
TEACHING THE COOPERATIVE PRODUCTION OF PROGRAMS

D. L. Parnas

Rappo rteurs: Dr. P . Henderson
Mr. R. Kerr
Mr . D. Wyeth

1 .0 Introduction

Thi s i s a report on a course entitled "Software Engineering Method s ",

which has been taught to undergraduate students at t h e Carnegie-Mellon

University during the last two academi c years . The course is "proj ect

oriented" and aims to educate by providing experience in the use of

techniques. This report describes both the st ructure of the course

and some of t he material taugh t .

1.1 Cooperative Programming Defined

The meaning of cooperative programming is similar to tha~ of software

engineering, better illustrated as a contrast to solo programming.

Whereas in solo programming a sing l e person c onstructs a program

whi ch will not be touched by other people, the essential characteristic

of cooperative programming is t hat many peo ple are involved with the

product whi ch we refer to as software. Several people may cooperate

in producing it and/or it is used or modifi ed by persons other than

t he original a ut hor .

Another characterist i c of software i s that one is considering not

a s ingle program but a family of programs. The word "family" here is

used in the same sense t hat System 360 i s a family of computers .

Al t hough two computers of the 360 range may be physical l y very

different, they can be described by the same programmers manual.

1.2 Aim of t he Cour se

The first part of this paper concentrates on:

1 . Defining what we want to teach the students to do in terms of the

result s we want t h em to obtain.

2. Explaining the pr imary ski lls which the students must acqu i r e.

3. Di scussing t he teaching methods and course organisation.

55

A deeper exploration of some of the techniques taught i s contained

i n t he sec ond and third sections of t his paper.

The type of results we hope to obtain are best illustrated by

describing on e of the pro j ects undertaken as part of the course. The

aim of this project is to co nstruct a family of programs to produce a

KWIC i ndex. The project i s divided into five work assignment s or

modules. Each of 20 students did on e work ass ignment resulting in

four versions of each module. The idea was t hat any combination s

of one version of each of the five modules would form a working KWIC

index system. If completely successful , there would have been 1024

working KWI C index programs in the family of programs .

TABLE I

Assignment
Version 1 2 3 4 5

A OK OK OK NOT COMPLETED OK

B OK OK OK OK INCORRECT

C INCORRECT STUDENT NOT OK INCORRECT
DROPPED ASSIGNED

D INCORRECT OK OK NOT OK
ASSIGNED

E NOT OK OK OK NOT
ASSIGNED ASSIGNED

Table I gives the versions of each module which we judge correct. Each

version was not proven correct but was tested individually to establish

s ome degree of reliability. From the Table, we may calculat e that the re

were 192 working combinations. We could not test all of these. An

experiment was planned to test 25 combinations so that (1) each version

was u sed in at least two combinations and (2) each version was in at

least one combination where it was the only difference from another

tested comb ination. The versions were combined and tested by someone

who knew nothing of the proj ect thus demonstrating the case of

integration.

56

TABLE II

Combination tested Execution Time (sec)
(excludes compilation
of 6-8 sec)

1A 2B 3B
1A 2D 3D
1A 2D 3A
1B 2E 3A
1A 2E 3A
1B 2A 3E
1A 2A 3B
1A 2A 3B
1A 2A 3B
1A 2A 3D
1A 2B 3D
1A 2A 3B
1A 2D 3B
1A 2D 3B
1A 2E 3B
1A 2E 3B
1A 2B 3B
1A 2B 3D
1A 2B 3D
1A 2B 3D
1A 2B 3B
1A 2B 3E

4B 5A
4B 5A
4C 5A
4C 5A
4B 5D
4C 5B
4B 5B
4B 5A
4C 5A
4C 5A
4C 5A
4E 5A
4E 5A
4E 5D
4E 5D
4C 5D
4C 5D
4C 5D
4C 5B
4B 5B
4C 5B
4C 5D

37.26
11 .42
10 . 87
10.31

8.53
21. 79

302.99
50. 16
36 . 69
11 .07
10 . 99
43.30
43.61
19.17
19 .1 6
28 . 48
27.23
8.43

76.34
11 3 . 32
238 . 88

10.06

Table 11 describes the results of this experiment and illustrates the

type of variety obtained . The variation in execution times is accounted

for part l y by t he constraints placed on different versions of a given

assignment e.g. conservation of space, conservation of time, etc . It

should be pointed out, however , that t he fastest program also used the

least space ! All the modules marked as believed correct in Table I did

work correctly when combined and tested .

