures and (2) design guidance on how to make
appropriate choices. Here we support careful discrimination with a
preliminary classification of styles. We use a two-dimensional classification
strategy with control and data issues as the dominant organizing axes. We
position the major styles within this space and use finer-grained
discriminations to elaborate variations on the styles. This provides a
framework for organizing design guidance, which we partially flesh out with
rules of thumb.

Keywo rds: software architecture, architectural styles, style classification/taxonomy

An abbreviated version of this paper
appeared in COMPSAC '97, pp 6-13

VIII . 56

1. Introduction

Software architecture is concerned with system structure-organization of the software,
assignment of responsibilities to components, and assurance that the components' interac
tions satisfy the system requirements [GS93, PW92]. Software developers recognize a num
ber of distinct architectural styles. Many of these styles are defined info rmally and
idiosyncratically. Our purpose here is to clarify the distinctions among styles as a first step in
helping designers choose among the styles.

By architectural style we mean a set of design rules that identify the kinds of components and
connectors that may be used to compose a system or subsystem, together with local or global
constraints on the way the composition is done. COmp0l1el1ts, including encapsulated sub
systems, may be distinguished by the nature of their computation (e.g., whether they retain
state from one invocation to another, and if so, whether that state is available to other compo
nents). Component types may also be distinguished by their packaging-the ways they
interact with other components. Packaging is usually implicit, which tends to hide important
properties of the components. To clarify the abstractions we isolate the definitions of these
interaction protocols in COHnectors (e .g., processes interact via message-passing protocols;
unix filte rs interact via data flow through pipes). It is largely the interaction among compo
nents, mediated by connectors, that gives different styles their distinctive characteristics.

The style of a specific system is usually established by appeal to common knowledge or intu
ition. Architectures are usually expressed in box-and-line diagrams and informal prose, so
the styles provide drawing conventions, vocabulary, and informal constraints (e.g., limiting
topology or numbers of components of some type). Recently there has been some effort to
identify and define styles more precisely and systematically [G+94, SG96, Sh96]. A few styles
have been formalized or extensively analyzed [A+95, AG94, An9l , Ni86]. Space does not per
mit us to offer primary definitions of specific styles here.

In this paper we begin to organize and classify some of the styles that appear in software
descriptions. By doing so we aim to

• Establish a ul1iform descriptive standard for architectural styles- make the vocabulary
used to describe styles more precise and shareable among software architects.

• Provide a systematic organization to support retrieval of information about styles.

• Discriminate among different styles-bring out significant differences that affect the
suitability of a style for various tasks; show which styles are refinements of others.

• Set the stage for organizing advice on selecting a style fo r a given problem.

This classification is an intermediate step toward supporting architectural design decisions.
Minimally, it will help the designer focus on important design issues by providing a checklis t
of topics to consider, thereby setting expectations for elements to include in the design. Even
tually the classification should provide guidance for recognizing which styles are important
candidates for shaping the solution.

This work shares motivation with recent work on problem frames and on patterns. Jackson's
work on problem frames [Ja961 does for classes of problems what we are doing fo r classes of
solutions. Jackson distinguishes classes of problems on the basis of the kinds of information
provided and kinds of results expected. In the space of solutions, the patterns community
concentrates on documenting proven solutions, including architectural styles, in the con text
of the specific kinds of problem for which each solution is useful [GoF95, CS95, Sh961. Both

--' -'- --.--.------------

VIII. 57

Jackson and the patterns community begin with observa tion of things that work and work
towa rd principled models and guidance. The present work is precisely in that spiri t.

Much of computer science includes phenomena abou t which we do not ye t have well-estab
lished scien ti fic truths but do have interesting observa tions and generalizations. Brooks has
proposed recognizing three kinds of resu lts: fil1dillgs (well-established scientific truths), obser
va tioll s (reports on actual phenomena), and rules-aI-thumb (generalizations, Signed by an
author but perhaps not full y supported by data) . His criteria for judging quality are truthful
ness and rigor for findings, interestingness for observations, usefulness for rules-oJ-thllmb, and
freshness for all three [Br88]. This paper presents observations (on discriminating among
s tyles) and some rules-of-thumb (guiding their use in design). We have based our classifica
tion on an extensive set of sys tem descriptions. The work is empirica l and observational-we
try to account fo r the descriptions that designers actually write, as opposed to inventing
sty les tha t may be easy to classify but are of no apparent practical import.

Section 2 presents the classification of architectural s tyles, using feature categories explained
in Section 3. Section 4 shows tha t the class ification is feasible extensible by using it to elabo
rate variants of t;vo major styles that have appeared in the literature. Section 5 discusses the
role of style in design, including style support in archi tecture description languages, and pro
vides some rules of thumb for choosing a style on the basis of the problem at hand.

2. Styles for Software Architectures

In this section we classify a set of architectural styles that have been described previously
(usually informally) in published literature. Software designers use an extensive descriptive
vocabulary to explain their system organizations. They use the vocabulary informally, almost
casually. Often a single label or graphical element is used w ith different meanings. Through a
rigorous classification we attempt to capture the common meanings.

Table 1 shows the resulting classification. It is not complete, but it spans much of the diver
si ty found in practice. Each row describes a style. Columns correspond to the feature catego
ries as described in Section 3. Indented rows describe specializations of the styles in the
primary rows they follow. Because this is a multidimensional classification, it is possible for a
style to be a variant of more than one broader style; we handle this with cross-references.

