
FORMALIZATION: PAST, PRESENT AND FUTURE

H. Zemanek

In the Muir Woods near San Francisco, there is a cut through a

redwood tree more than 900 years old. Such a cut is an excellent

example for the relationship between formal and informal structures.

Certainly the growth of a tree is a very natural process, and still

the result comes very close to the formal notion of a circle. In

this particular case the sequence of growing circles is related to

the circular movement of our planet around the sun - two spherical

objects, by the way, whose appearance suggests again the formal shape

of a circle.

Very generally, formal expression can frequently be achieved by

only little correction or manipulation of the informal pattern. The

common ground is given by clarity and economy, by simplicity and

minimum effort: the informal circle usually is the consequence of a

b~lanced pro cess , and the formal c ircle is the shortest, the clearest,

and ·the simplest way to describe any closed, somehow round shape -

every other description requires additional information.

The close connection of informal and formal description is not

only true for shapes, it is equally true for many other structures.

And it is particularly true for language in general - our means of

communication and our pos sibility to express our thinking. In the most

natural forms of language there is a remarkable co-existence of informal

and formal aspects.

The letters, for instance, are suggested by the sounds which the.

body can produce in a very natural way. A natural word has not been

created by a construction or any other artificial procedure; its

history is all informal, and still it is composed of sounds or letters

in a highly digital principle. Misspelling evokes syntactical

correction, even if the receiving individual ha s had very little

training or education; a child can speak correct words which he does

not understand.

1TI

,
l

Some sort of formality, some amount of formality, therefore,

appears to be natural and reasonable. The question is the proper

balance between informal and formal: how far to push formality. And

this question can be split into two components. Namely, how far

should one go with formal derivations, that is, formal conclusions

from existing formal structures - and, secondly, how far should one

go with formal methods into the basis of what we are doing. Obviously,

the better the basis is formally defined, the safer we are later in

the formal derivations. The ideal case is total axiomatization, the

reduction of the structure to atomic elements and their logical inter

connection. But the work starts always in the middle: we are born

into an environment which is very much like the redwood cut: there are

suggested and even self-suggesting formal notions, but at the beginning

of any investigation, such notations are not precise enough. Their

further development frequently leads to a kind of separation - even of

two hostile universes, the informal and the formal universe. In order

to avoid frictions, tensions and fights, it is necessary to understand

the virtues and the limitations of formalization and how its embedding

in the real, essentially informal world can be done without harm. Such

an understanding is better derived from a study of history than from a

look at the present situation. So I will describe history first, then

have a look at the present situation in general terms - many of you

know more about formalization technology than I do - and finally I

will try to draw a number of conclusions for future deve lopment.

178

•

,

I
I·

The History of Formalization

Formal thinking is as old as technology, and technology is as

old as the human mind. The ancient expression tools, however, were

crude and did not lead far. The formal methods of the Chaldeans or

of the ancient Greeks, consequently, could hardly be made useful for

the daily life of the average citizen. And ancient science not only

remained of philosophical character, it always remained rather an art

than a formal building. Anyway, the basic principles of our present

formal science were laid down as early as that.

Two important ideas were those of atomism and axiomatization.

Both deserve a closer look, because after more than 2000 years of

scientific development, they still seem to be the best our mind can

offer for an understanding and a control of nature, and they are basic

for information processing. While the idea of deriving a whole field -

like geometry - from a few basic sentences by logical rules, and the idea

that what ever we see is composed of a small number of indivisible

particles combined and interacting on the basis of absolutely logical

laws, are extremely formal in essence, they were expressed by the

Greek philosophers in natural language, just denoting variables with

symbols and writing numbers formally (but not yet decimally).

It was not until 820 A.D. that mathematics began to be formalized.

The man who did this important step was an Arab living in the city of

Khiva (now Uzbekistan) , then called Khorezm (which due to the difficult-

ies in writing vowels in Arabic was spelled as Khwarizm and in this form

the city occurs as last part of the name): Abu Dshafar Muhammed Ibn

Musa al-Khwarizmi. He had to describe the legal problems occurring,

when an Arab with up to four wives of different legal standing died

and left a big inheritance for them and many children. The partition

was a huge mathematical problem, and it was for such problems that

Muhammed invented algebra, in a book with the title "Kitab al-jabr

w'almuqabalah". The term algebra comes from this title and the term

algorithm comes from the author's (that is, from the city's) name.

1te book was translated into Latin in Europe around 1200, but it was

not until the 16th century that algebra was really accepted as a

formal method. In that century, there was the struggle between the

Abacists and : e Algorithmists, between the concrete calculation by

179

•

means of calculi, little stones or coins, and the abstract calculation

on paper and by more and more formal rules. The algorithmists won,

because suddenly paper could be produced at a much lower price - which

shows once more how much we depend on technology, even in such mental

aspects.