The following features are significant in terms of the results we

are trying to achieve.

1 . We succeeded in getting programs with interchangeable yet

non- i dentical parts.

2. Once t he modules were specified, t here was no communication between

the module authors . The students did not know which combinations of

modules would be tested and thus which versions their module would

have to cooperate with. For this reason, they could use no information

other than the published specification and thus could take no short cuts.

3. In t h is and i n other similar experiments, an unexpected advantage was

that when a particular combination didn ' t work, one could determine

unambigously which module was in error.

57

4. Integration and testing was carried out by a graduate student

who ID1ew nothing about any module implementation.

5. A further advantage of this method is that one can study one part

of a system with minimal knowledge about the rest . Major changes

to the system can be confined to one part. Major decisions such

as whether to do all the alphabetization at once or alphabetize a

little at a time in parallel with printing can be altered by

changing only one module. Similarly, the deci s ion whether to

store all the data in core or part of it on di sk al so involves

only one module. All the major decisions of this example were

handled in such a way that at mo st one part would have to be

changed in altering a decision.

1.3 Course Organization

The philosophy behind the course is that it is better to teach

methods of problem solving rather than to teach known so lutions to

s pecific problems. The course may be thought of as divided into three

phases based upon the type of assignment given to the students. In

the first phase, the assignments consist of introductory small projects.

The students are given definitions of relatively small devices common

in software engineering (e.g. a stack, queue or tree structure). For

each object some are asked to produc e implementations while others are

asked to write small programs which u se the object. Programs are

exchanged and tested. Students are also taught to write specifications.

In the second phase of the course, the class builds a "family " of

small systems from a design presented to them by the instructor. The

project is a small scal e system but larger than the previous projects.

Such a project is the KWIC index system described above. The system is

divided into approximately six module s . Each module is given a precise

definition and each student builds a version one module.

In the third phase of the course another system is started. In this

one the students are given only a rough picture of what the system i s

intended to do. The class, working as a design committee or a system

committee, goes through the exercise of squeezing the real intentions

of management (in this case the instructor) from the vague descriptions

and conversations, producing a more precise structure s uch as was given

to them in the second phase. They then go through the exercise of

dividing the system into modules, providing preci se definitions of

the module s, and (if time permit s) completing the system as in the

previous project.
58

i
. ,

Throughout all three phases the lectures are coordinated with the

projects so as to explain to the students what they are doing and why

they are doing it. The initial lectures are used to give the students

sufficient information to enable them to complete the small projects

and start the KWIC index project. The ground covered include s the

construction of a module from specifications which satisfies the

specifications and is free of misinterpretations and writing small

module specifications themselves.

During the second phase the project' s design is motivated for the

students. They are shown how the system's decomposition into modules

was arrived at, they are given the reas ons for defining the interfaces

chosen, and are shown s ome alternative formulations together with the

relative advantages and disadvantages. We examine possible implementations

of each module, taking care to show several alternatives and show

situations in which each is preferred. The KWIC index system is

intentionally not the best known design so that students can suggest

improvement s to the de s ign. In preparation for the final project the

topics covered include definition of interfaces, the writing of

specifications as opposed to the reading of them, and the verification

of specifications (which is just as difficult as proving programs

correct). The completion of the KWIC index project is timed for the

end of these lecture s enabling the proj ect to be discussed in class.

The aim of the final project is to expose students to the problems

of design and to increase their ability to look at a de s ign and see how

much of the complexity in a system i s intrinsic complexity and how much

is due to early de s ign errors. Experiencing their own design errors and

those of other students is found to have a much greater impact than

merely showing examples of successful projects . During this phase of

the course the students learn how to design systems and how to improve

the design of others.

