
FORMALIZATION: PAST, PRESENT AND FUTURE 

H. Zemanek 

In the Muir Woods near San Francisco, there is a cut through a 

redwood tree more than 900 years old. Such a cut is an excellent 

example for the relationship between formal and informal structures. 

Certainly the growth of a tree is a very natural process, and still 

the result comes very close to the formal notion of a circle. In 

this particular case the sequence of growing circles is related to 

the circular movement of our planet around the sun - two spherical 

objects, by the way, whose appearance suggests again the formal shape 

of a circle. 

Very generally, formal expression can frequently be achieved by 

only little correction or manipulation of the informal pattern. The 

common ground is given by clarity and economy, by simplicity and 

minimum effort: the informal circle usually is the consequence of a 

b~lanced pro cess , and the formal c ircle is the shortest, the clearest, 

and ·the simplest way to describe any closed, somehow round shape -

every other description requires additional information. 

The close connection of informal and formal description is not 

only true for shapes, it is equally true for many other structures. 

And it is particularly true for language in general - our means of 

communication and our pos sibility to express our thinking. In the most 

natural forms of language there is a remarkable co-existence of informal 

and formal aspects. 

The letters, for instance, are suggested by the sounds which the. 

body can produce in a very natural way. A natural word has not been 

created by a construction or any other artificial procedure; its 

history is all informal, and still it is composed of sounds or letters 

in a highly digital principle. Misspelling evokes syntactical 

correction, even if the receiving individual ha s had very little 

training or education; a child can speak correct words which he does 

not understand. 
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Some sort of formality, some amount of formality, therefore, 

appears to be natural and reasonable. The question is the proper 

balance between informal and formal: how far to push formality. And 

this question can be split into two components. Namely, how far 

should one go with formal derivations, that is, formal conclusions 

from existing formal structures - and, secondly, how far should one 

go with formal methods into the basis of what we are doing. Obviously, 

the better the basis is formally defined, the safer we are later in 

the formal derivations. The ideal case is total axiomatization, the 

reduction of the structure to atomic elements and their logical inter

connection. But the work starts always in the middle: we are born 

into an environment which is very much like the redwood cut: there are 

suggested and even self-suggesting formal notions, but at the beginning 

of any investigation, such notations are not precise enough. Their 

further development frequently leads to a kind of separation - even of 

two hostile universes, the informal and the formal universe. In order 

to avoid frictions, tensions and fights, it is necessary to understand 

the virtues and the limitations of formalization and how its embedding 

in the real, essentially informal world can be done without harm. Such 

an understanding is better derived from a study of history than from a 

look at the present situation. So I will describe history first, then 

have a look at the present situation in general terms - many of you 

know more about formalization technology than I do - and finally I 

will try to draw a number of conclusions for future deve lopment. 
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The History of Formalization 

Formal thinking is as old as technology, and technology is as 

old as the human mind. The ancient expression tools, however, were 

crude and did not lead far. The formal methods of the Chaldeans or 

of the ancient Greeks, consequently, could hardly be made useful for 

the daily life of the average citizen. And ancient science not only 

remained of philosophical character, it always remained rather an art 

than a formal building. Anyway, the basic principles of our present 

formal science were laid down as early as that. 

Two important ideas were those of atomism and axiomatization. 

Both deserve a closer look, because after more than 2000 years of 

scientific development, they still seem to be the best our mind can 

offer for an understanding and a control of nature, and they are basic 

for information processing. While the idea of deriving a whole field -

like geometry - from a few basic sentences by logical rules, and the idea 

that what ever we see is composed of a small number of indivisible 

particles combined and interacting on the basis of absolutely logical 

laws, are extremely formal in essence, they were expressed by the 

Greek philosophers in natural language, just denoting variables with 

symbols and writing numbers formally (but not yet decimally). 

It was not until 820 A.D. that mathematics began to be formalized. 

The man who did this important step was an Arab living in the city of 

Khiva (now Uzbekistan) , then called Khorezm (which due to the difficult-

ies in writing vowels in Arabic was spelled as Khwarizm and in this form 

the city occurs as last part of the name): Abu Dshafar Muhammed Ibn 

Musa al-Khwarizmi. He had to describe the legal problems occurring, 

when an Arab with up to four wives of different legal standing died 

and left a big inheritance for them and many children. The partition 

was a huge mathematical problem, and it was for such problems that 

Muhammed invented algebra, in a book with the title "Kitab al-jabr 

w'almuqabalah". The term algebra comes from this title and the term 

algorithm comes from the author's (that is, from the city's) name. 

