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Abstract Queueing and Network-flow theoretic tools are briefly described and 

their use in the solution of problems in computer communi cation networks is 

examined. 

Introduction 

After a review of resource-sharing concepts the basi c principles of 

queueing theory and network flow theory are introduced. This lead s to a 

di scussion of the application of mathematical model s for flow in time-sharing 

systems. A brief description of the Arpanet follows and further analysis and 

design methods are given for computer networks. Finally there is a discussion 

of some measurements of the performance of the Arpanet. This material is 

di s cussed at length in the author's books (Kleinrock 1974) . 

1 Resource Sharing Concepts 

The central theme of resource sharing is that to the individual us er the 

costs of shared usage are generally l ess than that of individual ownership. 

With organized sharing no individual user need go uns erved and the various 

levels of sharing try to equate utilization of the r esource with cost. At 

one extreme a private system has only one user "sharing" a resource. For the 

majority of users who arrive in bursts and who only use the resource say 5% of 

the time such a system is wasteful. A more general system is one where a large 

number of users share a large single resource; here we take advantage of the 

central limit theorem which states that an individual in a large population 

behaves like the average, The benefiwof this system lie in the quantity 

discount effects and in the averaging (smoothing) effect. However the system 

must operate under the constraint of the input demand being less than the 

resource capacity. 
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In the study of computer communication networks it is interesting to 

compare the two component industries. The communications industry is conservative 

static, regulated and supported with a well defined theory. This is just 

the opposite of the computer industry which is dynamic, rapidly changing and 

has a wide distributed plant with little theoretical grounding. Although 

those two view points seem at first sight to be incompatible it is noted 

that a similar comparison in the components of a terminal system (user 

terminals and the computer facility) also reveal incompatibilities. The 

computer facility is large, centrally located, synchronous with standard 

alpha-numeric codes with a high, smooth utilization. In comparison there 

are a large number of terminals, many types, geographically distributed, 

asynchronous with incompatible alpha numeric codes. A more serious problem 

with terminals is that they have a low duty cycle and operate in a burst mode. 

The various levels of sharing can be illustrated in the design of a remote 

terminal network. The star net solution with a modem at the computer facility 

and a low speed asynchronous line for each terminal provides a fast but 

expensive system. A cheap but slow solution is given with the multidrop 

(polled) net using a low speed asynchronous line as a minimal spanning tree. 

1{hen the remote terminals can be geographically grouped a medium speed 

synchronous line can connect the computer, via modems, to a multiplexor, 

concentrator or communi cations orientrated processor located at the centre 

of the group. 

2.0 Introduction to Queueing Systems (Kleinrock 1974) 

When a resource is shared there is the likelihood of contention for the 

use of that resource. In order to compare the different methods of sharing 

the resource, a set of tools is required to analyze the system. One set of 

tools is provided by queueing theory. 

A queue is denoted by a three-part descriptor as in Figure 2. 1. 

Figure 2.1 

Number of Servers 

Service time distribution 

Inter arrival time distribution 

Queueing System Notation 
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For example the queue M/G/1 describes a queue with Markovian (M) 

inter-arrival time, general (G) service time and a single server. In 

addition the queueing discipline must also be specified, for instance 

first come first served. 

The simplest queueing system is the M/M/1 where the inter-arrival times 

and service times are exponentially distributed with means A-I and ~-I 

respectively. The fraction of time that the server is busy is A/~' denoted 

by f and it can be shown for this system that Pn' the probability that there 

(1-5'),n and that the average number 

provided ']< 1. The (1-f) factor, or its 

are n customers in the 

of customers, n = Eipi 
o 

,equivalent, appears in 

queue is equal .to 

= ..L 1-p 
all queueing distribut ions. In this particular system 

if the server has a 50% utilization (~=.5) then the average queue length is 

one but if the utilization of the server is raised to 90% then the average 

queue length is increased to nine, etc. 

Another important result of the queuing system is t h e average time (T) spent 

by a customer in the system. The simple st way to obtain T is to use Little's 

theorem which states that AT = n. So for the M/M/1 system T= 1 /~(1-J). 