Currently this is a one semester course (48 hour course -) lectures

a week for 16 weeks) though the second project i s rarely completed. It

is hoped to correct this by adding two hours of laboratory work a week

when the students will be given programming help. Past courses have

shown that it is usually the students' lack of programming experience

and proper training which prevents the ir completing the course

successfully.

59

1 .4 Structure

The c ourse i s successful becau se it is founded upon a preci se

concept of " structure ". The structure of the family of](wIC index

program s can be written down as a s pecif ication of t h e fiv e module s.

The remark is often heard that the "structure of a system is good

but the implementation i s terrible " implying that t he " structure" i s

separate from the "impl ementation". This di scu ssio n of st ructure is

aimed at showing t hat st ructure and impl ementat ion have a clo se

connection, that a careful and con sidered design of structure is

necessary , and that implementation mu st be carefully controlled if

i t is not to determine the structure .

The word "structure" i s u sed to refer to a partial desc ription of

a system. A struc t ure description shows t h e system divided into a set

of modul es, gives s om e characteristics of each modul e, and sp ec ifie s

some connections between t he modules. Any given system admi ts many

such de scriptions. Sinc e st ructure descriptions are not unique , our

usage of "module" do es not al low a precise definition. A module must

be loosely de scribed as "part of a system". It refers to the portion s

of a system indicated in a description of that system . Its precise

definition is not only system dependent but a l s o d ependent upon the

particular de sc ription unde r con sideration. In t h e above di sc uss ion

of the course, a work assignment corr esponds t o a modul e. A module

may i tself be further subdivided. We spec ifi cally caution against

attaching further meaning to t he word "modul e" . Specifically

a ssembly module and memory load module are not int ended.

In a structure de sc ription of a syst em t he modul es are norma lly

correctly identified, but the connections between the modules are

oft en oversimplified and therefore inaccurat e . Many assume that the

"connections " are control transfer points , pa ssed paramete r s and

shared data etc. Such a definition of "connection" i s a highly

dangerous oversimplification whi ch results in misl eading st ructure

desc riptions. The connection s between module s are t he assumption s

whi ch the modules make about each other . The overs implification

r esults from i gnoring other assumption s made by one module about

another. Thi s can be illustrated in two ways . Consider two

situations, one in which the system is to be proved correct and

another in which a change is to be made to the system, and ask t he

question "of what help will it be to us to divide the system into

modules?"
60

Correctness proof s for large programs can be come so compl ex that

their own c orrectness i s in que s tion. For large syst ems we mu s t make

use of the structure of the programs in producing the proofs. We must

examine the programs compri s ing each modul e separately. To prove each

modul e corr ect separate l y , we must make s om e assumptions about the

other modul es. That set of a ssumpt ions i s the set of connect ion s

betwe en the modul es. The task of proving system correctness will

be facilitated by this process only if the amount of information in

t he assumptions i s s i gnifi cant l y l ess t han the information in t he

compl ete description of the programs which impl ement the module.

We now cons ider making a change to t he c omplet e system. We ask,

"What changes can be made to one modul e without involving change to

other modul es? " We may make only those changes whi ch do not violate

t he assumptions made by ot her modul es about the modul e be ing changed.

In other words, a s ingle modul e may be changed only whil e t h e

"connections " st ill "fit". Here to o we have a s trong argument for

making the connections contain as little information as po ssible.

The informat ion of con cern here is t he information being used at

program design time rathe r t han at run time. We want to conserve the

amount of information passed between programmers at the time of

writing, but not the amount of information passed between module s

at run time.

Thi s point can be demonstrated by a n example. Con sider an

operating system which includes a d rum/disk handling modul e and a

module whose job it is t o wake- up processes. Attached to the

drum/disk handling modul e i s a queue. Each queue element contains

two it ems, one i s the name of the pro cess that wants a page and the

other is the name of the page required. Th e drum/ di sk handling

module reads t hi s queue and separate s the two items of each

element. I t ke ep s the names of the required pages and passes

to the other modul e the name s of the processes in the queue.