We describe the styles in their pure forms, although they seldom occur that way. Real sys
tems hybridize and amalgamate the pure styles, with the architect choosing useful aspects
from several in order to accomplish the task at hand. Our classification does not impede this
heterogeneity, but rather enhances the selection and blending process by making stylistic
properties explicit. Understanding the pure fo rms is helpful in understanding or explaining
the hybrids, and perhaps also in recognizing and eliminating unnecessary heterogeneity.
Indeed, the classification activi ty can point ou t common styles that are hybrids of other
styles, such as lightweight processes.

After looking through the table many readers wi ll say, "But that's not what I mean by style
X!". Indeed, it may not be. But it is, as far as we can tell, what someone else means. This is an
indication that different readers use style names in different ways. A primary objective of this
classification is to expose these differences and enable constructive discussion.

VIn . 58

3. Classificatio n Strategy

A system designer's pr imary impression of an architecture often keys on the characte r of the
interactions among components. Our class ification strategy reflects this. The major axes of
class ifica tion are the control and data interactions among components. We make finer dis
criminations within these dimensions.

Our analysis of common architectural sty les sugges ts that they are discriminated by the fol
lowing categories of features:

• which kinds of components and connectors are used in the style

• how control is shared, allocated, and transferred among the components

• how data is communicated through the sys tem

• how data and control interac t

• what type of reasoning is compatible with the style

These categories form the basis of a descriptive classification that shows essential similarities
and differences among styles. Features that distinguish sty les also help us understand why a
particular style is an appropriate solution for one type of problem and not for another.

This classification is based on coarse-grained descriptions of properties, a technique often
used for qualitative descriptions. It allows significant, yet comprehensible, distinctions to be
made without risk of combinatorial explosion. Finer distinctions can be made, when appro
priate, in refinements of the primary analysis; this is done for two examples in Section 4. It is
useful to think of each of these feature categories as defining one dimension of a multidimen
sional space (La90]. A specific style then corresponds to a point in the space and a family of
styles corresponds to a subspace.

In a multidimensional space, it is possible for two subspaces to intersect. For example, light
weight processes, which are usually thought of as a variant of communicating processes,
share a n ame space. Since this is added capability, they are not a specialization (i.e., subspace)
of processes. The shared name space enables data sharing, which positions lighhveight pro
cesses as a variant of shared data as well. Design with lightweight processes must therefore
recognize the problems and advantages of both parents. The overlap is reflected in Table l.

An alternative way to distinguish styles would be through a hierarchical taxonomy (PN86].
Such taxonomies are structured as decision trees with the taxonomized population at the
leaves and discriminating questions on the interior nodes. Such taxonomies may be more
expressive than tabular classifications because they can use different discrimination criteria
at different points. However, they show similarities less well than design spaces do, because
they can describe only the families that correspond to subtrees, not families along some other
dimension (or several dimensions) . Section 4 shows how we can use the additional descrip
tive power of the design space to explore regions of it in detail.

The following sections detail each fea ture category.

3.1 Constituent Parts: Components and connectors

Components and connectors are the primary building blocks of architectures. A component
is a unit of software that performs some function at run-time. Examples include programs,
objects, processes, and filters. A connector is a mechanism that mediates communication,

Style

Main program/sub-
routines [Pa72,
130861

In format ion hid ing
systems [Pan]

-Abs trac t d;;l.Ia types
[Sh8 11

objects
[13 0861

Communicating pro-
cesscs (An9 1, Pa8S)

OLit;lllwc.:ight
pro..:..::.scs

· Di siribll icu ubJce.:ls

oOther sub·stylcs

Event systems
[Ba86b, G+92,
Ge89, HN86, He69,
KP88, Re901

Table 1: A feature-based classification of architectural styles

Constituent parts Contro l issues

procedures, data procedure calls hier seq w,e arb

managers procedure ca lls arb seq w, c, r arb

managers
stalic proce-

arb seq arb
dure calls

w, e

managers dynamic pro(.:c-
arb seq w,e,r arb

(objecls) dure ca ll s

sl.lf synch w,e,r Slar

message
arb

Any but
arb processes

protocol s scq
\V,C, r

lit; hl wc.:it;ht Il l rc.:ad~,
;uh

b /par,
:u h

(~ h ;trcd dal a") :.Y IH.:h
\V, l'

pfOl.:C ~Sl:S

m:magcrs
fcillole 1"\><':

;lIh
Islpar,

W, e.:, r :Irb
e llis sym:h

rcqllt:~t/rcply
sta r synt.:h W, C, r star

mcssages

I See Section 4.2 :

I processes I implicit
invocat ion I arb

I asynch,
opp I i, r I arb

Data iss ues

Contin-

spor hvol

cOllllvol
or livol

spor Ivol

spor 1vol

spor Ivol

spor I vol

spor Ivol

spur Ivol

spor (III),
c.:011l (da)

~po r Ivol

spor Ivoi

I spor Ivol

Mode

shared

passed

passed,
shared

passed

passed

I passed

allY

pass,.:d ,
:.h;lr c.:d

passed

passed

I Weast

Control/data inleractioJI

Binding Flow

i , r

I w, c. r I no I n/a

W, c, r yes same

W, C, r yes same

I w, c, r I yes I sa ille

poss ihl y
if isomor·

\V,c,r
phi e.:, c.: iI 11I..:r

w,..: LHI LII;,

w. e.:, r nu n/a

\Y , c. r yes oppOs ite

I i , r Ino I ,Va

Type of
rc.1soning

lIi cr:lrchy (loca l
rC;lsonin~)