Generalizations can be made for multiple servers, non-Markovian statistics 

and time dependant behaviour. However the more general the queueing system the 

more difficult becomes the analysis. For instance with the G/G/1 system we can 

state the upper bound T < X + A(cr: + ~) b t th t . fT· 2(1-gJ u e exac express10n or 1S 

not known. In this expression X, 1/ A, a: , at respectively denote the mean 

service time, mean inter-arrival time, the variance of the inter-arrival times 

and the variance of the service times. Only when a: and o? are zero (that is 

the system is deterministic (D/D/1)) will the average time in the system 

remain bounded by the mean service time, subject to ~ being less than unity. 

Now consider large shared systems M/M/m. When the ratio of t he average 

time spent in the system (T) to the average service time (1 /~) is plotted 

against the load (~) a set of curves, Figure 2.2., is produced for different 

values of m. As m increases and the load on the system remains constant the 

wait time decreases. In the limit as m tends to infinity the system behaves 

as D/D/1 (that is, no queues are formed provided f < 1). 
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Figure 2.2 M/M/m curves 

Most practical queueing systems are of a discrete nature but since 

little analysis can be done with integers, the transient phenonema may be 

approximated with continuous averages. Another form of approximation is 

to include a variance term, that is,a diffusion approximation, which has 

given fairly good results not only in the overloaded case but also in 

the stable and underloaded case. The latter is applicable to the study 

of computer systems. 

Queueing theory can also analyze priority queueing disciplines, in 

particular pre-emptive queueing disciplines which are often encountered 

in time-sharing systems. 

3.0 Network Flow Theory (Frank 1971) 

The other set of tools which is useful in analyzing computer networks 

belongs to network flow theory. Most people think of networks in terms of 

graphs with the implication that the solution is eas ily seen but some 

problems in topological design of networks are so difficult that they 

cannot, as yet, be solved. 

66 



Some problems are easily solved. One instance is the design of a network 

in which the nodes are connect ed to a central resource at minimal cost, where 

cost is proportional to the length. Its solution i s the Minimal Spanning tree 

algorithm which can be determined by iteratively inserting shortest branches 

subject to no loops being formed. 

Another important quantity is the maximum flow between two node s (the 

source and terminal) in a network of nodes where the lines of communication 

between any two nodes have a finite capacity in a given direct ion. This 

solution 
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Min-cut algorithm 

is obtained with the MAX FLOW MIN-CUT theorem; for example, in t h e network in 

Figure 3.1 the min-cut illustrated would stop all flow from source to terminal 

and this minimum cut has a maximum flow capacity of four. The labelling 

algorithm pe~its one to find the maximum flow. A modification of this 

algorithm can also be used to solve the shortest path (between any two nodes) 

problem. The shortest path can be measured in length, cost, time , or some 

other unit of "badnesll" that n eeds to be minimized. 

A fourth ~ind of problem encountered in communication networks design i s 

to provide a network of maximum flow at minimum cost. The approach taken to 

solve this problem is to make a sequence of shortest path problems where the 

length, or cost of a channel changes as units of flow are allocated to that 

channel. To prevent further l .oading of a fully utili zed channel infinite costs 

are attributed to that channel. 
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The last problem to be considered is to connect terminals to a central 

facility subject to two constraints . The first i s that the terminals are 

supplying data at s ome fixed rate and secondly that all the lines have the 

same finite capacity . For large networks, effective algorithms to find the 

optimum solution have not yet been found, however relatively simple methods 

~xi st to reach a solution wi thin 5% to 10% of the optimum. One method, the 

Esau-Williams, works on the principle that if there are two nodes, A and B, 

connected to the computer then savings can be made by joining A to B if B is 

ilearer to the computer than A and that the line from B to the computer has 

, he capacity to accept both A's and B's traffic. A recent experiment showed 

improvements over Esau-Williams of 3% - 5% but at a cost of fifty times the 

work. The usefulness of the improvement is only valid when the value of the 

saving is compared with the extra cost of computation. 

4 Models for Time-Shared Systems (Kleinrock 1974) 

4.1 Single resource models 

A large class of time-sharing computing systems with one central process­

ing unit can be approximated by models of the type pictured in figure 4.1. 

1 
, 

system 
arrivals " depart ures of .J CPU ~ , 

1 queues 

FigUTe 4.1 

Jobs arrive in the system, join one of perhaps several queues, are selected 

for service according to some scheduling algorithm, receive a quantum of service, 

then either depart from the system or rejoin a queue to wait for more service. 

