T .0

TEACHING THE COOPERATIVE PRODUCTION OF PROGRAMS

D. L. Parnas

Rapporteurs: Dr. P, Henderson
Mr. R. Kerr
Mr. D. Wyeth

Introduction

This is a report on a course entitled "Software Engineering Methods",
which has been taught to undergraduate students at the Carnegie-Mellon
University during the last two academic years. The course is "project
oriented" and aims to educate by providing experience in the use of
techniques. This report describes both the structure of the course

and some of the material taught.

Cooperative Programming Defined

The meaning of cooperative programming is similar to that of software

engineering, better illustrated as a contrast to solo programming.
Whereas in solo programming a single person constructs a program

which will not be touched by other people, the essential characteristic
of cooperative programming is that many people are involved with the
product which we refer to as software. Several people may cooperate
in producing it and/or it is used or modified by persons other than

the original author.

Another characteristic of software is that one is considering not
a single program but a family of programs. The word "family" here is
used in the same sense that System 360 is a family of computers.
Although two computers of the 360 range may be physically very

different, they can be described by the same programmers manual.

Aim of the Course

The first part of this paper concentrates on:

1. Defining what we want to teach the students to do in terms of the
results we want them to obtain.
2. Explaining the primary skills which the students must acquire.

3. Discussing the teaching methods and course organisation.

55

A deeper exploration of some of the techniques taught is contained

in the second and third sections of this paper.

The type of results we hope to obtain are best illustrated by
describing one of the projects undertaken as part of the course. The
aim of this project is to construct a family of programs to produce a
KWIC index. The project is divided into five work assignments or
modules. Each of 20 students did one work assignment resulting in
four versions of each module. The idea was that any combinations
of one version of each of the five modules would form a working KWIC
index system. If completely successful, there would have been 1024

working KWIC index programs in the family of programs.

TABLE I
Assignment
Version 1 2 3 4 5
0K 0K 0K NOT COMPLETED 0K
0K 0K 0K OK INCORRECT
INCORRECT STUDENT NOT 0K INCORRECT
DROPPED ASSIGNED
D INCORRECT OK 0K NOT 0K
ASSTGNED
E NOT 0K 0K 0K NOT
ASSIGNED ASSIGNED

Table I gives the versions of each module which we judge correct. Fach
version was not proven correct but was tested individually to establish
some degree of reliability. TFrom the Table, we may calculate that there
were 192 working combinations. We could not test all of these. An
experiment was planned to test 25 combinations so that (1) each version
was used in at least two combinations and (2) each version was in at
least one combination where it was the only difference from another
tested combination., The versions were combined and tested by someone
who knew nothing of the project thus demonstrating the case of

integration.

56

TABLE TII

Combination tested Execution Time (sec)
(excludes compilation
of 6-8 sec)

1A 2B 3B 4B 5A 37:26

1A 2D 3D 4B 5A 11.42

1A 2D 3A 4C 5A 10.87

1B 2E 3A 4C 5A 10.31

1A 2E 3A 4B 5D 8.53

1B 2A 3E 4C 5B 21.79

1A 2A 3B 4B 5B 302.99

1A 2A 3B 4B 5A 50.16

1A 2A 3B 4C 5A 36.69

1A 2A 3D 4C 5A 11..07

1A 2B 3D 4C 5A 10.99

1A 2A 3B 4E 5A 43.30

1A 2D 3B 4E 5A 43,61

1A 2D 3B 485 5D 19.17

1A 2E 3B 4% 5D 19.16

1A 2E 3B 4C 5D 28.48

1A 2B 3B 4C 5D 27 23

1A 2B 3D 4C 5D 8.43

1A 2B 3D 4C 5B 76.34

1A 2B 3D 4B 5B 113.532

1A 2B 3B 4C 5B 238,88

1A 2B 3E 4C 5D 10.06

Table II describes the results of this experiment and illustrates the
type of variety obtained. The variation in execution times is accounted
for partly by the constraints placed on different versions of a given
assignment e.g. conservation of space, conservation of time, etc. It
should be pointed out, however, that the fastest program also used the
least space! All the modules marked as believed correct in Table I did

work correctly when combined and tested.

The following features are significant in terms of the results we

are trying to achieve.