1te book was translated into Latin in Europe around 1200, but it was 

not until the 16th century that algebra was really accepted as a 

formal method. In that century, there was the struggle between the 

Abacists and : e Algorithmists, between the concrete calculation by 
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means of calculi, little stones or coins, and the abstract calculation 

on paper and by more and more formal rules. The algorithmists won, 

because suddenly paper could be produced at a much lower price - which 

shows once more how much we depend on technology, even in such mental 

aspects. 

Another important step of abstraction happened in the construction 

of buildings: the development of architecture. There also was a 

struggle between two schools, between the Italian and the British style 

of architecture, a subject which I intend to study in more detail. I 

will come back to the notion of architecture. Here, I will restrict 

myself to s impl e examples of architectural principles. One is t he 

difference between English and French garden a r chitecture: between 

the informal philosophy of the English garden and t h e formal art of 

the French park. The other is the difference between the Red Square 

in Moscow and the Place des Vosges in Paris: between the unsystematic 

combination of different buildings to a picturesque ensemble and the 

systematic design of a whole city square by one architect. If you 

add to these two pictures two other ones, sayan arbitrarily se l ected 

set of blocks in Manhattan and a district like Teesside in England 

(an irregularly filled unit of a regularly planned city and a part of 

the country which was destroyed by unplanned, unsystematic and 

unnatural erect ion of poor people's houses), yo u get an idea of how 

ordered and how wild technology may go . And it is not different in 

our own field. 

A third field of abstraction is mechanical construction, where 

design is based on blue-prints. We may not realize, but a blue-print 

is a formal definition of the object to be produced, composed of 

ideal straight lines, circles and other elements; somewhere in the 

corner of the blue-print there may even be found an indication which 

material should be used to construct the object. 

The field of fo rma li zation, as we can see, is much larger than 

just mathematics, but t here we can see much better how t h e idea of 

formalization develops. Mathematics finds out a need of formal 

definition of itse l f; after having used formal structures for cen

turies, in the 19th century it is recognized that the use of formal 
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structures in itself is not a guarantee for a clean situation - formal 

definition of the basic logic and of the basic notion is required. This 

chapter of history of mathematics starts with the name of G. Boole, 

and the next name to be mentioned is G. Frege. Russell and Whitehead 

formalize in their "Principia Mathematica" an essential part of 

mathematics, but this shows also how many problems there are still 

open. Hilbert gave an account of this in his Programme, but soon 

after that Godel proved that the world was not quite as ideal or 

orderly as the mathematicians had thought and that even a field as 

numerical mathematics has undecidable spots. 

Hardware is much better off than software in this respect, 

because digital hardware functions on strictly formal grounds. While 

it is true that in switching algebra the engineers reinvented the 

propositional calculus, they built their switching circuits for 

computers - without really knowing - on the universal foundation of 

mathematics, and in so doing they prepared the universality of the 

computer from the very beginning. Switching algebra, by the way, 

originated in Japan, where Hanzawa and Nakasima published their first 

articles in 1936, before Shannon ' s paper of 1938. 

The formal character of the switching circuits enables the hard

ware engineers to turn to automatic design and subsequent automatic 

production with little change in the structure philosophy. Miniature

ization amplifies the need of formal methods and strongly forced 

hardware to extreme discipline. This is how hardware became a model 

case for software: while programmers work with formal texts, they do 

so too frequently with highly informal (not to say: irrational) methods 

producing a situation where automatic design and automatic production 

become increasingly difficult. 

I will come back to these problems later. 
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Formalization outside Mathematics 

Not very many fields were formalized before our computer times, 

but formalization was not at all restricted to mathematics only. A 

few examples shall illustrate this statement. 

Few people realize that musical notation is a true formal language, 

and even fewer think of music in binary terms, although almost every

body can see that most popular songs, whether children's songs or hits, 

are based on a 16 bar structure. Songs like 

and hits like 

Wanschen klein, ging allein 

Ein Mannlein steht im Walde 

Wei~t Du, wieviel Sternlein stehen 

Ich fahr' mit der Post 

Jack and Jill went up the hill 

Little Jack Horner 

Pat a Cake, Bakersman 

HUo ho, alter Schimmel, hUo ho 

show the 16 bar structure perfectly. 