Thu s only half the information contained in the queue is pa ssed

on at run time. The assumption made he r e i s that the drum/ di sk

handler is going to handle r eque sts in t he or der first c ome first

se rved because it passes on names of pro cesses in the order in

which they come in . Thi s assumption could t urn out to be

unfortunat e. Every time a page i s read i n the wake-up modul e

wakes up t he next process on it s queue of proc esses. The

61

2.0

'.

unfort unat e thing about t hi s design is that one i s no longer f r ee to

change the d r um/ di sk handl er s o t hat it tries to reduce arm movement s.

This example shows that by reducing the amount of information pa ssed

between module s at run time the conn ect ivity (i . e. a ssumption s between

modul es) has been increased by sharing t he assumption of t he FIFO

servic ing of page requests between two module s. Thus to change that

assumption, on e cannot restrict t he change to one module but must

spread it acros s both modul es .

This explains why i t i s important that we can write down t he

st ruc t ure of the KWIC index system . The set of s pecif i cation s

contain all the assumptions that one student is allowed to make

about another students work. These specification s are the only t hing

all memb e r s of the f ami ly must have in c ommon . It i s because a

formal, well defined, and accurate description of the structure can

be written down that this approach to t he course is successful.

Identi f i cation and Specification of wo r k ass ignment s

The first section presented t he not ion of the structure of a

program as a partial description of that program showing it div ided

into a set of parts and showing t h e assumptions which connect t hese.

The se assumptions are predicates' whi ch one could u se t o prove part s of

the program correct or to decide whether a lterat ions can be localised

to s ingle modules.

The term modular programming requires c larification in the cont ext

of these lectures. Many people regard modular pro grams simply as

programs which are split up into lots of little module s . Unfort unate ly,

many systems which exemplify things we ought not to do are modular in

this sense. The concept of modularity goes beyond t h e s imple act of

subdivi s ion and the course attempts to teach principle s for decomposition

and s pec ification.

Decompo s ition and spec ifi cati on are i ssues in solo prog ramming.

They are aggravated in the multi-person s i t uation. Henderson and

Snowdon [2J g ive a nice example of what can happen when we are not

very precise with ourse lves . The probl em of communicating with

ourselves i s minor compared with that of communicating with others .

62

I
. :

. . I

In the process of decomposition, we have to decide how to divide

our systems into modules and not just arbitrarily cut them up

according to what seems convenient from an organizational point

of view. This point is illustrated by comparing two methods of

designing the KWIC program quoted in the first lecture. When many

people were asked how they would decompose the KWIC program there

emerged a remarkable consistency in their replies.

MODULES
~ @

WRITES

INTERFACES

CORE
FORMAT

CORE
FORMAT

A card format would be designed which would s erve as input to an

INPUT module. The INPUT module would write its data as a core table,

necessitating the design of a core format . The information held in

core would be input to a CIRCULAR SHIFTER module which would produce

a new table in core (or alternatively a directory referencing the old

table). An ALPHABETIZER would read the table generated by a CIRCULAR

SHIFTER and prepare yet another core table which would ultimately be

processed by an OUTPUT module.

The deficiencies in this type of de s ign become obvious when we

consider the effects of making alterations. Amendments necessitated

by a change in the input format would be confined to the INPUT moJule

63

but alterations to its output CORE FORMAT would have consequences for

every other module. It is not only changes to data structures which

can have widespread effects but also alterations to algorithms. If

we distribute t h e alphabetization process over other operations as

in Hoare's FIND [3J we must amend both the ALPHABETIZER and OUTPUT

modul es and possibly others.

That there was great consistency in approach to the design of the

KWIC program can be explained by studying the diagram. This is, in

fact, a flowchart displaying the sequence of processing. The first

thing programmers are taught is to draw flowcharts but this is not

the correct way to define modules. One is so often passing

information from step to step in a flowchart that one quickly

establishes formats which will be shared between modules. Some

of t he things which are hardest to change in operating systems

such as OS and TSS 360 are a result of people's thinking about

the design of the system by following the processing of a

particular element through it. They then took the major steps in

the processing and called them modules.

A better design approach is to adopt the principle of information

hiding. The goal of a good program documentation system should not

be to enable everybody to find out everything about the system but

to ensure that nobody needs to know everything about the system and,

even, to make it difficult for them to find out. If a module

depends for its correctness on some assumptions about another,

this increases the connectivity of the structure when what we want

is loosely connected structures. Many good programmers attempt to

use every single piece of information about both hardware and

software in order to produce efficient, tightly coded programs.