1. We succeeded in getting programs with interchangeable yet
non-identical parts.
2. Once the modules were specified, there was no communication between
the module authors. The students did not know which combinations of
modules would be tested and thus which versions their module would
have to cooperate with. For this reason, they could use no information
other than the published specification and thus could take no short cuts.
3. In this and in other similar experiments, an unexpected advantage was

that when a particular combination didn't work, one could determine

unambigously which module was in error.

57

1.3

4., Integration and testing was carried out by a graduate student
who knew nothing about any module implementation.

5. A further advantage of this method is that one can study one part
of a system with minimal knowledge about the rest. Major changes
to the system can be confined to one part. Major decisions such
as whether to do all the alphabetization at once or alphabetize a
little at a time in parallel with printing can be altered by
changing only one module. Similarly, the decision whether to
store all the data in core or part of it on disk also involves
only one module., All the major decisions of this example were
handled in such a way that at most one part would have to be

changed in altering a decision.

Course Organization

The philosophy behind the course is that it is better to teach
methods of problem solving rather than to teach known solutions to
specific problems. The course may be thought of as divided into three
phases based upon the type of assignment given to the students. In
the first phase, the assignments consist of introductory small projects.
The students are given definitions of relatively small devices common
in software engineering (e.g. a stack, queue or tree structure). For
each object some are asked to produce implementations while others are
asked to write small programs which use the object. Programs are

exchanged and tested. Students are also taught to write specifications.

In the second phase of the course, the class builds a "family" of
small systems from a design presented to them by the instructor. The
project is a small scale system but larger than the previous projects.
Such a project is the KWIC index system described above. The system is
divided into approximately six modules. EIach module is given a precise

definition and each student builds a version one module.

In the third phase of the course another system is started. 1In this
one the students are given only a rough picture of what the system is
intended to do. The class, working as a design committee or a system
committee, goes through the exercise of squeezing the real intentions
of management (in this case the instructor) from the vague descriptions
and conversations, producing a more precise structure such as was given
to them in the second phase. They then go through the exercise of
dividing the system into modules, providing precise defiﬁitions of

the modules, and (if time permits) completing the system as in the

evious project.
pr pTo] 58

Throughout all three phases the lectures are coordinated with the
projects so as to explain to the students what they are doing and why
they are doing it. The initial lectures are used to give the students
sufficient information to enable them to complete the small projects
and start the KWIC index project. The ground covered includes the
construction of a module from specifications which satisfies the
specifications and is free of misinterpretations and writing small

module specifications themselves.

During the second phase the project's design is motivated for the
students. They are shown how the system's decomposition into modules
was arrived at, they are given the reasons for defining the interfaces
chosen, and are shown some alternative formulations together with the
relative advantages and disadvantages. We examine possible implementations
of each module, taking care to show several alternatives and show
situations in which each is preferred. The KWIC index system is
intentionally not the best known design so that students can suggest
improvements to the design. In preparation for the final project the
topics covered include definition of interfaces, the writing of
specifications as opposed to the reading of them, and the verification
of specifications (which is just as difficult as proving programs
correct). The completion of the KWIC index project is timed for the

end of these lectures enabling the project to be discussed in class.

The aim of the final project is to expose students to the problems
of design and to increase their ability to look at a design and see how
much of the complexity in a system is intrinsic complexity and how much
is due to early design errors. Experiencing their own design errors and
those of other students is found to have a much greater impact than
merely showing examples of successful projects. During this phase of
the course the students learn how to design systems and how to improve

the design of others.

Currently this is a one semester course (48 hour course - 3 lectures
a week for 16 weeks) though the second project is rarely completed. It
is hoped to correct this by adding two hours of laboratory work a week
when the students will be given programming help. Past courses have
shown that it is usually the students' lack of programming experience
and proper training which prevents their completing the course

successfully.

29

1.4

Structure

The course is successful because it is founded upon a precise
concept of "structure". The structure of the family of KWIC index

programs can be written down as a specification of the five modules.

The remark is often heard that the "structure of a system is good
but the implementation is terrible" implying that the "structure" is
separate from the "implementation". This discussion of structure is
aimed at showing that structure and implementation have a close
connection, that a careful and considered design of structure is
necessary, and that implementation must be carefully controlled if

it is not to determine the structure.