NOlldc tcn nini sm

<
H
H
H

v.
'"

Table 1: A feature-based classification of architectural styles

Constitu ent parts Control issues Da ta iss ues Cont rol/d ata int erac tio n

S lyl e I Components I ~~~~- I _:~~~~~:~. I B it':~~ieng Isomorphi c I Connectofs
Topo- Conlin-

M ode
Bind ing Flow

logy uily lime s l

p ae Y In epen ent computaUons

I (queri es)
star -._, ' -. -.,

w slnr spor Ivai
shan:ll,

w poss ibly computations opp passl:d l ie . opp", i'e

-Clielli/serve r IlIlanag~ r~.' /transaction ~rns asyw.:h. spu r Ivol passed
with hi slory'

star \V,c,r star W, C, r y~s OppOSL I~

Blackboard (Ni86]
memory,

direct access star
asynch.

w sIJr spor Ivo l
shared, w no n/a

computat ions opp mensl

Modern compiler Inclllory,
procedure call spor Ivo1 shnrcd n/a star seq w star w no

(SG96] computations

doc uments

Hyperlcx l doc uments illiernni re fs. n/a n/a nla 1"'_ 1"-'" 1" ·_.. 1" '-" I'V" It/a

Fort ran common,
Jovial Compool

Liohtwei oht
pr;cesses~

GN,nt
Layered 11'r85.
LS79]

·Interpreter (Vi rtual
machine) (H R85 J

Notes :

data struclUres

See illteracting processes style group. This slyle hybridizes processes lIlItl sh(lred d(l/(l, with emphasis 0 11 process

various

memory, state
machine

'I·OI){ llogy
Sym:hronicity
llinding time
Continuity
Mode

vari ous hier hier
spor 1'101, w,e, i, r of len

same or
any any

coni
any opp

di n.:c t data fixcd hier
access

seq w,e hier coni shared W, C nn ilIa

lIi l!!" (hicran.: hil:al), arh (arhilrary), slar, lim;a.- (oLLc -way) , ti .'(cd (lich.:rllLiLII.:d by sl yk)
seq (sequl! lltial, onc th read of cuntrol),I s/par (l UI.:"SICP pa ra llel), sYll ch (~ym; " ro L lou s). asyndl (asynchronous), opp (lIPP(\ II ULli ~ li c)

w (wrilc- time--that is, in source code), c (compile-time), i (i nvocatio IHime), r (run-t ime)
spor (spowdie), cont (cont inuous), hvol (high-volumc), 1'101 (low-volumc)
shared, passed, bdcasl (broadcast), mcast (multicast). cilco (copy-inlcopy-ollt)

Type o f
reasoni ng

convergence

in variants on
parse tree

I ~Clm.;scnlalion

j L~v~b of
service

I. Closed loop con trol establishes a contrOlling relation between an embedded process and a (.;Olll rol fu nction th;Ll rcspnnds to perturbat ions.
2. By "classica l object" we mean objects as they ori ginally emerged: non·concucrent, interacti ng via procedurl! -like mcthods. Objects arc now often ddincd Il11H.: h Ilion; broadly, espe

ciall y in their types of interactions.
3. True client/server systems maintain context that captu res the current s tate of an ongoing se ries of ac ti ons. "Cl ienl/server" is some ti mes IIscd [0 describe sys tems th:11 igno re this

requirement and simply use components that call and define procedu res or send request/reply messages <l monge processes. We call thl! Jancr "naivc dicntlscrVl!r sYS[l!llls. "
4. Lighlweigln processes may take advantage of the shared name space; Ihey become a hybrid of cOlnmunical ing processl:s anll sharl!d data.
S. The A~l q properties are atom~ i ty . consistency, i so l ~on, and durabili ty.

~ ~

<:
H
H
H

era

•

VIII . 61

coordination, or cooperation among components. Implementations of connectors are usually
distributed over many system components; often they do not correspond to discrete ele
ments of the running system. Examples include shared representations, remote procedure
calls, message-passing protocols, data s treams, and transaction streams.

We focus on the nbstractiolls used by designers in defining their architec tures . In practice,
most of these elements are ultimately implemel1ted in terms of processes (as defined by the
operating system) and procedure calls (as defined by the programming language) . More
abs tract connectors include forma t conversions that allow two otherwise-incompatible com
ponents to share data and connectors augmented by performance monitoring, authentica
tion, or audit-trail capabilities.

The allowable kinds of components and connectors are primary discriminators among styles.
Selecting the types of constituent parts does not, however, uniquely identify the style. Con
trol disciplines, data organizations, and the interaction of control and data all affect style dis
tinctions. So do finer dis tinctions within types of components and connectors, some of which
appear in Table 1. For example, both program and tra nsducer refine process; procedure calls may
be local or ren'lOte, and their binding may be dynamic or static; batch datn, data stream, and con
tinuous refresh are all forms of data Jlow.

A taxonomic treatment of architectural components and connectors, filling out the concep
tual framework begun here, appears elsewhere [K+96].

Components and connectors also provide a clustering criterion for the styles in Table 1.
Members of a cluster share similar types of components and/or connectors. These clusters
are not the only ones possible; the styles could be grouped differently by choosing other fea
tures as their organizing basis. Indeed, different groupings may be desirable, especially if
they correspond to the language of a problem description. H owever, the component / connec
tor-based clusters enjoy a certain intuitive clarity, reflect how many practitioners tend to
describe styles, and mirror previous a priori classification efforts [GS93].