The binary character of music goes, however, much further into 

what I call abstract architecture of composition. I was really struck 

by the fact that the first movement of Beethoven's Vlth symphony (The 

Pastorale) had exactly 512 bars. It turned out that this was the only 

movement of the nine symphonies to show a precise power of two, but 

many show sums of two powers of two or come close to round binary 

numbers. Beethoven and many other composers liked building blocks of 

eight or four bars, and 64 bar blocks seem to be the most frequent 

bigger blocks in compositions. Of course, an artist never follows -

rationally or intuitively - an abstract scheme without deviations or 

exceptions. But take out for instance the cries "Halleluja" from 

Handel's "Halleluja" and there remains a perfect binary composition. 

The explanation for the binary character of music comes to a good 

part from the symmetries in the composing principles, each symmetry 

adding a bit. More results from a binary look at composition and 
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composition architecture can be expected • 

The digital character of music could also be derived from the 

fact that digital automata have been used for more than 600 years 

to produce music automatically; from the chimes to the nickel-piano, 

there is a long history of formally performed music. Edison's phono

graph opened a century of analog-stored music and its reproduction, 

but I am convinced that digital systems will take over not far in the 

future. 

Another example of a binary craft and art is weaving - and again 

this is a field where automation started. The punch-card invented for 

the weaver's loom is only a systematic improvement of gadgets used in 

weaving for thousands of years, to be found in any folklore. One of 

my colleagues recently discovered an intermediate step of very early 

days in a local museum in Upper Austria: a programming unit built in 

1740 consisting of a closed-loop piece of linen on which little wooden 

bars control the steering of the loom - an invention which may go back 

before 1690. 

The explanation of the binary character of weaving is that each 

crossing of two threads marks a point in a digital weaving pattern. 

Mathematical thinking is, as is all human thinking, sequential. 

Neither the computer nor the loom are bound to the time sequence 

maybe computer programming could learn from the loom and from weaving 

programming how to get rid of excessive sequentialization. 

A third example of formalization is book-keeping, again with a 

formal tradition of centuries. The book-keeper restricts himself to 

the correctness of his books which are essentially extended forms. 

He insists on having the same final sum in both the "Credit" and 

"Debit" column, but he leaves the verification of the semantics of 

his data outside the books - precisely what the programmer does at 

the computer. 

A similar reduction of a complex reality to simple forms and 

subsequent formal processing is the population register, the census -

another origin of automatic computing. 
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In 1889, Hermann Hollerith filed his final patents for the 

punch-card system designed for census processing, and the US census of 

1890 was the first one to be elaborat.p.rl automatically - one of the 

two first rather, because the Austrian census of 1890 was also run on 

Hollerith machines, imported and improved by Otto Schaffler, who got 

the first patent for 'computer' programming in 1896. It took me three 

years to reconstruct the life of this Austrian pioneer. 

I have mentioned already the blue-print. There was one attempt 

to formally define the blue-print. In 1907, a Spanish pioneer, 

Leonardo Torres y Quevedo, submitted to a meeting of representatives 

of Academies of Sciences in Vienna a paper containing the proposal for 

a notation for the formal description of mechanical constructions. As 

an example, he formally defined a small machine the description of 

which he had published a year before, a gadget for the automatic 

computation of the product of two complex numbers. The formal 

definition looks almost like APT and the formal description in the 

proposed language consists of 31 equations, including even the box of 

the gadget. Torres applies in his paper arguments in favour of formal 

definition which are as valid today as they were sixty years ago. (The 

Academies did not accept this paper.) As a final example for formal

ization, I want to take science in general - including philosophy of 

science. 

For 200 or 300 years, science and technology have worked on what 

could be called a formal model of the universe. The method is basically 

the ancient Greek concept of Atomisms and Axiomatization. In the first 

two decades of this century this method had reached a peak of success. 