The word "structure" is used to refer to a partial description of
a system. A structure description shows the system divided into a set
of modules, gives some characteristics of each module, and specifies
some connections between the modules. Any given system admits many
such descriptions. Since structure descriptions are not unique, our
usage of "module" does not allow a precise definition. A module must
be loosely described as "part of a system". It refers to the portions
of a system indicated in a description of that system. Its precise
definition is not only system dependent but also dependent upon the
particular description under consideration. 1In the above discussion
of the course, a work assignment corresponds to a module. A module
may itself be further subdivided. We specifically caution against
attaching further meaning to the word "module". Specifically

assembly module and memory load module are not intended.

In a structure description of a system the modules are normally
correctly identified, but the connections between the modules are
often oversimplified and therefore inaccurate. Many assume that the
"connections" are control transfer points, passed parameters and
shared data etc., Such a definition of "connection" is a highly
dangerous oversimplification which results in misleading structure
descriptions. The connections between modules are the assumptions
which the modules make about each other. The oversimplification
results from ignoring other assumptions made by one module about
another, This can be illustrated in two ways. Consider two
situations, one in which the system is to be proved correct and
another in which a change is to be made to the system, and ask the
question "of what help will it be to us to divide the system into

modules?"
60

Correctness proofs for large programs can become so complex that
their own correctness is in question. For large systems‘we must make
use of the structure of the programs in producing the proofs. We must
examine the programs comprising each module separately. To prove each
module correct separately, we must make some assumptions about the
other modules. That set of assumptions is the set of connections
between the modules. The task of proving system correctness will
be facilitated by this process only if the amount of information in
the assumptions is significantly less than the information in the

complete description of the programs which implement the module.

We now consider making a change to the complete system. We ask,
"What changes can be made to one module without involving change to
other modules?" We may make only those changes which do not violate
the assumptions made by other modules about the module being changed.
In other words, a single module may be changed only while the
"connections" still "fit". Here too we have a strong argument for

making the connections contain as little information as possible.

The information of concern here is the information being used at
program design time rather than at run time. We want to conserve the
amount of information passed between programmers at the time of
writing, but not the amount of information passed between modules

at run time.

This point can be demonstrated by an example. Consider an
operating system which includes a drum/disk handling module and a
module whose job it is to wake—up processes. Attached to the
drum/disk handling module is a queue. Each queue element contains
two items, one is the name of the process that wants a page and the
other is the name of the page required. The drum/disk handling
module reads this queue and separates the two items of each
element. It keeps the names of the required pages and passes
to the other module the names of the processes in the queue.

Thus only half the information contained in the queue is passed
on at run time. The assumption made here is that the drum/disk
handler is going to handle requests in the order first come first
served because it passes on names of processes in the order in
which they come in. This assumption could turn out to be
unfortunate. Every time a page is read in the wake-up module

wakes up the next process on its queue of processes. The

61

2.0

unfortunate thing about this design is that one is no longer free to
change the drum/disk handler so that it tries to reduce arm movements.
This example shows that by reducing the amount of information passed
between modules at run time the connectivity (i.e. assumptions between
modules) has been increased by sharing the assumption of the FIFO
servicing of page requests between two modules. Thus to change that
assumption, one cannot restrict the change Lo one module but must

spread it acress both modules.

This explains why it is important that we can write down the
structure of the KWIC index system. The set of specifications
contain all the assumptions that one student is allowed to make
about another students work. These specifications are the only thing
all members of the family must have in common. It is because a
formal, well defined, and accurate description of the structure can

be written down that this approach to the course is successful.

Identification and Specification of work assignments

The first section presented the notion of the structure of a
program as a partial description of that program showing it divided
into a set of parts and showing the assumptions which connect these.
These assumptions are predicates which one could use to prove parts of
the program correct or to decide whether alterations can be localised

to single modules.

The term modular programming requires clarification in the context

of these lectures. Many people regard modular programs simply as
programs which are split up into lots of little modules. Unfortunately,
many systems which exemplify things we ought not to do are modular in
this sense. The concept of modularity goes beyond the simple act of
subdivision and the course attempts to teach principles for decomposition

and specification.

Decomposition and specification are issues in solo programming.
They are aggravated in the multi-person situation. Henderson and
Snowdon [2] give a nice example of what can happen when we are not
very precise with ourselves. The problem of communicating with

ourselves is minor compared with that of communicating with others.

62

In the process of decomposition, we have to decide how to divide
our systems into modules and not just arbitrarily cut them up
according to what seems convenient from an organizational point
of view., This point is illustrated by comparing two methods of
designing the KWIC program quoted in the first lecture. When many
people were asked how they would decompose the KWIC program there

emerged a remarkable consistency in their replies.