3.2 Control issues

Control issues describe how control passes among components and how the components
work together temporally. Control issues include:

• Topology: What geometric form does the contro l flow for the system take? A pipeline
often has a linear (non-branching) or at least an acyclic control topology; a main-pro
gram-and-subroutines style features a hierarchical (tree-shaped) topology; some server
systems have star (hub-and-spoke) topologies; a style consisting of communicating se
quential processes may have an arbitranj topology. Some architectures specify quite
specific topologies. Within each general topology it may be useful to stipulate the di
rection in which control flows. The topology may be static or dynamic; this is deter
mined by the binding time of the partner as described below.

• Synchronicity: How dependent are the components' actions upon each others' control
states? In a lockstep system, the state of any component implies the state of all others;
for instance, a batch sequential system's components are in lockstep with each other,
since one doesn't begin execution until its predecessor finishes. SIlvlD (same instruc
tion, multiple data) algorithms for maSSively parallel machines also work in lockstep.
In synchronous systems, components synchronize regularly and often, but other state
relationships are unpredictable . Asynchronous components are largely unpredictable

VIII . 62

in their interaction or synchronize once in a while, while opportunistic components
such as autonomous agents work completely independently from each other in paral
lel.

Lockstep systems can be sequential o r parallel, depending on how many threads
of control run through them . Other forms of synchronicity imply parallelism.

• Bind ing ti me: When is the identity of a partner in a transfer-of-control operation es
tab li shed? Some contro l transfers are pre-determined a t program-write (i .e., source
code) time, compile time, or invocation time (Le., when the operating system initializes
the process). Others are bound dynamically while the system is running.

3.3 Data issues

Data issues describe how data moves around a system. Data issues include:

• Topology: Data topology describes the geometric shape of the system's data flow
graph. The alternatives are as for control topology

• Co nt inuity: How continuous is the flow of data throughout the system? A continuous
flow sys tem has fresh data available at all times; a sporadic -flow system has new data
generated at discrete times. Data transfer may also be high-volume (in data-intensive
systems) or low-volume (i n compute-intensive systems).

• Mode: Data mode describes how data is made availab le throughout the system. In an
object s tyle, it is passed from component to component, whereas in any of the shared
da ta systems it is shared by making it available in a place accessible to all the sharers.
If the components tend to modify it and re-insert it into the public store, this is a copy
out-copy-in mode. In some styles data is broadcast or multicast to specific recipients.

• Bind ing time: When is the identity of a partner in a transfer-of-control operation es
tablished? This is the data analogy of the same control issue,

3,4 Control/data interaction issues

Interaction issues describe the relationship between certain control and data issues.

• Shape: Are the control flow and data flow topologies substantially isomorphic to each
other?

• Directionality: If the shapes are substantially the same, does control flow in the sa me
direction as data or the opposite direction? In a data-flow system such as pipe-and-fil
ter, control and data pass togethe r from component to component. However, in a cli
ent-server style, control tends to flow into the servers while data flows into the clients.

3,5 Type of reasoning

Different classes of architectures lend themselves to different types of analysis. A system of
components operating asynchronously in parallel yields to vastly different reasoning
approaches (e.g., nondeterministic state machine theory) than a system that executes as a
fixed sequence of atomic steps (e.g., function composi tion). Many analysis techniques com
pose their results from analysis of substructures, but this depends on the ability to comb ine
sub-analyses. The fit of an analysis technique to an architecture is enhanced if the software
o rganization matches the analysis organization- that is, if software substructure and analy-

VIII . 63

sis substructure are compatible.

Thus, different architectural styles are good matches for different analys is techniques . Your
choice o f architecture may be influenced by the kinds of ana lysis you require.

4. Refinements of Styles

The classification scheme of Section 3 maps out the space of architectures, but it does not cap
ture all the richness found in natu re. Each row can be elaborated to capture more detailed
distinctions. These distinctions may matter because they determine whether pre-existing
parts can be used together, or because they affec t system performance or other sys tem-level
behavio ral quantities.

[n this section we expand Table 1 by partially elaborating two well-known families of styles
that have been extensively ana lyzed by others. We do so with the intent of valida ting the
classification: If the feature categories capture distinctions observed by others and the table
extends smoothly, this increases our confidence in their relevance.

4.1 Pipe-and-Fi lter Systems and Dataflow networks

Dataflow l1etworks describe systems whose components operate on large, continuously-avail
able da ta stream. The componen ts are organized in arbitrary topologies that stream the data
with non-transforming connectors. What happens when restrictions are placed on the topol
ogies?

Abowd, Allen, and Garlan analyzed what they call the pipe and filter style by way of formaliz
ing the semantics of architectural styles (as opposed to cataloguing their construction, as we
have done). They identify three (overlapping) variations of the pipe and filter style [A+95] :

• sys tems without feedback loops or cycles (acyclic)

• pipelines (linear), and

• systems with only fan-out components.

Their overall pipe and filter style corresponds to the dataflow network style of Table 1: the
components are elements that asynchronously transform input into output with minimal
retained state-i.e., transducers. The transducers are connected in various topologies by
high-volume data flow streams.

The pipeline sub-style of [A+95] can be seen in Table 2 to be a specialization of dataflow net
work-its data and control topology is restricted from "arbitrary" in the general form to "lin
ear" in the specialized form but the classifications are otherwise identical. The fan-out and
acyclic sub-styles of [A+95] simila rly differ from the general form only by imposing different
topological restrictions.