They often u se information which they should rely on to remain true,

e.g. Fred does not use bit 17 in the control block. It is very

much a matter of experience deciding which information one can use

and which one should not. Documentation which does not "broadcast"

al l information removes the decision from the inexperienced

programmer and l eaves the decision to the designers who controls

the information distribution.

64

A description of an improved subdivision of the KWIC program

follows. Thi s contains module s of the same name as in the first

approach but providing different function s . A new module LINE HOLDER

is introduced. This provide s functions for sto ring and retrieving

in the core tables items which are now addressed by lin e numb er, word

number and character number. The core format and storage and

retrieval t echniques are now hidden in the LINE HOLDER. If t he

core format has to be altered, only the LINE HOLDER modul e requires

amendment. The CIRCULAR SHIFTER appears s imilar to t he LINE HOLDER

but acts as a read-only memo r y whi ch look s like t he LINE HOLDER but

contains the circular shifts not through lines. One can access

information from t hi s wit hout knowing how i t i s re presented. The

ALPHABETIZER now provides a set-up function ALPH and t h e function

ITH{i) which gives t he index of t he i t h alphabetical line. Thi s

completely hides the so rting technique u sed and even the time at

which sort ing takes place. Versions of ALPH and ITH have been

impl emented in which ALPH did practi cally nothing and alphabetization

t ook place during calls on ITH. Other versions in which ALPH did

mo st of the work and ITH was s imply represented by an array have

also been produc ed. The important point i s t hat , by looking at the

specification, one cannot tell which of the se one has.

The course attempt s to teach the student s to make real des ign

dec isions and to make the most so lid one s , those which will hold

for the whol e family of modules, first. Other deci s ions are po stponed

to the modul es they concern. Thi s proce ss tends to hide information.

Attempts are made to teach the students the type of decision which

should be hidden and how to hide them. Di scuss ion s of example s

showed this policy to be in conflict with current programming

practic e . It is popular practice, for example, t o design calling

sequenc es for subroutines early on. , Sh:>uld the dec isions regarding

register allocation etc. be altered, changes must be made everywhere

the subroutine i s referred to. Most routines can be written (and

written well) without knowledge of the calling sequence if the

programme r is prov ided wit h a programming too l whi ch allows him to

postpone de c i si on s about register allocation and return addresses.

Such features can be provided by macro faciliti es.

65

-.

Having decided what the modules will be, it is now necessary to

specify them. Since the modules will be written by different people,

it is necessary to state the functions the modules will perform and

Natural language descriptions are inadequate for this purpose. A

more formal specification is required. A black box specification

is desirable and it should not give information which is later

denied. If we describe a sorting program by an algorithm, the

algorithm will specify one particular course of action (exchange

or leave as they were) when it encounters an identical pair of

items although we may not really care what happens in this case.

It is difficult to describe what we do not care about. In the

"equi valent algorithm" approach, the algorithm may be equally

complicated or more complicated than the program. It gives much

more information than is needed and that raises problems of

misinterpretation. As much irrelevant information as possible

should be removed in order that the programmer can concentrate

on the important material.

We wish to establish a set of identities between the functions

which each module provides. In specifying a square root procedure,

we could describe an iterative numerical algorithm which ultimately

converges to the square root. This would be a horrible way to

describe what the purpose of the procedure really is. lYe could

instead simply state the relationship:

It is important to be able to give this sort of definition for

software modules.

A notation is presented which, although lacking some element of

formal definition, is sufficient for the practical work described so

far. It has a somewhat ALGOL-like appearance and, for each module,

describes the effects its functions have on one another. For example,

a stack mechanism can be described by four functions F1 (a), F2, F3

and F4. After a call on F1 , we can state that

66

F3 = a

F4 = (old value of F4)+1 .

We also state

(:) F1 followed immediately by F2 has no net effect

on the state of the module

(ii) F3 has no effect

(iii) F4 has no effect on the module state

From these statements one may conclude F'l; F3j F4; F2,

F1; F1; F2; F3; F2 etc. have no net effect,

F1 is of course PUSH, F2 is POP etc. This type of specification is

quite adequate to describe the function of the stack without concerning

itself with pointers, links and such implementational irrelevancies.