INTERFACES

CORE
FORMAT
[SHTFTER
CORE
FORMAT
[ALPHABETTZER |
WRITES
CORE
AT | FORMAT
OUTPUT

A card format would be designed which would serve as input to an
INPUT module. The INPUT module would write its data as a core table,
necessitating the design of a core format. The information held in
core would be input to a CIRCULAR SHIFTER module which would produce
a new table in core (or alternatively a directory referencing the old
table). An ALPHABETIZER would read the table generated by a CIRCULAR
SHIFTER and prepare yet another core table which would ultimately be
processed by an OUTPUT module.

The deficiencies in this type of design become obvious when we
consider the effects of making alterations. Amendments necessitated

by a change in the input format would be confined to the INPUT module

63

but alterations to its output CORE FORMAT would have consequences for
every other module. It is not only changes to data structures which
can have widespread effects but also alterations to algorithms. If
we distribute the alphabetization process over other operations as

in Hoare's FIND [3] we must amend both the ALPHABETIZER and OUTPUT

modules and possibly others.

That there was great consistency in approach to the design of the
KWIC program can be explained by studying the diagram. This is, in
fact, a flowchart displaying the sequence of processing. The first
thing programmers are taught is to draw flowcharts but this is not
the correct way to define modules. One is so often passing
information from step to step in a flowchart that one quickly
establishes formats which will be shared between modules. Some
of the things which are hardest to change in operating systems
such as 05 and TSS 360 are a result of people's thinking about
the design of the system by following the processing of a
particular element through it. They then took the major steps in

the processing and called them modules.

A better design approach is to adopt the principle of information
hiding. The goal of a good program documentation system should not
be to enable everybody to find out everything about the system but
to ensure that nobody needs to know everything about the system and,
even, to make it difficult for them to find out. If a module
depends for its correctness on some assumptions about another,
this increases the connectivity of the structure when what we want
is loosely connected structures. Many good programmers attempt to
use every single piece of information about both hardware and
software in order to produce efficient, tightly codeéd programs.

They often use information which they should rely on to remain true,
e.g. Fred does not use bit 17 in the control block. It is very
much a matter of experience deciding which information one can use
and which one should not. Documentation which does not "broadcast"
all information removes the decision from the inexperienced
programmer and leaves the decision to the designers who controls

the information distribution.

64

A description of an improved subdivision of the KWIC program
follows. This contains modules of the same name as in the first
approach but providing different functions. A new module LINE HOLDER
is introduced. This provides functions for storing and retrieving
in the core tables items which are now addressed by line number, word
number and character number. The core format and storage and
retrieval techniques are now hidden in the LINE HOLDER. If the
core format has to be altered, only the LINE HOLDER module requires
amendment. The CIRCULAR SHIFTER appears similar to the LINE HOLDER
but acts as a read-only memory which looks like the LINE HOLDER but
contains the circular shifts not through lines. One can access
information from this without knowing how it is represented. The
ALPHABETIZER now provides a set—up function ALPH and the function
ITH(i) which gives the index of the i'h alphabetical line. This
completely hides the sorting technique used and even the time at
which sorting takes place. Versions of ALPH and ITH have been
implemented in which ALPH did practically nothing and alphabetization
took place during calls on ITH. Other versions in which ALPH did
most of the work and ITH was simply represented by an array have
also been produced. The important point is that, by looking at the

specification, one cannot tell whieh of these one has.

The course attempts to teach the students to make real design
decisions and to make the most solid ones, those which will hold
for the whole family of modules, first. Other decisions are postponed
to the modules they concern. This process tends to hide information.
Attempts are made to teach the students the type of decision which
should be hidden and how to hide them. Discussions of examples
showed this policy to be in conflict with current programming
practice. It is popular practice, for example, to design calling
sequences for subroutines early on,., Should the decisions regarding
register allocation etc. be altered, changes must be made everywhere
the subroutine is referred to. Most routines can be written (and
written well) without knowledge of the calling sequence if the
programmer is provided with a programming tool which allows him to
postpone decisions about register allocation and return addresses.

Such features can be provided by macro facilities.

65

Having decided what the modules will be, it is now necessary to
specify them. Since the modules will be written by different people,
it is necessary to state the functions the modules will perform and
Natural language descriptions are inadequate for this purpose. A
more formal specification is required. A black box specification
is desirable and it should not give information which is later
denied. If we describe a sorting program by an algorithm, the
algorithm will specify one particular course of action (exchange
or leave as they were) when it encounters an identical pair of
items although we may not really care what happens in this case.