Unix pipes and filters, a specialization not treated in [A+95] but widely used elsewhere, can
be seen to be a sub-specialization of the pipeline style. The hook-ups can only be specified at
the time a program-script, in this case- is written, or when the command is given to the
operating system. Further, its components are those that accept ascii streams, not generalized
data streams.

The classification shows that all of these styles (acycl ic, pipelines, fan-out. Unix pipes and fil-

VIII. 64

ters) indeed compr ise a family that we have ca lled "dataflow network", in which the mem
bers are distinguished mainly by topologica l res triction. Table 2 shows the relationships
among the majo r style and its family members.

Tab le 1: Specia lizat ions of the dataflow network style

Co ns tituent p_uts Co ntrol iss ues

Style
Comp~ Conn · Topo- Synch-

Bind-
Topo-

ing
onents ectors logy ronicity

time
logy

t .1 • ; . II II I , .. , • 11 . 11 1 1 I ... • • : ' , . . "
Dat:.l tlow arbi - arbi-
network [8 +88] ([:try ([;"l f Y

• Al..:ydic
acyclic acyclic

[A+95]
data

Fanout streo.m hier- i, r hier-
[A+9 51 trans - <!rehy asynch archy
Pipeline duccrs
[DG90,
S.,88 , A+95]

linear - linear
- Unix. pipes
and fi lters ascii

i
[Sa86a] strc3m

KBy to eolamn enlriet.. . ' .: .. ' .. ~. -. ,,, , , "

Synchronici ty
Bind ing ti me
Continuity

asynch (asynchronous)
i (i nvocation- time), r (run·time)
cont (cont inuous), lwo\ (high.vo lume), Iva i (low-volume)

Data issues

Contin -
Mode

uity

, " • I ' . .. "

cont Ivai
passed

or lw ol

..

4.2 Cooperative Message-Passing Processes

Ctrl/data
interaction

Bind- Isomo r- Flow
ing phic dir-

time shapes ections
. , I til I , • . . ,

i. r

yes same

-
i

Andrews (An91] analyzed and catalogued a family of styles based on processes communicat
ing with each other v ia message·passing. This family corresponds to the communicating pro
cesses (CP) style in Table l. Andrews identifies eight variants, The next sections show how
each variant is a specialization of the basic CP style.

One-way data flow through networks of filters. This is a version of the dataflow network
substyle described in Section 4.l implemented with communicating processes; in this version
the implementation with messages intrudes on the data flow abstraction. A piece of data
enters the system and makes its way through a series of transformations, each transform
accomplished by a separate process. The series need not be linear; Andrews gives an example
of a tree of processes forming a sorting network. To analyze this sub-style, we note how it d if
fers from both main styles that it resembles, To cast it as a specialization of dataflow net
works, we (a) restrict its da ta and control topologies to one-way flows, and (b) relax its data
handling requirements from continuous to sporadic. To cast it as a specialization of commu
nicating processes we restrict its topologies from arb itrary to one-way and its synchronicity
to asynchronous. That is, this style lies within two subspaces of our design space.

Requests and repli es be tween clients and servers, Clients and servers, a popular style,
already occurs in Table l. It can already be seen to be a specialization of the CP >tyle in which
the topologies, synchronicity, and mode are restricted from the general form, This is the naive
form, which ignores the usual requirement to maintain state for an ongoing sequence of
interactions between the client and the server.

VIII. 65

Back-and-forth (heartbeat) interaction between neighb oring processes. A heartbeat algo
rithm causes each node in the process graph to send information out (expand), and then
gathe r in new info rmation (contract). An example of applying this algo rithm is to discover
the topology of a ne twork. On each "beat", each process (representing a processor) commu
nica tes with everyone it can, broadcasting its idea of the topology. Between bea ts, every pro
cess ass imilates the in fo rmation just sent to it, combining it with its current idea of the layout.
The computation terminates when a completion condition has been met. Andrews p roposes
two variations of thi s sub-style, depending upon whether or not shared memory is used. We
model this form of process interaction by restricting the synchronicity of the CP style to lock
step-parallel (although asynchronous versions are possible) and reflecting the shared-data/
distributed-data choice by describing the data and control topologies appropriately.

Probes and echoes in graphs. Probe/echo computations work on (incomplete) graphs. A
probe is a message sent by a process to a set of successors; an echo is the reply. Probe / echo
algorithms can be used to compute a depth-first search on a graph, discover network topolo
gies, or broadcast using neighbors. Specializing the CP style by restricting the topologies to
an incomplete graph, synchronicity to asynchronous, data mode to passed, and flow direc
tions to same describes the probe / echo sub-style.

Broadcasts between processes in complete graphs. Broadcast algorithms use a di stin
guished process to send a message to all other processes. An example is to broadcast the
value of a central clock in a soft-real-time system. Modelling the broadcast style in our classi
fication simply requires restricting the data topology to star (for that portion of the computa
tion involved in the broadcast) and the data mode to broadcast; the control topology remains
arbitrary.

Token passing along edges in a grap h. Token-passing algo rithms use tokens (a special kind
of message) to convey temporal rights to the processes receiving the tokens. Token-passing is
used, for instance, in algorithms to compute the global s tate of a distributed asynchronous
system, or to implement distributed mutual exclusion of a shared resource. Token-passing is
a refinement of the CP style that restricts the synchronicity to asynchronous, data mode to
passed, and flow direction to same. The topologies remain arbitrary, and the continuity
remains sporadic low-volume.