Russell and Whitehead had formally defined Mathematics. In Physics and 

Chemistry, atoms had become an established reality and laws of nature 

had been used to master not only all kinds of material but also all 

kinds of energy which must have been proven to equally have atomic 

character. In Psychology, a direction called Associationism was most 

powerful. It teaches that all we sense, remember and think is based 

on atomic sensory inputs (elementary sensations) and consists of their 

combination by the laws of association. The situation of science 

around 1910 called for somebody to generalize it to a philosophy of 

~ cience of atomic and logic character. 
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This man in fact appeared. I t was the young Viennese engineer 

Ludwig Wittgenstein, born in the year in which Hollerith filled his 

patents. At the end of the First World War, Wittgenstein had finished 

a manuscript entitled "Tractatus Logico-Philosphicus", which was 

nothing else but an algorithm for a formal definition of the universe 

in terms of logic and logical atoms. These atoms he called elementary 

sentences (the Vienna Circle later used the term protocol sentences). 

Try all possible logical combinations of all elementary sentences, 

says his general algorithm, check by means of verification whether they 

are factually true or false; throwaway the factually false ones and 

collect the true ones, and you will have a perfect and complete formal 

description of the universe. From this algorithm, Wittgenstein 

correctly concluded t he end of philosophy. For if that principle is 

made to work, there is nothing more to consider. And the last 

sentence of the Tractatus consequently reads: What we cannot s peak 

about, we must pass over in si lenc e . 

Wittgenstein's derivations were not wrong, but some of his assumpt

ions were " One could mention Godel here, namely that not each logical 

decision process must come to a decision, and one could speak about the 

difficult i es of verification. But much more basically, there is the 

fact that outside logic there are no atoms. We know this from physics 

and chemistry, where we have finally got a class of small particles 

which do not just promise a perfect description of the physical universe. 

The same fact could be establi~hed for psychology . First of all it is 

true for language. Even in the smallest unit of language (say: a 

gesture) one can f ind the pack a full story. Wittgenstein recognized 

this fact around 1933, and he started a philosophy II in which for 

instance the meaning of a word depends on the language game wit hin 

which it is used. 

What is of impor~ance for computer science is the fact that the 

digital computer perfectly realizes the world of the Tractatus. What

ever happens in a computer system is a combination and sequenc e of true 

atoms of information _ of bits _ and about what cannot be said in 

bits the computer indeed keeps si l ent. It is only we who talk about 

: t. To make it clear in terms of Wi ttgenstein II: the meaning of any 

"".'~-",,~ on the comput e r game wi thin which it is used. There 
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will be for ever a gap between the formal universe in our systems and 

the informal reality, between the domain of the programs and algorithms 

and the life of people and communities - a gap which remains to be 

bridged by the human being, before and outside the mechanical and 

formal tools. 

The Present 

The computer has accelerated formalization in certain mathematical 

fields, and outside mathematics, has made it a practical need - simply 

by being itself formal. 

The instruction set of the processing unit, the machine language, 

is an absolutely formal system with both syntax and semantics defined 

by the switching circuits provided by the electronics engineer who in 

turn was programmed by the mathematician who wanted the tool to be able 

to solve practical problems. The universality of the computer resulted 

from totally pragmatic motivations - the best case that could occur. 

The way from the instruction set to the programming language is 

marked by steps which again were essentially practical. The idea of 

the flow diagram helped to pin down the general lines of a program -

to any desired detail. What has to be mentioned next in this context 

is Zuse' s "Plankalklil", a perfectly formal language going tar beyond 

mathematics, which Zuse proved by writing a game of chess in his 

formalism. It is a pity that he could not continue this work and 

that not more attention was paid to it: it could have accelerated cons

iderably the development of programming languages. It was Rutishauser 

in Europe with his "Rechenplanfertigung" who triggered algorithmic lan

guages independent of the American efforts to automatize formula 

translation. Fortran and Algol were the results. 

At this point of the paper, before proceeding, I should insert a 

detailed chapter on the theory of languages. But since I can assume 

that my readers know this theory fairly well, I can restrict myself to 

a few keywords, just to l~ out a framework for the continuation of my 

line of thoughts. 
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The theory of scientific language as developed by Peirce, Morris 

and the Vienna Circle, distinguishes three levels of investigation, to 

which I want to add a level a which historically has always been the 

first item in language descript i on : the alphabet . Here, we see 

language starting from an atomic concept, which however does not help 

for its essential content. 

We find the only true atom, the bit, which can be used to 

construct a code for any alphabet, so that the character appears as a 

molecule: a combination of bits, a d iffer ent one for each character. 