To use a model of this kind tor a particular system, one must make specific 

assumptions regarding the pattern of arrivals, the scheduling algorithm, the 

service requirements of jobs and the quantum size. Analysis of the model can 

then provide expressi ons fOT various quantities of interest, such as the average 

time T that a job spends in the system, the average time T(t) that a job requir­

ing service t spends in the system, etc. 
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The arrival process is usually assumed to be Poisson (rate ,), i.e. with 

interarrival times having exponential distribution A(t) = 1 - e -At The 

service requirements are sometimes specified in terms of the number of quanta 

and sometimes in terms of the distribution B(t) of service time required by a 

job. The quantum size 

and on the number n of 

Q may depend on the external priority of the job p 
p,n 

visits the job has made to the CPU. 

The Batch Processing model is a simple special case within the above 

framework. Here there is a single queue served in order of arrival (FCFS) and 

when a job is admitted for service, all hi s demand is satisfied (no cycling). 

The classic result for the M/G/1 system gives in this case 

T(t) = t + 

where t 2 is the second moment of the service time and ~ is the traffic intensity. 

The average time that a job requiring service t spends waiting W(t), is equal to 

W(t) = T(t) - t = 

where Wo is the random modification of the service ti me (the average remaining 

service time of the job in service, as seen by a random observer). It can be 

seen that the average waiting time of a job does not depend on its demand for 

service. 

The Round-Robin model is an approximation of real time-sharing systems. 

Here too, there is a single queue served in order of arrival . Service is given 

in quanta of fixed size; if after receiving a quantum of service a job requires 

more it returns to the end of the queue. 

The analysis of the round-robin model is quite complicated and, more 

important, the r esultant expressions are cumbersome' and difficult to deal with. 

This is due to the finite quantum size: the service of a job has to be related 

to the numb er of quanta it needs. A convenient way of getting round this 

difficulty is to consider the round-robin with infinitesimal quanta, the 

Processor Sharing Model. 

When the quantum s iz e is (a lmost) zero, there is no waiting as such ; all 

jobs in t h e system receive service in parallel, at a rate inversely proportional 

to the number of jobs in the system. The average time-in-the-system for a job 

requiring service t is given by 

t 
T(t) = -1 --5' 

and the average 'wasted time' for such a job is 
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w(t) = iL 
1-~ 

Now W(t) is a linearly increasing fQnction of t. Short jobs w~ste less time 

in the system than long ones, but thl! 'penalty rate', the rattq W(t)/t, is 

constant. 

There are a number of scheduling stategies which do not select jobs for 

service in order of arrival. The simplest of these is the Last-Come-First­

Served strategy. According to it, a new arrival is admitted for service 

i mmediately, preempting the job being served. Its time in the system consists 

of its service plus all interruptions (each 'being, in effect, a busy period) 

generated by n ew arrivals during its service. Hence 

T(t) = t + At 1 t 

1-~ = 

the same value as in the Processor Sharing system. 

A variation on this theme is the FB system. In it, the CPU serve s the job 

which has received least amount of service (a new job enters service immediately) 

and is shared if there is more than one such job. 

Other strategies are based on priority assignements. The next job to be 

admitted for service is the one with the highest priority among those waiting . 

The priorities can be preemptive or non-preemptlve, static or changing with 

time. For example, jobs may increase their priority at rate a whi le waiting, 

and at rate S while being served (a > S) . 

An intere sting question in this area is the following: Given a function 

W(t), what are the necessary and sufficient conditions that it represents the 

average waiting time for jobs of length t, for some time-sharing system? This 

question has not been answered yet, although some necessary conditions are known. 

W(t) must lie within certain upper and lower bounds (for large values of t these 

are given by the FB and FCFS systems, respectively) and must satisfy certain 

known conservation laws. 

4.2 Multiple resource models 

A more realistic view of computing systems should take into account 

peripheral devices as well as the central processing' unit. Consider, for 

example, the model pictured in Figure 4.2. 
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Thinking (~) System (T) 