Coordination between decen trali zed server processes . In this model, identical servers are
replicated to increase the availability of services (for example, in case of the failure or backlog
of a single se rver). The essence of the algorithm is to provide the appearance to clients of a
single, centralized server; this requires that the servers coordinate with each other to main
tain a consistent state. One server cannot change the "mutual" state without agreement of a
sufficient majority of the others. This weighted voting scheme is implemented by passing
multiple tokens among the servers. Architecturally, this algorithm is identical to the token
passing sub-style discussed above.

Replicated workers sharing a bag of tasks . Unlike decentralized servers that maintain mul
tiple copies of data, this style provides multiple copies of computational elements. The repli
cated-workers style is a primary tool for single-instruction, multiple-data (SilVIO) machine
programmers. Parallel divide-and-conquer is one of its manifestations. One process can be
the administrator, generating the first problem and assigning sub-problems. Other processes
are workers, solving the sub-problems (and generating and administering further sub-prob
lems as necessary). Sub-solutions bubble back up a hierarchical path until the original
administrator can assemble the solution to the global problem. To see SIMO algorithms as a

I

VIII.66

sub-style of CP, we restrict the topologies to hierarchical, the synchronicity to synchronous,
mode to passed or shared (depending on whether or not shared data is used) ilnd tlow direc
tion to same .

Tab le 3 summarizes these descriptions.

Tab le 2: Specia liza tions of the interacting processes style

Constituent parts Cont rol issues Data issues
Ctrl/d,t,

interaction

Style
Compo Cannec- Topo- Synch-

i Bind -
Top o-

Bind Isomor- Flow
ing . ~u,,'" Mode ing phic dir-

onents tors logy ronicity
time

logy uity
time shapes ections

~, , , , , . , "
,

CornmunicJting
any bu t

if iso-
processes orb arb any w. c, r possibly morphic

[An91. PaSS] seq
either

I .. j datJ
flow, networks linear asynch linear passed yes same
of filre rs

'{~ slar synch st;)r passed yes opposite

hier or
passed

Heartbeat message hier Is/par spar shared no same
processes w, c, r star

protocols Ivol cilea
Incom- inearn- w, c

Probe/echo plete asynch plete passed yes same
graph gr>ph

B, orb asynch star bdcast no same
Token passing

arb asynch arb. passed yes same

Re plicated
hier synch hier

passed
yes yes workers shared

Key to column enlTies
hier (hie rarchical), arb (a rbitrary), star, lint:ar (one-way) Topology

Synchronicity seq (sequen ti al. one thread of control), ls/p:.lr (lockstep parallel), synch (synchronous), asynch (asynchro-

Binding time
Continuity
Mode

nous), opp (opportunis tic)
w (write-time·-that is, in source code), c (compile-time), i (invocation-time), r (ru n-time)
spor (sporadic), IvaI (low-volume)
shared, passed, bdcast (broadcas t), mcnst (mul ti cast) , cilco (copy-in/copy-out)

5. Using Styles in System Design

5.1 Supporting Styles in Architectural Design Languages

Specific styles are supported by a variety of framewo rks and architectural description lan
guages (ADLs) [Ga95]. For instance, every AD L in one survey was able to express a pipe
and-filter style, though few provided it as a built-in primitive [Cl96]. Some ADLs, however,
go beyond tha t to support a diverse and open-ended (architect-defined) collection of styles.
Two languages do this: Aesop [G+94 j and UniCon [5+95].

Aesop is an object-oriented notation and system for developing style-specific architectural
development environments. Its basic elements of archi tectural description are components,

VIII. 67

connectors, and configurations. Styles are created by subtyping; style-specific vocabularies of
design elements are created by defining the desired component types as subtypes of the
generic component, the desired connector types as subtypes of the generic connector, and so
on. Configuration rules are captured as part of the subtype definitions.

Un iCon also defines components and connectors as the basic elements. Here, however, the
language provides a collection of specific component and connector types. The se t is manu
ally extensible, and specializations are defined via property lists. Styles will be defined as
res trictions on the available vocabulary.

5.2 Choosing Styles to fit the Probl em

We expect that the distinctions established in this class ification provide a framewo rk for
offering design guidance of the general form, "If your problem has characteristic X, consider
architectures with characteristic Y". This form of design guidance was explored for the user
interface component of systems by Lane [La90j. Lane characterized both his requirement and
implementation domains as design spaces. He cast his design guidance as rules that mapped
points in the requirement space to points in the implementation space with variable, signed
weights. He wrote similar rules to describe compatibility of alternatives in the implementa
tion space. This provided the ability to recommend candidate implementations for given
problems.

The choice of an architectura l style to fit a requirement is a similar task. We expect that an
approach based on Lane's will be fruitful. However, organizing this information is a major
undertaking for each domain. In the interim, we can at least state rules of thumb. Some of
these are stated explicitly in analyses of architectural styles by cited authors; others are obser
vations that derive directly from our classification .

• If your problem can be decomposed into sequential stages, consider batch sequential
or pipeline architectures.

• If in addition each stage is incremental, so that later stages can begin before
earlier stages finish, consider a pipeline architecture.

• If your problem involves transfo rmations on continuous streams of data (or on very
long streams), consider a pipeline architecture.

• However, if your problem involves passing rich da ta representations, avoid
pipelines restricted to ASCII.