Since the details of implementation are not pre sented, there is no

danger that writers of other modules will interfere with the pointers.

[4] shows the specification of a binary tree. Briefly, thi s provides

functions:

FA = father, LS = left son, RS = right son, SLS = set l eft son, SRS =
set right son, VAL = value, SVA = set value. There are, in additon,

several predicates for testing for the existence of various tree

members. Taking SLS(i) as an exampl e , its specification specifie s

the following relationships and actions. FA(i) must exist and LS(i)

must not. A value of k i s defined such that the old value of FA(k)

was undefined and after SLS(i) is complet ed LS(i) ~ k and FA(k) = i.

The value of this type of specification is that it fully describes

the function of the tree modul e but never s pecifies what values will be

given to LS and RS. The tree could be implemented either as a linked

list or using an array as in Floyd's Tree sort [5J but this specification

would be valid in both cases. The spec ification is sufficient for

someone else to use the tree module without be ing aware of the nature

of the implementation.

The course tries to teach people how to make these abstractions.

Abstract is not a euphemism for vague. The se s pecif i cat ions are very

precise ; they can be used to prove theorems about the module s .

67

It is not possible to express this type of specification nearly in

a programming language. This is because it is not individual program

steps which are being specified. Much can be omitted which would have

to be included if program steps were being described. If a module

causes some value to change it is not necessary to say how it is changed.

The notation becomes familiar to students and after that they do not

object very much.

3.0 Response to detected errors

That computer programs, even well structured programs, will not

always perform correctly is a fact of life. Thus is is important to

teach how to cope, at the design stage, with the possibility of run

time errors. It is useful therefore to be able to classify errors

and decide what our response to them should be. For example, a

particular class of error is the program which only copes with

correctly formulated data. My own early experience of writing

compilers is an example of this. These compilers did not behave

well when presented with syntactically incorrect programs and the

effect was to bring the machine down in all sorts of funny ways.

Although correct programs were always run correctly, the compiler was

not correct.

Such a problem arises again when many people cooperate on the

programming of a piece of software. In fact the effect is compounded.

Thus the study of errors, their causes and effects is important to

the teaching of cooperative programming.

We shall study the problem, not from the point of view of error

detection or of the programmer's response to errors but by a concern

for the program's response to detected errors. We shall outline a

coherent policy for designing software with this response in mind.

The policy is more fully elaborated in [8J. Eventually such a policy

should be implemented mechanically so that programs which do not obey

it are rejected.

Handling errors often causes the distinction between modules in

software to become blurred. Modules become too connected. For

example, the information about the format of a particular magnetic

tape is low-level. The information needed to access the files on

68

,
!
I
J

that tape is at a higher level. In general, program s which handle

magnetic tapes do not separate these level s and run into probl ems

for just this reason. It i s important to make such distinction s

in order to avoid errors.

Another important design point is to consider the probable

evolution of the program. To begin with it will not be possible

to predict the sort of errors which will cause trouble. Later,

with experience, it will be possible to handle the mo st frequent

type of e rror. This task itself will be easier and less e rror

prone if the original design accepted its inevitability.

A final point is that it is important to identify the module

which caused the error, so that the error can be referred to the

appropriate programmer. Now if we use sophisti cated module as s embly

techniques then this may be hard to do, since the distinction between

modules in the final version may be considerably blurred .

3.1 A s oftware "trap" feature

The way in which programs can be organized to exhibit the features

desc ribed above is by the use of the s oftware equivalent of a "trap".

The ''trap'' allows the separation of three things:

i) code for the normal case

ii) code for error correction

iii) code for error detection

An area where this sort of organization has immediate application

is the programming associated with handling input and output. If you

write the normal case code and then add detection and correction code,

in this situation you end up with a mess. The probability of error

in this situation is quite high.

For example if we write a program for a virtual machine with a

virtual tape unit, the normal case code (for the virtual machine) is

written under tee assumption that no error occurs. The r esponsibility

for detecting errors in the actual tape unit appear in the elaboration

of the virtual unit. The "trap" which such an error causes is

signalled to the virtual machine by calling a routine provided at

the level of the virtual machine. Thus the error correct ion

(or response) resides in code separate from the normal case.