Figure 4.2 
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The system consists of a time-shared CPU which is fed with demands from a 

finite number (M) of consoles. When a demand is satisfied it 'returns' to 

the console which issued it; the console 'thinks ' for a period of time and 

then issues another demand. The quantity of interest here is the ' response 
1 

Let time' (T), the average time between issuing a demand and its return. 
!-L 

be the average number of instructions in a demand and C be the speed of the 

CPU in instructions per second; the average service time for a demand is then 

1 

!-L C 
sec. Let 

1 

Y 
be the average thinking time. Application of Little's 

theorem to the sUbsystem of consoles and to that of the CPU gives 

T ~ M 1 

Y 
or 

__ M_ 
!-LCT - l - TIo 

where TIc is the probability that the CPU is idle. This result is independent 

of the distributions of thinking and service times. If both these distributions 

are exponential then 

r M M' (V ) 1 - -1 D=Il:; ..... I 
o 4 =0 (M-:-i)! !-L C j 

The values of T obtained from the above formulae for different values of 

M are in close agreement with corresponding values observed in a real system. 
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Even t hough there is a finite number of demands at the CPU at al l 

times and therefore the system cannot saturate in the normal sense , i t 

is possible t o talk about t h e 'saturation number of co nsol es '. Suppo se 

that the servic e time i s exactly 2 sec. and t hat the thinking time is 

exactly 18 sec . Then, the first 10 consoles are accepted by t he system 

' gracefully' in the sense that their demands do not have to wait at the 

CPU. For M > 10, all demands have wa iting t im es proportional to M - 10. 

I n the general case, 

M* = ( 1 /u.C) + (1 /y) 
1/u.C 

LS defined as the saturat ion number of conso l es. When M » M*, no i s c lo se 

to ze r o and T is a linear function of M. 

This mode l can be generaliz ed to allow for the servicing system to 

consist of several devices, rather t han one. Thus it i s poss ible to 

specify which device will saturate first, which will saturate n ext , etc . 

4.3 Queueing network 

The nodes in a queueing network are queue ing systems consist ing of 

one or more servers, with asso c iated queues. The arcs indicate where 

customers go when they l eave a node . The s implest type of network is that 

in which customers neve r visit the same node more than onc e (feedforward 

networks); an example of such a network is shown in Figure 4.3. 

~ 
?J!1.-___ -l----7I 

\ - ~ 

C=~ 

Figure 4.3 

A powerful tool for the analysis of feed-forward networks is provided 

by Burke ' s Theorem, (Burke 1956) which states that the depart ure process 

from an M/M/m queueing system i s Poisson. Since Poisson pro cesses remain 

Poisson after splitting and merging, Burke ' s theorem implies t hat every 

node in a feedforward network behaves like an independent M/M/m system, 

provided of course that the input to t he network is Poisson and all service 

times are distributed exponent ially. 

Jacks on (Jacks:ln 1957, 1963) studied general queue ing networks with N nodes. 

Custome rs arrive into a node from outside (in a Po i sson stream) and from mher 
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nodes (not necessarily in a Poisson stream). After receiving service 

(exponential) they either leave the network or go to other nodes. The 

following parameters characteri~e the system: 

YI = external input rate at node i 

rl , j = probability of going to node j after leaving node i 

AI = total input rate at node i 

iJ.1 = service rate of each server in node i 

ml = number of servers in node i 

These parameters are not independent; since AI is also the rate at which 

customers leave node i, the following balance equations must hold: 

+ ~ 
J= 1 

Jackson's result states that the joing probability distribution of the 

number of customers at the N nodes is given by 

where PI (nl) is the probability of there being nl cu stomers in an M/M/ml system 

wi th input rate AI and service rate iJ.1' This result is remarkable, bearing in 

mind that the total input to each node is not necessarily Poisson. 

A special case of Jackson's model is the ' Closed Network' model analyzed 

by Gordon and Newell, (Gordon 1967): customers do not enter and do not leave 

the network; there are K customers 'trapped' in it. 

The balance equations 

are homogeneous and cannot be solved uniquely for the AI's. The joint 

distribution of the number of customers in the network still has the product 

form, but includes a normalizing constant the determination of which is fairly 

complicated • 

o Arpanet Description (Kleinrock 1974) 

The Arpanet (Advanced Research Projects Agency Network) has changed 

considerably since its inception in 1967, and the evolution of the Network 

is shown in Figure 5.1. The network started on the West Coast and has 
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Figure 5.3 ARPA Network, Logical Map, January 1973 
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gradually spread across country and overseas. Some lines in early versions 

of the network have since been deleted due to optimization. The nationwide 

geographical map of the network in February 1973 is shown in Figure 5.2 

and the logical map of the network at about the same time is shown in Figure 

5.3 The logical map shows the computing facilities at the nodes of the net­

work and the IMP's (Interface Message Processor) and TIP ' s (Terminal IMP). 