• If a central issue is understanding the data of the application, its management, and its
representation, consider a repository or abs tract da ta type architecture. If the da ta is
long-lived, focus on reposi tories.

• If the representation of data is likely to change over the lifetime of the program,
then abstract data types can confine the change to particular components.

• If you are considering repositories and the inpu t data is noisy (low signal-to
noise ratio) and the execution order cannot be predetermined, consider a
blackboard [Ni86 J

• If you are considering repositories and the execu tion order is determined by a
stream of incoming requests and the data is highly structured, consider a
database management system.

• If your system involves controlling continuing action, is embedded in a physical sys-

VIn.68

tem, and is subject to unpredictab le external perturbation so that preset algorithms go
awry, consider a closed loop control architecture [5h95) .

• If you have designed a computation but have no machine on which you can execute
it, consider an interpreter architecture.

• If your ta sk requires a high degree of flexibility / configurability, loose coupling be
tween tasks, and reactive tasks, consider interacting processes.

• If you have reason not to bind the recipients of signals from their originators,
consider an event architecture.

• If the tasks are of a hierarchical nature, consider a replicated worker or heartbeat
s tyle.

• If the tasks are divided between producers and consumers, consider
client/server.

• If it makes sense for all of the tasks to communicate with each other in a fully
connected graph, consider a token passing style.

6. Conclusion

Architectural styles are becoming the lingua franca of architecture-level design, in the same
way that design patterns are moving to center stage in establishing the vocabulary and defin
ing the solution space for finer-grained design problems. In order to capitalize on the shared
experience represented by the repeated use of styles by system builders, it is necessary to
establish a common vocabulary and a common descriptive framework for communicating
about styles and the circumstances in which they are useful.

This paper provides such a framework. Based on the components and connectors that popu
late a style and how control and data are handled throughout the style, the framework serves
as a set of distinguishing features for styles. Finer-grained distinctions may be made, leading
to the notion of style families. We have shown how the framework accommodates two com
monly-cited styles, communicating processes and dataflow networks. Finally, we have sug
gested how the framework can be used as the basis for imparting design guidance for
choosing and using styles, by identifying those features that dominate the problem at hand.

The way now open for future work, which ranges from refinements of this classification and
finer-grained characterizations of these and other sty les, to building style-based architecture
level design environments that include analytical tools appropriate for each style.

7. Acknowledgments

The style classification and collection of rules of thumb have been developed over a period of several
years. We particularly appreciate the ongoing involvement of David Garlan, Rob Deline, and Greg
Zelesnik in the discussion. Many others have offered useful advice, particularly our colleagues in the
Composable Systems research group, members of the Software Architecture Reading Group and the
students in Garlan and Shaw's software architecture course.

This work has profited from efforts of the Software Engineering Institute's Software Architecture
Analysis Method (SAAM) group, especially len Bass, Gregory Abowd, and Rick Kazman, who have
provided a taxonomic classification of architectural elements (components and connectors), which
provides the conceptual continuation of the work presented here.

VIII. 69

This work has been suppo rted by the Wright Laboratory, Aeronautical Systems Center, Air Force
Materiel Command, USAF, and the Advanced Research Projects Agency, under grant F3361S-93-1-
1330 and by a grant from Siemens Corporation. It represents the views of the author and not of Carn
egie tvfellon University or any of the sponsoring i.nstitutions 11le Software EngineeriIlg institute is sup
ported by the U. S. Department of Defense.

8. Bibliography

[A+95J Gregory D. Abowd, Robert Allen, David Garlan. Formalizing Style to Understand Descriptions of Soft
ware Architecture. ACht Transactiolls all Software Engineering and Methodology, 4(4):319·364, October 1995.

[AG94] Robert Allen and David Garlan. Formalizing Archi tectural Connection. In Proc 16th llltematiollai Confer·
ellce all Software EngiHerring, 1994.

[An9l] Gregory R. Andrews. Paradigms fo r Process Interaction in Distributed Programs. ACM Compl/lillg 511r
veys, 23(1):49-90, March 1991.

[B+88J M. R. Borbocci, C. B. Weinstock, and j. M. Wing. Programming ot the Processor-Memory-Switch Level.
Proc 10th lilt'! Calif 011 Software Ellgilicerillg, April 1988.

[Ba86aJ lv!. j. Boch. The Oesigl1 of the UNIX Operatil1g System. Software Series, Prentice-Hall 1986, sec 5.12, pp. 111-
119.

[Ba86b] Robert M. Balze r. Living with the Next Generation Operating System. Proc 4th World Compl/ter CVIII,
September 1986.

[Se90J Laurence J. Best. Applicatio ll Architecture: Modem Large-Scale Informatioll ProcessilIg. ',.Viley, 1990.

[B086J Grady Booch. Object-Oriented Development. IEEE Tr. SoftlUare El1gineeril1g, February 1986, pp. 211 -221.

[Br88J Frederick P. Brooks, Jr. Grasping Reality Through IlJLlsion -- Interactive Graphics Serving Science. Pro
ceedillgs a/the ACIY[SrCCHI Human Factors ill Computer Systems Conference, May 1988, pp. 1-11.

[CI96] Paul Clements. A Survey of Architecture Description Languages. Proc llltematiollal WorksflOp 011 Software
Specificatioll alld Oesigll, Germany, 1996.

[CS95J Jomes Coplien & Eric Schmidt (eds), Pattern Lal1gllages of Program Desigl1, Addison-Wesley 1995.