69

,

A module specification (of t he virtual tape unit, for example)

will have three part s:

1. Names of routines to be called if the preconditions for use

of t he unit are not met.

2. Names of routines to be called if the mechanism fails.

3. Description of the effect, if everything is satisfactory.

~he first two parts may cause traps and where po ssible the

design philo s ophy is that no changes will be made by the module

before t he trap is called. The importance of the organization

establi shed by t he con sistent u se of traps is t he ability of t he

module s to cope with the unusual.

Thus we place the responsibility for checking the mi suse within

the module and responsibility for doing something about it in the

outside environment. A detected error is returned to the higher

level (reflected) in terms which the caller knows about. It is

no u se, for example to tell the caller that you have just dropped

a link fr om you r li st, if he does not (should not) even know you

have got a list.

Errors are caused at one level and detected at another. When

an error i s detected it is either propagating downward, (in which

case it is detected as an error of mi suse), or propagating upward,

in which case it will be detected as an error of me chanism. Upward

propagating errors in fact have two sources . Either there has been

a failure of l ower level software of hardware (machinery) or a previous l y

downward propagating error has been reflected.

An error of mi su se is reflected by calling a trap routine which

may assume responsibility for the error, and try and put things

right, or may "pass t he buck" by calling h igher l evel trap routines.

Early versions of a system may not recover in any real sense.

However, one responsibility which a trap routing may not assume

(thi s i s a des i gn point) is to a bo rt t he job. Because information

important to recovery or diagnosis exists at higher levels it is

necessary t o allow abortion only at the highest leve l .

70

. I

..

We have a classification into three types of error:

i) downward propagating - error of misuse

ii) upward propagating - error of mechanism

iii) upward propagating - reflected error of misuse

The next level of classific tion is a somewhat incomplete list

of common error situations.

1. Violation of parameter valu limitations:

run time checks should on y be omitted ~hen it has been

proved that it is imposs ' le to violat ~ them (e.g. because

of checks at compile tim~). I
2. Exceeding internal capacity limitations:

Modules which provide a storage function will always have

capacity limitations. In some situations it will be

necessary to be a little over cautious, for example when

the only convenient test is strictly "worst case".

3. Request for undefined information.

Thi s list is obviously incomplete. In general we can summarize

and design philosophy as the need for sufficiency in the error trap

conditions in that they should guarantee that, if none of them applie s,

the modul e will perform according to its spec ification. Thus the

conditions will in general be over cautious. By arranging that

traps have a priority struc ture we can avoid calling many traps

for the same error.

References

1. Parnas, D. L. "A Course on Software Engineering TeChniques"

March 1972.

2. Henderson, P. and Snowdon, R. "An Experiment in Structured

Programming". BIT 12, 1 (1972) p. 38.

3. Hoare, C.A.R. "Proof of a Program: FIND". CACM Vol. 14, 1

(January, 1971) p. 39 •

4. Parnas, D.L. "A Technique for Software Module Spec ification

with Examples". CACM Vol. 15, 5 (May, 1972) p. 330.

71

5. Floyd, R.W . Tree sort 3 Algorithm 245. CACM Vol. 7, 12

(December 1964) p. 701 .

6. Parnas, D.L. "Information Di stribution Aspects of Design

Met hodology" IFIP 1971 Ljublana Congress.

7. Parnas, D. L. "On the Criteria to be Used in De compo sing

Systems into Modules" in CACM Vol. 15 , (December, 1972).

8. Parnas, D.L. "Re sponse to detect ed errors in well-structured

programs " Carne gie Mel lon T. R. July 1972.

9 . Ashenhurst, R.P. (Editor) "Curri culum recommendations for

graduate programs in Information Systems " CACM Vol. 15, 5

(May 1972) p. 363.

Discussion took place on each of t hree occasions after each of

the section s .

Discussion after section 1.