Since the network operating procedures were designed not to interfere with 

existing facilities the IMP ' s and TIP ' s are there to carry out the message 

handling tasks such as relay, acknowledgement, routing etc. In designipg 

such a network there are three factors, firstly the physical layout that is 

the IMPS, lines and hosts, secondly the traffic ' in the network and finally 

the operating rules which include such things as protocols, flow control 

procedures etc. These three factors must be considered separately and then 

designed to fit together. 

Two types of IMP are currently used and these are compared below. 

Honeywell DDP - 516 Honeywell DDP -316 

Maximum Throughput (approximate) 

Word length 

Store size 

Cycle time 

Cost (approximate) 

850 KB/Sec. 

16 bits 

12K* 

0.96 IoLsec. 

$100,000 

700 KB/Sec, 

1 6 hits 

12K* 

1 .6 IoLsec. 

~50,000 

As regards overhead the IMPS use 168 bits of transmission overhead/pkt 

and as the data maximum is 1008 bits/pkt the maximum packet size is 1176 

The core within the IMP (for the 12K case) is divided into 24 pages, 512 

words/page. Most of this is used for program and data and approximately 

40 buffers are left for packets (97 buffers in the 16K version). 

bits. 

The throughout picture of the IMP is shown in Figure 5.4. Also i n the 

network there are TIP's which can combine an IMP and a host and a typical 

TIP configuration in the network is shown in Figure 5.5. Without a local 

host a TIP is little more than a relay station in the network • 

* upgraded to 16K 
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6 Analysis of Computer Networks (Kleinrock 1964, 1974) 

In this section models for analyzing the behaviour of message flow, 

delays and throughput in general networks will be considered. An abstraction 

of a network is shown in Figure 6.1, which consists of lines and nodes; flow 

enters ( say) at node j and leaves (say) at node k and i is some general line 

in the network. It i s required to model the behaviour of the entire network 

and also the lines individually. 

k 

Figur e 6.1 An abstraction of a .network 

First we consider the simpl est queueing model, M/M/1 for each line 

this gives 

Delay (T) 

where ~ is the average service time. 

For more sophisticated models some f u rther definitions are needed. 

Let YJk = Average number of messages/sec. entering from outside node j 

with destination node k. (Assume the distribution is Poisson) 

Ai = Average number of messages/sec . carried by channel i. 

1/1-L = Average number bits/message (As sumed exponential) 

C, = Capacity of channel i (bits/sec) 

Ti = Average delay for using channel i 

T = Average network message delay. 
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Consider the model of a node in the network (see Figure 6.2). 

Figure 6.2 Model of a node in the network 

Total number of messages entering network per sec. on average 

Y = l: l: Yj k 
j k 

Total number of messages in network A = l: AI 
I 

The ratio of A to Y is important and is in effect the average path length of 

the network. 

Let T (the. average message delay) be the network performance measure. We 

decompose T into simple components; consider the j-k traffic and let Zjk be 

the average delay from node j to node k. 

T = l: l: 
j k 

It can be shown that further decomposition of this formula into single 

channel delays TI gives 

T = l: 
I 

h 
Y 
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Thus the analysis reduces to finding Al and TI ; Al is obtained from 

the routing procedure and it will be assumed to be a ~ routing procedure. 

To find TI we assume each node to behave like an M/M/1 system; this is not 

strictly true but turns out to be a good approximation. 

Thus T = l: 

T = 

1u.. 
y 

l: 
I 

= 

1u.. 
y 

This is still a simple model and a more accurate one for TI would. be 

constructed as in Figure 6.3. 

t.... 1 NK S 

I MP 

(J li.. T f'I.lT 

/ 

H05T 

B Switch which can block traffic flow to the IMP 

S Server 

Figure 6.3 A more complex model of a node in a network 
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Let 

K = Nodal processing time ( constant) 

PI = Propagation ~ime b speed of light) for CI 

1 /~ I = Average length of data message 

1 
" " " mixed (data and control) traffic = 

~ 

Then T = K + F + 

Simulation of a 19-node network under a fixed routing policy shows that 

the analysis works very well~ if the analysis is extended from single-packet 

messages to multipacket messages the situation is more complicated but still 

analysable. 