[DG90J Norman Delisle and David Garlan. App lying Formal Specification to Industrial Problems : A Specifica
tion of an Oscilloscope. IEEE Software, September 1990.

[Fr85J Marek Fridrich and William Older. Helix: The Architecture of the XMS Distributed File System. IEEE
Software, vol 2, no 3, May 1985 (pp.21 -29).

(G+92J David Garlan, Gail Kaiser, and David Notkin. Using Tool Abstraction to Compose Systems. IEEE Com·
p"ter, 25(6), June 1992.

[G+94J David Garlan, Robert Allen, and John Ockerbloom. Exploiting Style in Architectural Design Envi ron
ments . Proc. Second AClv! SIGSOFT Symposium 011 Founda tio ns of Software Engineering, December 1994.

[Ga9S] David Garlan (ed). First Internationa l Workshop on Architectures for Software Systems, Workshop Sum
ma ry. ACM Software El1gilleering No tes 20(3), July 1995, p p.84-89.

[Ge89J C Gerety. HP Softbench: A New Generation of Software Developmen t Tools. TR SESO-89-25, Hewlett
Packa rd Software Engineering System Division, Ft. Collins CO, November 1989.

[GoF95J E. Gamma, R. Helm. R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley 1995.

[GS93J David Garlan and Mary Shaw. An Introduction to Software Architecture. In Ambriola & Torto ra (eds),
Advances ill Software El1gi1!~ering & Knowledge Engineering, vol. II, World Scientific Pub Co., 1993, pp.l·39.

[HN86J Nico Habermann and David Notkin. Gandalf: So ftware Development Environments. IEEE Tr 0 11 Software
Engineering, vol SE·12, December 1986.

[He69] Carl Hewitt. Planner A Language fo r Proving Theorems in Robots. Proc First Inn/oillt COil! ill Artificial
Intelligence, 1969.

[HR85J Frederick Hoyes-Roth. Rule-Bosed Sys tems. CommlillicatioliS of th, ACM, vol 28, no 9, September 1985,
pp.921 -932.

VIII. 70

Ua96] Michael Jilckson.5oftware Reqllin:n1cl1is alld Speclficatiolls: A Lexicoll of Practice, Prillcipil!s. and Prejudices.
Addison-Wesley \995.

[K+96] Rick K:lzman, Paul Clements, Gregory Abowd, Len 8,1S:;. Classifying Architectural Elements. Proc ACM
SfGSOFT Symposi!llll all tht FOII/ldatjolls vf Software Ellgineering, 1996, submitted.

[KP88J

[La90J

[LS79J

[Ni86J

[PanJ

[PaS5J

[PN86J

C. Krasner and S. Pope. :\ Cookbook for Using the Model-View-Controller User (nteriace Pari1digm in
Smallti.11k-80. Journal a/Object Oriellted Programmillg, vol 1, August/September 1988.

Thom i:l s G. Lane. Uscr flllerj.'1Cf! Saftw(lre Structures. Ph.D. Thesis, Carnegie Mellon University, Carnegie
Mellon University Computer Science Technical Report CMU-CS-90-\0\, June \ 987.

Hugh C. Lauer and Ed. H. Satterthwaite. Impact of MESA on System Design. Proc nliri Illt'l COli! 011

Software El1gineerillg, Yfay 1979.

H. Penny NiL Blackboard Systems. AI Magazine 7(3):38-53 and 7(4):82-107.

David L. Parnas. On the Criteria to be Used in Decomposi ng Systems into Modules. Comm. ACM vol 15,
December 19n.

Mark C. Paulk. The ARC <,etwork: A Case Study. IEEE Software, vol2 no 3, May \985, pp. 62-69

R. Prieto-Diaz and J. M. !\:eighbors. Module Interconnection Languages. 'ollrnal of Systems and Software,
6(4), November \986, pp. 307-334.

[pwnJ Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of Software Architecture. ACM
SIGSOFT Software Engineering Notes, \7(4):40-52, Oct 1992.

[Re90J

[S+95J

[Se88J

[SG96J

[Sh81J

[Sh95J

[Sh96J

[Sp87J

S. P. Reiss. Connecting Tools Using Message Passing in the Field Environment. IEEE Soft,uare, 7(4):57-66,
July 1990.

Mary Shaw, Robert Deline, Daniel V. Klein, Theodore L. Ross, David M. Young, Gregory Zelesnik.
Abstractions for Software Architecture and Tools to Support Them. IEEE Transactions 011 Software Engi
l1t!erillg, May 1995.

V. Seshadri et al. Semantic Analysis in a Concurrent Compiler. Proceedings of ACM SIGPLAN '88 Confer
eHce 011 Programming Lallguage Design and Implementation.

Mary Shaw and David Garlan. Software Architecture: Perspectives 011 all Emerging Disciplillt!. Prentice-Hall
1996.

Mary Shaw (ed). Alphard: Form and Conten/. Springer-Verlag, 1981.

Mary Shaw. Beyond Objects: A Software Design Paradigm Based on Process Control. ACM Software Ellgi
neerillg Notes, 20(1), Jan 1995.

Mary Shaw. Some Patterns for Software Architectures. Proceedings of Second Workshop on Pattern Lan
gllages fo r Programmillg, Addison-Wesley \ 996.

Alfred Z. Spector et al. Camelot: A Distributed Transaction Facility for Mach and the Internet - An
Interim Report. Carnegie Mellon University Computer Science Technical Report, June 1987.

c