On the next level, an intermediat e l evel which I will not number, the 

combination of characters yi elds the word - a unit of language as 

mysterious as the human mind, well supporting the particular meaning 

which the bible attaches to the word Verbum. As easy as it is to 

code a word, as difficult is it to catch its meaning, to define 

formally what a traditional word means. Only the constructed meaning 

offers itself to formal definition . 

The proper levels of investigation are syntax, semantics and 

pragmatics. The purest definition of syntax makes it a set of rules 

to define all well-formed sentences; it describes the combination of 

characters or words absolutely independent of any meaning. The perfect 

syntax of a well-constructed language permits mechanical checking, 

whether the sentence is well-formed, and the r e jection of syntactical 

errors. 

Semantic studies the meaning of the (well-formed) sentence. The 

ideal principle would be to verify the factual truth of each sentence. 

The Tractatus (and with the Tractatus the Vienna Circle and Logical 

Positivism) assumed that verification was possible for a sentence 

(at least in principle), but time has shown that many difficulties 

inhibited any successful programme to do so. The Austrian-British 

philosopher Sir Karl Popper concluded that since verification was not 

possible, we are obliged to try to falsify sentences •• best we can. 

Only those sentences which resist falsification are allowed to remain 

in our basket of temporary knowledge, and there is no final one except 

the tautological truth within formal systems. 
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The failure of Automat:ic Translation of natural language is certainly 

connected to those difficulties. Only in the constructed world of logic 

and mathematics and the computer are we on safe ground. There we have 

the chance of formally defining the meaning and to prove semantical 

correctness. 

The third level of the theory of languages is pragmatics - every- , 

thing not covered by syntax and semantics, like the use of the language, 

its user, the fashions and dialects, the history of the language (i f 

applicable). What to achieve, in other words, with a designed language 

is pragmatics; th i s shows again that pragmatics is the begin and the end 

of language investigation, and syntax and semantics are only middle 

sections of it; and secondly, since it is obvious that there is no hope 

to formalize pragmatics, it makes clear once more that syntactic and 

semantic structures are essentially embedded in real life. We will 

never attain a total formalization of anything. 

Let me shortly mention the distinction between natural and 

const ructed languages, a distinction I have used already; natural 

languages can be alive and dead. There are mixtures between natural 

and formal languages. An example for this case is the medical l anguage 

of which certain formal parts, the indication of t h e body temperature, 

for instance, like any other value of a physical measurement, can be the 

subj ect of formal handling and, therefore, of computer processing . 

The many, sometimes very advanced mathematical structures of medical 

knowledge are as formal as any technical construction. But there are 

other parts, for instance in a medical record, which are highly 

informal; it would be extremely hazardous to submit them to automatic 

processing other than storage and reproduction. I am sure that nobody 

would entrust himself today to a totally formalized and computeri zed 

medica l treatment. This gives an idea of the heavy problems of medical 

information processing. 

Finally, I have to mention the di s tinction between language 
n 

meta-language, meta-meta language, and so on (meta language). It is 

clear that a natural language can be used ,as meta-language of any level. 

The open question is whether we shall see one day a formal language 

which is recursive to the degree that it can be described in itself, so 
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that we can do away with a natural language as the ultimate meta

language. So far, I have not yet seen any promising attempt to 

aohieve tllis. 

Now I will turn to the discussion of three levels of formalizat

ion which have gained importance around the computer; these three 

levels are 

(1) formal notation 

(2) formal definition 

(3) correctness proofs. 

The first level has been in use for a long time: it is the intro

duction of a formal language which allows mechanical derivations, so 

that it is possible to achieve general agreement on the result: if 

the rules have been properly observed, the outcome must be accepted 

by everybody. What can be challenged are the assumptions or, under 

certain conditions, the used notions. These notions will be challenged, 

if it is possible to derive contradictions, paradoxa. Then, a next 

level must be introduced, a formal definition of the notions, which 

is possible - I repeat - only in contructed languages. Constructed 

languages have the further advantage that their knowledge can be 

acquired in the mother language, so that in the formal field communicat

ion becomes independent of the command of a foreign language (of 

English, in the computer field) and of excessive language finesse of 

an author (which usually is identical with obscurantism anyway - not 

always, I admit). 