For a typical queueing system the delay is plotted as a function of 

throughput in Figure 6.4. The curves A and B are interesting in that they 

suggest a very simple two-parameter model as shown in Figure 6.5, which is 

essentially a D/D/1 model. The two quantities 

follows 
T = E .h. 1 

I 
Y ~~CI-AI) 

To = "no-load" delQ.y 

To find y* 

1. Place any load y on the network 

2. Calculate YI = ~ 
~CI 

for each channel 

3. Let ic be index of largest fl 

4. Scale y until 5'1 = Al = 1 
o ----'l 

~CI 
o 

5. This Y is then y* 
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7 Design Methods for Computer Networks (Kleinrock 1964, 1974) 

This is a much harder problem than that tackled in the previous section. 

The problem is to minimize the delay T = E At Tt by varying the three 

y 

parameters (Topological design, Routing procedure, and capacity assignment 

for each channel) subject to a fixed maximum cost D and also to given external 

traffic requirements. 

There is a dual problem - design the cheapest network at an acceptable delay. 

The level of difficulty of these problems depends mostly on the form of D. 

Three separate problems will be considered. 

1. Capacity Assignment only (CA) 

Minimize T (varying capacity assignment) subject to a fixed D and given the 

topology and routing (~t). 

2. Flow Assignment only (FA) 

Minimize T (varying the routing) given the topology and capacities. This problem 

is no longer subject to D. 

3 . Capacity and"" Flow Assignment (CFA) 

Minimize T (varying both capacities and routing) subject to a fixed D given a 

fixed topology. 

In no case are we varying topologies; this is very difficult but the 

analysis of the third problem does allow us to look at different topologies. 

Before going on to these problems the routing procedures and flow control 

procedures need consideration. Routing procedures involve flow allocation 

strategies and adaptive routing strategies. The strategies can be shortest 

path, minimum time path, shortest path with excess capacity, or a linear program 

algorithm. The properties required in routing procedures are fast adaption to 

status changes, low cost and reliable implementation and efficiency. 

The Flow Control procedures need to prevent congestion and lock up, the 

latter of which can occur both in reassembly and store and forward. It is also 

required to deliver short messages rapidly and give a high bandwidth transfer 

of long files. Unfortunately these latter two requirements usually conflict. 
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7.1 C.A. Problem 

(a) Linear Costs (continuous) D ~ E d, C, , 
Solution: + & 

d 

De i s "excess " cost = D 

where n ~ 1. is average path length . 
y 

(b) Logarithmic costs. D ~ E log 0/ C, , 
C, ~ Ka A, proport i onal capac ity 

a 
(c) Power law costs D ~ E d,C" O ';; 0/,;; 1 , 

square root 
assignment 

assignment . 

C, satisfi es a polynomial equation which can be solved numerically. 

(d) Discrete Options. 

Th ese a r e difficult since it is essentially an integer programming problem, 

however cont inuous approximations give r esults whi ch are surpris ingly good . 

7.2 F.A. Model 

Before looking at the analysis fo r Fl ow assignment it i s interesting to 

consider t he differences between the mode l s and real life situations. The 

basic trouble i s that whilst the models minimize de lays and find the opt imal 

channel flows, A, , they give no indication of how to achieve this in the 

network, i.e. inside the IMP. 

The routing proc edure algorithms for these models can vary in sophi~imt­

ion. They are usually dynamic and thus vary with time. The s impl est i s 

periodic update (pu) and works as f ollows : each node informs i ts immediate 

neighbours of the minimum delay time from it to every othe r node in the net­

work. Neighbou'ring nodes interchange this information synchronously every so 

often. Th erefore at any instant in t ime each IMP by adding the appropriate 

de l ay time to the immediate neighbouring node s can find the minimum de lay 

path f rom itself to any othe r node in the netwo rk. The minimum path will 

vary dynamically. The actual queue l engths are used to estimate the delay 

times used in the algorithm. 

Another algor~tPm is AUA (asyncronous update algoritrury. In this variation 

nodes inform their neighbours only when the delay time informatwn changes and 
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then they inform them immediately. In the S.Q. + B + P.U. (shortest queue 

plus bias plus periodic update) algorithm a node looks only at its queues 

and sends the message on the shortest, ho.wever a certain amount of bias is 

introduced in that information is known' as to what the actual shortest path 

to the destination node is. The periodic update is there for safety so 

that the algorithm can respond quickly to such things as line breaks. These 

algorithms have not yet been implemented but simulation shows them to be 

very promising. , 

Basically the Flow Assignment problem "is not difficult. We are 

required to find channel flows, A" and to minimize T given the net topology. 

channel capacities (C,) and flow requirements (YJk). 