It is difficult to describe what we do not care about. In the
"equivalent algorithm" approach, the algorithm may be equally
complicated or more complicated than the program. It gives much
more information than is needed and that raises problems of
misinterpretation. As much irrelevant information as possible
should be removed in order that the programmer can concentrate

on the important material.

We wish to establish a selt of identities between the functions
wvhich each module provides. In specifying a square root procedure,
we could describe an iterative numerical algorithm which ultimately
converges to the square root. This would be a horrible way to
describe what the purpose of the procedure really is. We could

instead simply state the relationship:

| (SQRT (X))?-X|<e

It is important to be able to give this sort of definition for

software modules.

A notation is presented which, although lacking some element of
formal definition, is sufficient for the practical work described so
far. It has a somewhat ALGOL-like appearance and, for each module,
describes the effects its functions have on one another. For example,
a stack mechanism can be described by four functions F1(a), F2, F3

and T4, After a call on F1, we can state that

66

F3
F4

a

(0ld value of F4)+1.
We also state

(:) F1 followed immediately by F2 has no net effect
on the state of the module
(ii) PF3 has no effect
(iii) F4 has no effect on the module state

From these statements one may conclude F1; F3; F4; F2,

F1; F1; F2; F3; F2 etc. have no net effect,

F1 is of course PUSH, F2 is POP etc. This type of specification is
quite adequate to describe the function of the stack without concerning
itself with pointers, links and such implementational irrelevancies.
Since the details of implementation are not presented, there is no

danger that writers of other modules will interfere with the pointers.

[4] shows the specification of a binary tree. Briefly, this provides

functions:

FA = father, LS = left son, RS = right son, SLS = set left son, SRS =
set right son, VAL = value, SVA = set value. There are, in additon,
several predicates for testing for the existence of various tree
members. Taking SLS(i) as an example, its specification specifies
the following relationships and actions. FA(i) must exist and LS(i)
must not. A value of k is defined such that the old value of FA(k)
was undefined and after SLS(i) is completed LS(i) = k and FA(k) = i.

The value of this type of specification is that it fully describes
the function of the tree module but never specifies what values will be
given to LS and RS. The tree could be implemented either as a linked
list or using an array as in Floyd's Treesort [5] but this specification
would be wvalid in both cases. The specification is sufficient for
someone else to use the tree module without being aware of the nature

of the implementation.

The course tries to teach people how to make these abstractions.
Abstract is not a euphemism for vague. These specifications are very

precise; they can be used to prove theorems about the modules.

67

It is not possible to express this type of specification nearly in
a programming language. This is because it is not individual program
steps which are being specified. Much can be omitted which would have
to be included if program steps were being described. If a module
causes some value to change it is not necessary to say how it is changed.
The notation becomes familiar to students and after that they do not

object very much.

Response to detected errors

That computer programs, even well structured programs, will not
always perform correctly is a fact of life. Thus is is important to
teach how to cope, at the design stage, with the possibility of run
time errors. It is useful therefore to be able to classify errors
and decide what our response to them should be. For example, a
particular class of error is the program which only copes with
correctly formulated data. My own early experience of writing
compilers is an example of this. These compilers did not behave
well when presented with syntactically incorrect programs and the
effect was to bring the machine down in all sorts of funny ways.
Although correct programs were always run correctly, the compiler was

not correct.

Such a problem arises again when many people cooperate on the
programming of a piece of software. In fact the effect is compounded.
Thus the study of errors, their causes and effects is important to

the teaching of cooperative programming.

We shall study the problem, not from the point of view of error
detection or of the programmer's response to errors but by a concern

for the program's response to detected errors. We shall outline a

coherent policy for designing software with this response in mind.
The policy is more fully elaborated in [8]. Eventually such a policy
should be implemented mechanically so that programs which do not obey

it are rejected.

Handling errors often causes the distinction between modules in
software to become blurred. Modules become too connected. For
example, the information about the format of a particular magnetic

tape is low-level. The information needed to access the files on

68

3.1

that tape is at a higher level. 1In general, programs which handle
magnetic tapes do not separate these levels and run into problems
for just this reason. It is important to make such distinctions

in order to avoid errors.