The second level of formalization, the formal definition of the 

applied formal language, is practically always achieved by means of an 

abstract machine - the Turing machine is the best known example. 

The abstract machine can assume a set of states and moves from 

one state to the next on the basis of a well-defined transition 

function. Since there is no reason to exchange all parameters during 

one transition - rather the transition will in most cases concern only 

a small subpart of the structure - it is convenient to organize the 

state as a complex system of sub states and to introduce a full set of 
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transition functions, conditioned by state (sub-state) and input (or 

next elaborated part of text). A special control mechanism, which can 

be a part of the abstract machine, ensures the proper sequencing of 

the steps. 

The abstract machine can define the syntax and the semantics of 

a formal language or a formal system, based on operational or axiomatic 

principles. It is certainly known to all of you that the Vienna IBM 

Laboratory has designed a notation, a method of definition and finally 

the formal definition of the semantics of PL/I, so that I am not just 

speaking of possibilities, but of real results (and a result of 

non-trivial size). 

But formal definition is not the end of the formalization game. 

The next level is characterized by correctness proofs for the solutions. 

Since no human mind watches the processes running in nano-second steps 

through the computer, there is never an instance in which a wrong 

assumption can be observed out of the process details. Of course, we 

flatter ourselves that in our programs every possibility has been 

preconceived a~d that, consequently, there is nothing to be observed 

which is not already known. But are we always sure that this is really 

so? Even in a purely human operation there is much trust in offered 

solutions, and in many cases it would be difficult to object to a 

solution, because the whole situation has informal ingredients which 

remain dark. (Sometimes the solution is ready, the problem to which 

it applies is unknown. There is some logic in such a case: there are 

so many more questions than answers that it is economic to work out 

answers independently of the questions ••• ) 

A correctness proof establishes a link between a formal question 

and a formal answer: it makes sure that the answer indeed fits the 

question, that the solution indeed resolves the problem. For this 

purpose, however, formal notation and definition are a prerequisite, 

but they are not sufficient. A formal environment for the solution 

process is to be established. If the correctness proof, then, is 

achieved, the user enjoys all the reliability of a formal system. 
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This highest level of formalization requires an extremely clean 

field of operation, and definitely not every author in computer 

science is fighting for it. The tragedy is that it is possible to 

fight for formality on very obscure paths. 

On the other hand, it is possible to fight for informality with 

apparently sound arguments which are not easy to refute. Programming 

in natural language sounds so attractive, so useful, so familiar. Why 

should it not be possible? And would it not be the solution for the 

average user? Natural language is what he knows, what he needs to 

learn (like a programming language). And yet, programming in natural 

language - except in trivial applications - is a naive error, 

committed and even cultivated, however, by the most sophisticated 

computer specialists. 

If the problem exceeds the brains of the user, then only the 

programming specialist can help - if at all, because even the most 

intelligent specialist can only program what has been made clear to 

him. 

Formal languages are a help for the c lumsy style of a weaker 

intelligence, but in no case '. s the clumsy informal style a help 

against a lack of command of a formal language. 

Whoever has the abi11ty to think clearly and to express hims elf 

clearly, can learn P nrogramming language in order to define the flow 

of data, energy and material to the precision required by automatic 

function. Lack of this ability will produce descriptions or instruct

i ons which the most advanced computer program will not be able to 

follow; the computer will do t he right thing by mere (and small) 

"hance. 

The only other way out is what may be called "invisible program

ming": the design of an automatic system in which the processes -

s impl e or complicated are triggered by trivial actions (inse rtion 

of a magnetic card or a coin , depos i t of a loe.d), wh i le the programs 

remain totally within the boxes. 

"hr. umput.,r is an inte lligence amplif1er, if there is intelligence 

; , h~ l l1PU\,. The 00mputer is 5:.:-:"_ uni:"ltell i g' ?nc e e "Ilpl~_fier , if 

.llct R' qnoTance ~ 
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It is a good goal, it probably is a necessity to protect the 

computer user from unnecessary learning (technology in general and 

computer technology in particular overburden the user with learning, 

in large but more so in small quantities); but there is some psycho

logical economy in dealing with automatic equipment from which one 

cannot deviate too far. Quasi-intelligent appearance of the computer 

can only lead to deception. 