T is a convex function of 1L and the flows themselves form a convex set; 

thus T has a unique minimum. 
\.L 

7.3 CFA Problem 

It is a difficult problem to try to do bot~ flow and channel assignment 

simultaneously. 

Consider D = ~ d,C, , 
The solution to minimize D for T s Tmax given the capacity is 

D = \~ + 1 f\ j A, d\.L' )2 
L \.L yTmax \L 

which is concave with respect to [A, } . 

The basic algorithm is the Concave Branch Elimination Method (CBE) 

1. Initialize the topology. 

2 , Assign lengths at random. 

3. Assign [A, } by F.A. problem 

4. Assign [C, } by linearized CA problem and if no "significant" 

improvement store the result and then go to step 2. 

5. and go to step 3. 

The method has the interesting property of eliminating lines by 

letting their length dwindle down to zero and thus in a sense designs the 

topology. The design solutions for such a problem are compared in Figure 

7.1 in which throughput is plotted against cost . 
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If 

and we let a decrease then we find the following properties in the design 

process: 

a) Stronger economies of scale are present 

b) Few large channels are best 

c) For a S 0.6 only trees are found 

d) Variation in the number of channels decreases 

e) Variation in cost increases 

f) Number of local minima incre~es 

g) Cost changes quickly. 

If 0.8 ~ a ~ 1 a highly connected initial topology is more likely to contain 

the optimum. The number of local minima is small as is the cost variation. 

Thus 'the CBE method is effective. 

If 0.5 ~ a ~ 0.8, the CBE method works only if the initial topology is 

carefully chosen. For a ~ .5 the CBE method is not good and branch exchange 

is probably better. This is because a highly connected topology will settle 

on a poor local minima and we would expect economies of scale to favour 

low-connected topologies. 

8 ~et Measurement and Performance (Kleinrock 1974) 

UCLA has the job of measuring the performance of the ARPA network and 

for this purpose there are elaborate measurement software packages in each 

IMP which can be turned on by any host. This software can measure averages 

taken over long intervals, or take snap-shots or trace the passage of 

messages through the network. 

For example the ARPA network map at any instant in time can be drawn. 

In August this year 7 day statistics were accumulated for the hosts and 

channels. These showed some interesting figures, for example most messages 

fitted into one packet and multi-packets were seldom used. Also buffer 

size is much larger than the average packet size. 

The average shortest path between sites was measured along with the 

traffic. This showed a lot of people talking to near neighbours or even 

themselves using the IMP as a switch. Another series of tests showed that 

the present Arpanet will saturate in 1974 when it reaches 10 million packets 

per day. Finally a particular demonstration of the Arpanet allowed us to 

get a bench-mark for the cost of communications as a proportion of the 

computing cost. This indicated that 365 packets was equivalent to one 

dollar of computing. From this we were able to conclude that the network 
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was cost effective and that as networks get larger the relative proportion 

of the communications cost will' go down. 

References 

Burke 1956 

Fr ank 1971 

Gordc,ln 1967 

Jackson 1957 

Jackson 1963 

Kleinrock, 1964 

Kleinrock, 1974 

Burke, P.J. "The Output of a Queueing System ", 

Oper Res. , Vol. 4, No.6 (December 1966) pp. 699-704. 

Frank, H., and I.T. Frisch, Communication, Transmission 

and .Transportation Networks, Addison-Wes ley Publishing 

Go., Reading, Mass., 1971. 

Gordon, W.J. and Newell, G.F., "Closed Queueing Systems 

with Exponential Servers", Operations Res., 15 (1967) 

pp. 254-265 . 

Jackson, J.R., "Networks of Waiting Lines" , Operations 

Res. (1957 ) 5:518-521. 

Jackson, J.R., "Jobshop-Like Queueing Systems", Man. Sci., 

10, 1 (O ctober 1963) pp. 131-142 . 

Kleinrock, L., Communication Nets; Stochastic Message 

Flow and Delay, McGraw-Hill, New York, 1964. Out of 

Print. Re-printed by Dover Publi cations, New York, 1972 . 

Kleinrock, L., Queueing Systems, Volume I, Theory, 

Volume II: Computer Applications, Wiley-Interscience 

(New York) 1974. 

90 