Another important design point is to consider the probable
evolution of the program. To begin with it will not be possible
to predict the sort of errors which will cause trouble. Later,
with experience, it will be possible to handle the most frequent
type of error. This task itself will be easier and less error

prone if the original design accepted its inevitability.

A final point is that it is important to identify the module
which caused the error, so that the error can be referred to the
appropriate programmer. Now if we use sophisticated module assembly
techniques then this may be hard to do, since the distinction between

modules in the final version may be considerably blurred.

A software "trap" feature

The way in which programs can be organizZed to exhibit the features
described above is by the use of the software equi#alent of a "trap".

The "trap" allows the separation of three things:

i) code for the normal case
ii) code for error correction

iii) code for error detection

An area where this sort of organization has immediate application
is the programming associated with handling input and output. If you
write the normal case code and then add detection and correction code,
in this situation you end up with a mess. The probability of error

in this situation is quite high.

For example if we write a program for a virtual machine with a
virtual tape unit, the normal case code (for the virtual machine) is
written under the assumption that no error occurs. The responsibility
for detecting errors in the actual tape unit appear in the elaboration
of the virtual unit. The "trap" which such an error causes is
signalled to the virtual machine by calling a routine provided at
the level of the virtual machine. Thus the error correction

(or response) resides in code separate from the normal case.

69

A module specification (of the virtual tape unit, for example)

will have three parts:

1. Names of routines to be called if the preconditions for use

of the unit are not met.
2. Names of routines to be called if the mechanism fails.

3. Description of the effect, if everything is satisfactory.

The first two parts may cause traps and where possible the
design philosophy is that no changes will be made by the module
before the trap is called. The importance of the organization
established by the consistent use of traps is the ability of the

modules to cope with the unusual.

Thus we place the responsibility for checking the misuse within
the module and responsibility for doing something about it in the
outside environment. A detected error is returned to the higher
level (reflected) in terms which the caller knows about. It is
no use, for example to tell the caller that you have just dropped
a link from your list, if he does not (should not) even know you

have got a list.

Errors are caused at one level and detected at another. When
an error is detected it is either propagating downward, (in which
case it is detected as an error of misuse), or propagating upward,
in which case it will be detected as an error of mechanism. Upward
propagating errors in fact have two sources. Either there has been
a failure of lower level software of hardware (machinery) or a previously

downward propagating error has been reflected.

An error of misuse is reflected by calling a trap routine which
may assume responsibility for the error, and try and put things
right, or may "pass the buck" by calling higher level trap routines.
Early versions of a system may not recover in any real sense.
However, one responsibility which a trap routing may not assume
(this is a design point) is to abort the job. Because information
important to recovery or diagnosis exists at higher levels it is

necessary to allow abortion only at the highest level.

70

i

We have a classification into three types of error:

i) downward propagating - error of misuse
ii) wupward propagating - error of mechanism

iii) upward propagating - reflected error of misuse

The next level of classification is a somewhat incomplete list

of common error situations.

\
1. Violahtion of parameter valuE limitations:
run time checks should onLy be omitted when it has been
proved that it is impossible to violate them (e.g. because

of checks at compile time).
2. Exceeding internal capacity limitations:

Modules which provide a storage function will always have
capacity limitations. In some situations it will be
necessary to be a little over cautious, for example when

the only convenient test is strictly "worst case".

3. Request for undefined information.

This list is obviously incomplete. In general we can summarize
and design philosophy as the need for sufficiency in the error trap
conditions in that they should guarantee that, if none of them applies,
the module will perform according to its specification. Thus the
conditions will in general be over cautious. By arranging that
traps have a priority structure we can avoid calling many traps

for the same error.

References

1. Parnas, D.L. "A Course on Software Engineering Techniques"

March 1972.

2., Henderson, P. and Snowdon, R. "An Experiment in Structured

Programming". BIT 12, 1 (1972) p. 38.

3. Hoare, C.A.R. "Proof of a Program: FIND". CACM Vol. 14, 1
(January, 1971) p. 39.

4, Parnas, D.L. "A Technique for Software Module Specification
with Examples". CACM Vol. 15, 5 (May, 1972) p. 330.

71

5. Floyd, R.W. Treesort 3 Algorithm 245. CACM Vol. 7, 12
(December 1964) p. 701.

6. Parnas, D.L. "Information Distribution Aspects of Design

Methodology" IFIP 1971 Ljublana Congress.

7. Parnas, D.L. "On the Criteria to be Used in Decomposing

Systems into Modules" in CACM Vol. 15, (December, 1972).