Arguments for and against Formalization 

A few keywords for and against formalization are 

FOR AGAINST 

clari ty clarity 

economy learning 

security risk 

freedom freedom 

generali ty, elegance costly, impractical 

Clarity and unambiguity are the most important virtues of 

formalization. The abstract notions of the formal system are 

different from the concrete notions used in natural language, they 

~ re free from connotations and tacit assumptions - it is possible to 

express no mere and no less than what should be said. 

But this is precisely a reason to be against formalization: too 

much clarity binds all concerned to an amount which is frequently very 

bad or at least cumbersome. There are, of course, formal methods to 

leave out parts which are to be specified later, and no precision is 

lost - but such methods require a knowledge, a command of formalization 

which is not easily available. 

There is a more important argument, namely that informal express

I.on carries more information than formal - which is true. Think of 

the medical exa!:lple given earlier: medical descriptions, medical 

knowledge can be analyzed and transformed into a formal system, but 

l here is no doubt that some information is lost in this process. 

I n 1"'; ·t \ r can ind~ed be a negative argument 
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Economy, reflected by the shortness of expression, mechani ca l 

s implification and repetition, is obviously a strong argument. 

Repetition, in particular, yields the basis for savings and is the 

precondition for automitization, for 

automatic programming 

automatic generation 

automatic simulation and 

automatic documentation. 

The counterargument against economy is to say yes, that is all 

true, but it requires an amount of education on the producing and at 

the applying side which destroys the advantages. This is in fact an 

important point which keen formalizers often overlook. 

A similar double argument can be presented for security and 

reliability gained by formal treatment. Structures become exception

free, mechanic evaluation, perfect syntax - everything is very good 

the interpretation goes outside the formal structures and becomes 

independent of the personal command of any living language, in which 

things otherwise have to be handled. 

The counterargument again says that there is risk in the new 

principles; nobody can guarantee that they really will be successful, 

so that the overall gain is questionable. 

Another fine property of formalization is generality and elegance; 

problem situations can be preconceived at an early stage of develop

ment, there are no arbitrary entries to the set of concepts and each 

of them is accepted only in the most general form; whatever one is 

working on, it can be applied to any other field where it applies. 

The counterargument here is that generality is costly - not only 

in dollars, but also for example in compilation time. Elegance is 

often impractical and, in fact, some very practical things are highly 

inelegant. The specific solution by many people is to prefer the 

general, not the latter for economical reasons. If you want to make 

big business, rather you try it with a special patent button which is 

different from those on the market than with a generalized button 

:' ncluding the common features of all others on the market. 
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Freedom, finally, is opened by formalization for the subsequent 

steps, because the system is ideally transparent, all possibilities 

can be seen without long trials. But the argument can be turned 

around stating that formalization removes the freedom of reinterpret

ing the early description, the possibility to say: you have misunder

stood me, what I really meant to say was the following ••• 

Of course, nobody will sell such a reinterpretation as a design 

principle, but intuitively it might frequently be a power in the 

fight between formal and informal. 

All those arguments together lead to a basic principle of design 

which carries the name of architecture - abstract architecture, I 

should say, in order to distinguish it from what the term designates 

now - namely the same sloppy way of glueing parts together, which was 

formerly called logical design. 

One can make an interesting exercise: looking up the Encyclopedia 

Britannica and reading what building architects understand by the 

term. It is defined as 

The art and technology of building, fulfilling the practical and 

expressive needs of civilized people. The main goals are 

suitability to use by human beings 

stability and permanence of its construction 

communication of experience and ideas through form. 

Are not all of those thoughts perfectly applicable to what we are 

doing? Or to what we should do? 

The chapters of the Encyclopedia keyword are 

use - types 

- planning 

techniques 

expression 

materials 

methods 

content 

form 

and "Economy prevents work without (or only potential) demand". 
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The notion and the term of computer architecture were introduce" 

in a book on the computer "STRETCH" in 1962, and there the definition 

given by F.P. Brooks is quite clear and alright. It was applied in 

the hardware design of the IBM System/360, but soon the term and the 

idea disappeared from literature. It was one of the /360 fathers who 

published since then on the notion of architecture, and he points out 

what makes good architecture. He distinguishes three steps in design: 

Architecture, implementation and realization. Architecture is the 

functional appearance of the system to the user (what happens). 

Implementation is the logical structure - in detail - which performs 

the architecture (how it happens). And realization is the hardware 

construct (where it happens) . 