Professor Ashenhurst complained t hat we did not really under­

stand all aspects of how things are connected. Diagramming the

human body as a stomach, liver, h eart etc. l end s it self to t he

sort of structuring which has just been described. However, if

the nervous system or the skeletal system are diagrammed a

different structuring is realized becau se both systems are in

every part of the body . The nervous system is spread t hroughout

the body, it i s not localized and is thus much harder to represent

by means of a block diagram. In t hi s case , the performance i s

not in t e rm s of what each e lement does but in terms of how the

whole system works. The distinction between the two types of

structuring i s perhaps that what is being passed between modules

in the first case is information and in t he second case ' control'

i s pas sed betwe en the elements of the system. The kind of

structuring which has been discussed doesn't show thi s and we

need a new way of seeing what control actions really are.

Professo r Parnas replied that the problem with considering

the human body as a typical system is that if one tried to maintain

the body on the basi s of textbook diagram s one would soon be in a

lot of trouble.

72

I
- I
I
,

-I

1

. !

Professor Di.jkstra commented on Professor Ashenhurst· s remark.

He would draw his attention to the definition of a system as given

by Anatol Hol t, namely "A set of interrelated part s ". In English

this definition contains a carefully chosen ambiguity becau se · part ·

can mean l part of a whole' - a set of spatial relations or it can

mean a 'part or rol e in a play' - a temporal relationship. Thus a

system can be viewed within a set of time s pace axes. The

interrelation between parts contains aspects of space and time.

Discussion after section 2

Professor Ashenhurst pointed out t hat one of the version s of

Tree s ort regards the data struc ture both as a tree and as a s traight

sequence. He suggested that, while this type of dual structuring is

u seful, it admits that there is an underlying memory of bit s , addresse s ,

etc. Thi s presents again the need to prevent people from falling into

the temptation of using t hat fact to address the memory directly and

make the whol e thing machine dependent.

Professor Parnas replied that the specification of his tree module

was based on the assumption that pas sage t hrough the tree would only be

by father-son sequences. It would t herefore be very expensive to print

all the leaves from left to right. However , if this facility was

required, he could extend hi s specification , still hiding the implementation,

to provide functions for accessing the leftmost, second leftmost, etc.

l eaves and the decision to provide this would be taken long before

select ing the actual mode of implementation.

Profe ssor Randell suggested that thi s approach is based on the

implicit knowledge that a n implementation of the spec ification would

be possible and practical. He po stulated that experience of what can

be built influences t he nature of the functions specified.

Professor Parnas considered that intuitive experience did influence

hi s thinking to some extent. However, he tries very hard to look at

the assumptions he makes and to get away from them as much as possible.

He wants to ach i eve as high a degree of abstraction as po ssible such

that in moving to a machine with a different technology, the

specification need not be altered.

Dr. Scoins asked if Profe sso r Parnas was not forced to give an

example of a parti cular form in order to convey this to the students.

73

I
I

I

I

Professor Parnas replied that he is, at first. He shows t h em a

stack and several different implementations and make s them write them.

He makes them perform the experiment to show how interchangeable the

alternatives can be. After a while, t hey learn to read the s pecification s

and get used to them. They do not really ask to look at the implementation.

Discussion after section 3

Professor Verri,in-Stuart asked why the material presented here was

relevant to the topic of conference . Professor Parnas replied that he was

tempted to "trap" that one and pass it up a level to Brian Randell whose

idea it was to invite him. However, he felt that peopl e who write

commercial systems ought to be exposed to such ideas because it i s a

point of view that is not seen in industry. He tried to choose

examples which were from commerc i ally oriented systems. Professor

Ashenhurst said that this was just the sort of material that was

covered by course C4 [9J but Professor Parnas said he could not tell

that from reading the specification.

Professor Ashenhurst tackled the problem of completeness and

asked if it was possible to handle each error locally when the

organization described was looking for very definite errors and where,

for example, numerical errors are very indefinite things. Professor

Parnas agreed and observed that this was a very hard problem. He

thought that this was a question of what goes into the section that

detects errors of mechanism but said that t hi s was the area we knew

least about.

In relation to both questions Professor Colin observed that in

business data processing you are bound to have blunders and he thought

that this method of tackling errors was very important for the case

when you have lots of data about.

74