8. Parnas, D.L. "Response to detected errors in well-structured

programs" Carnegie Mellon T.R. July 1972.

9. Ashenhurst, R.P. (Editor) "Curriculum recommendations for
graduate programs in Information Systems" CACM Vol. 15, 5
(May 1972) p. 363.

Discussion took place on each of three occasions after each of

the sections.

Discussion after section 1.

Professor Ashenhurst complained that we did not really under-

stand all aspects of how things are connected. Diagramming the
human body as a stomach, liver, heart etc. lends itself to the
sort of structuring which has just been described. However, if
the nervous system or the skeletal system are diagrammed a
different structuring is realized because both systems are in
every part of the body. The nervous system is spread throughout
the body, it is not localized and is thus much harder to represent
by means of a block diagram. In this case, the performance is
not in terms of what each element does but in terms of how the
whole system works. The distinction between the two types of
structuring is perhaps that what is being passed between modules
in the first case is information and in the second case 'control'
is passed between the elements of the system. The kind of
structuring which has been discussed doesn't show this and we

need a new way of seeing what control actions really are.

Professor Parnas replied that the problem with considering

the human body as a typical system is that if one tried to maintain
the body on the basis of textbook diagrams one would soon be in a

lot of trouble.

72

Professor Dijkstra commented on Professor Ashenhurst's remark.

He would draw his attention to the definition of a system as given
by Anatol Holt, namely "A set of interrelated parts". In Inglish
this definition contains a carefully chosen ambiguity because 'part'
can mean 'part of a whole' - a set of spatial relations or it can
mean a 'part or role in a play' - a temporal relationship. Thus a
system can be viewed within a set of time space axes. The

interrelation between parts contains aspects of space and time.

Discussion after section 2

Professor Ashenhurst pointed out that one of the versions of

Treesort regards the data structure both as a tree and as a straight
sequence. He suggested that, while this type of dual structuring is
useful, it admits that there is an underlying memory of bits, addresses,
etc. This presents again the need to prevent people from falling into
the temptation of using that fact to address the memory directly and

make the whole thing machine dependent.

Professor Parnas replied that the specification of his tree module

was based on the assumption that passage through the tree would only be

by father—-son sequences. It would therefore be very expensive to print

all the leaves from left to right. However, if this facility was

required, he could extend his specification, still hiding the implementation,
to provide functions for accessing the leftmost, second leftmost, etec.

leaves and the decision to provide this would be taken long before

selecting the actual mode of implementation.

Professor Randell suggested that this approach is based on the

implicit knowledge that an implementation of the specification would
be possible and practical. He postulated that experience of what can

be built influences the nature of the functions specified.

Professor Parnas considered that intuitive experience did influence

his thinking to some extent. However, he tries very hard to look at
the assumptions he makes and to get away from them as much as possible.
He wants to achieve as high a degree of abstraction as possible such
that in moving to a machine with a different technology, the

specification need not be altered.

Dr. Scoins asked if Professor Parnas was not forced to give an

example of a particular form in order to convey this to the students.

73

Professor Parnas replied that he is, at first. He shows them a

stack and several different implementations and makes them write them.
He makes them perform the experiment to show how interchangeable the
alternatives can be. After a while, they learn to read the specifications

and get used to them. They do not really ask to look at the implementation.

Discussion after section 3

Professor Verrijn-Stuart asked why the material presented here was

relevant to the topic of conference. Professor Parnas replied that he was

tempted to "trap" that one and pass it up a level to Brian Randell whose
idea it was to invite him. However, he felt that people who write
commercial systems ought to be exposed to such ideas because it is a
point of wview that is not seen in industry. He tried to choose
examples which were from commercially oriented systems. Professor
Ashenhurst said that this was just the sort of material that was

covered by course C4 [9] but Professor Parnas said he could not tell

that from reading the specification.

Professor Ashenhurst tackled the problem of completeness and

asked if it was possible to handle each error locally when the
organization described was looking for very definite errors and where,
for example, numerical errors are very indefinite things. Professor
Parnas agreed and observed that this was a very hard problem. He
thought that this was a question of what goes into the section that
detects errors of mechanism but said that this was the area we knew

least about.

In relation to both questions Professor Colin observed that in

business data processing you are bound to have blunders and he thought
that this method of tackling errors was very important for the case

when you have lots of data about.

74