The key idea is consistency: if the architecture is consistent, a 

partial knowl edge of the system allows the remainder (this is why I 

like to define abstract architecture a s creative redundancy - repetit

ion and symmetry are building principles not only in technology but 

also in the arts and in music particularly). 

Good architecture is also characterized by orthogonality, 

propriety and generality. Orthogonality means no unnecessary coup

l ing of concepts or functions which are proper to the essential 

requirements. Generality means that each concept, property or 

f unction which must be introduced will be introduced in its mo st 

general form. 

Good architecture will show openendedness and completeness; 

openendedness means that there are no unnecessary restrictions and 

there is ample spac e for later and further development; completeness 

means that there is no arbitrary selection - if a part of a set, then 

the full set. Further keywords are symmetry, transparency, compatibil

' ty, reliability; good architecture is stimulating and self-teaching . 

Of course, there is the danger that a perfect architecture is 

designed, but that it finally shows the property of poor performance -

but such a bad result will not occur, if the whole design was based 

on the advantages of clean formal methods. System architecture 

requires , in other words, thorough formalization; it cannot be left 

t o "natural evo lvement". And this remark opens an interesting 
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relation to "General Systems Theory" - into which I will not l ook 

any further, however. 

The Future of Formalization 

Formalization is not a so litary, esoteric amusement of some extreme 

specialists, a theory for the sake of theory. It will become in very 

short time: 

A production tool, 

a management tool and 

an application tool. 

The computer is much too powerful to produce, to organize and to 

apply it by intuition or by casual methods . Information processing 

requires more precision in every layout, the faster, the bigger 

and the cheaper the equipment becomes - only thorough formalization 

offers the tight control which our powerful tool needs, if it should 

not go astray organizationally and financially in its growth and its 

infinite applications. 

Formalization, therefore, will extend to the environment of the 

proper information processing equipment, a formal definition of the 

total system within which the computer is used will be necessary, an 

abstract machine modeling the total enterprise , institution or any 

other structure, not only its mechanical parts but also its human, 

to its natural structures. 

This in turn will sharpen the problems of formalization. Many 

questions will be raised: what is the relation between a formal model 

and an organism, the relation between all those constructed l anguages 

and the natural ones? I have mentioned medical structures as examples 

of complex nature - legal structures are another instance of a complex 

situation. Although legal language and legal thinking have a certain 

formal character, the legal philosophy of formalization i s essentially 

different from the logical and technical formalization; to put legal 

s tructures on the computer is highly necessary, but extremely 

difficult because of the gap between l ogical and legal thinking. 

Me!",:,' other examples of problem areas for formalization and compute r 

'pplication could be given, a lot of work is ahead of us. 
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Formalization will grow in importance and extension, and it will 

have many feedbacks to the structures on which it is applied. Formal

ization will influence 

The products resulting from formalized processes. 

The enterprises and institutions applying formalized processes. 

The professions which will have to go into formal treatment of 

their work. 

The country in which substantial computer applications will 

produce a tight network of formalized systems. 

Formalization will develop - forcefully pushed or happening as a 

side-effect of computerization - the art of abstract engineering, the 

type of engineer very different from the classic mechanical engineer, 

but based on the same virtues of compromising between needs and 

possibilities, between quality, cost and punctual delivery, between 

mathematical precision and illogic intuition. 

Formalization will influence society. The life of the increased 

population of our planet can only be maintained by means of advanced 

technology, and good mechanisms, concrete as well as abstract ones, 

will be absolutely needed. But man is more than a machine, and 

human behaviour must be protected from totally submerging in a 

formalized universe. Also, society is more than a machine which 

runs perfectly if serviced by keen social engineers. There are 

fields which must be kept away from formalization and mechanical 

derivations, and the abstract engineer should warn certain other 

professions not to fall into admiration and simulation of engineer

ing, where other principles of life and work should be pursued. 

Formalization will have a feedback on the human mind which will 

dispose with the advance of formal methods of extremely powerful 

abstract mechanisms, which will make people like the rules and' hate 

the exceptions - but this would be the contrary to the humanization 

of our world, where the exception is more important than the rule. 

Liking and understanding the exception will always remain the most 

human task for the human being, and in all our work in the formal

ization of information processing we should never forget this side 

of our human existence. 
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