Another important step of abstraction happened in the construction

of buildings: the development of architecture. There also was a

struggle between two schools, between the Italian and the British style

of architecture, a subject which I intend to study in more detail. I

will come back to the notion of architecture. Here, I will restrict

myself to s impl e examples of architectural principles. One is t he

difference between English and French garden a r chitecture: between

the informal philosophy of the English garden and t h e formal art of

the French park. The other is the difference between the Red Square

in Moscow and the Place des Vosges in Paris: between the unsystematic

combination of different buildings to a picturesque ensemble and the

systematic design of a whole city square by one architect. If you

add to these two pictures two other ones, sayan arbitrarily se l ected

set of blocks in Manhattan and a district like Teesside in England

(an irregularly filled unit of a regularly planned city and a part of

the country which was destroyed by unplanned, unsystematic and

unnatural erect ion of poor people's houses), yo u get an idea of how

ordered and how wild technology may go . And it is not different in

our own field.

A third field of abstraction is mechanical construction, where

design is based on blue-prints. We may not realize, but a blue-print

is a formal definition of the object to be produced, composed of

ideal straight lines, circles and other elements; somewhere in the

corner of the blue-print there may even be found an indication which

material should be used to construct the object.

The field of fo rma li zation, as we can see, is much larger than

just mathematics, but t here we can see much better how t h e idea of

formalization develops. Mathematics finds out a need of formal

definition of itse l f; after having used formal structures for cen

turies, in the 19th century it is recognized that the use of formal

1M

structures in itself is not a guarantee for a clean situation - formal

definition of the basic logic and of the basic notion is required. This

chapter of history of mathematics starts with the name of G. Boole,

and the next name to be mentioned is G. Frege. Russell and Whitehead

formalize in their "Principia Mathematica" an essential part of

mathematics, but this shows also how many problems there are still

open. Hilbert gave an account of this in his Programme, but soon

after that Godel proved that the world was not quite as ideal or

orderly as the mathematicians had thought and that even a field as

numerical mathematics has undecidable spots.

Hardware is much better off than software in this respect,

because digital hardware functions on strictly formal grounds. While

it is true that in switching algebra the engineers reinvented the

propositional calculus, they built their switching circuits for

computers - without really knowing - on the universal foundation of

mathematics, and in so doing they prepared the universality of the

computer from the very beginning. Switching algebra, by the way,

originated in Japan, where Hanzawa and Nakasima published their first

articles in 1936, before Shannon ' s paper of 1938.

The formal character of the switching circuits enables the hard

ware engineers to turn to automatic design and subsequent automatic

production with little change in the structure philosophy. Miniature

ization amplifies the need of formal methods and strongly forced

hardware to extreme discipline. This is how hardware became a model

case for software: while programmers work with formal texts, they do

so too frequently with highly informal (not to say: irrational) methods

producing a situation where automatic design and automatic production

become increasingly difficult.

I will come back to these problems later.

181

Formalization outside Mathematics

Not very many fields were formalized before our computer times,

but formalization was not at all restricted to mathematics only. A

few examples shall illustrate this statement.

Few people realize that musical notation is a true formal language,

and even fewer think of music in binary terms, although almost every

body can see that most popular songs, whether children's songs or hits,

are based on a 16 bar structure. Songs like

and hits like

Wanschen klein, ging allein

Ein Mannlein steht im Walde

Wei~t Du, wieviel Sternlein stehen

Ich fahr' mit der Post

Jack and Jill went up the hill

Little Jack Horner

Pat a Cake, Bakersman

HUo ho, alter Schimmel, hUo ho

show the 16 bar structure perfectly.

The binary character of music goes, however, much further into

what I call abstract architecture of composition. I was really struck

by the fact that the first movement of Beethoven's Vlth symphony (The

Pastorale) had exactly 512 bars. It turned out that this was the only

movement of the nine symphonies to show a precise power of two, but

many show sums of two powers of two or come close to round binary

numbers. Beethoven and many other composers liked building blocks of

eight or four bars, and 64 bar blocks seem to be the most frequent

bigger blocks in compositions. Of course, an artist never follows -

rationally or intuitively - an abstract scheme without deviations or

exceptions. But take out for instance the cries "Halleluja" from

Handel's "Halleluja" and there remains a perfect binary composition.

The explanation for the binary character of music comes to a good

part from the symmetries in the composing principles, each symmetry

adding a bit. More results from a binary look at composition and

182

. ,
composition architecture can be expected •

The digital character of music could also be derived from the

fact that digital automata have been used for more than 600 years

to produce music automatically; from the chimes to the nickel-piano,

there is a long history of formally performed music. Edison's phono

graph opened a century of analog-stored music and its reproduction,

but I am convinced that digital systems will take over not far in the

future.

Another example of a binary craft and art is weaving - and again

this is a field where automation started. The punch-card invented for

the weaver's loom is only a systematic improvement of gadgets used in

weaving for thousands of years, to be found in any folklore. One of

my colleagues recently discovered an intermediate step of very early

days in a local museum in Upper Austria: a programming unit built in

1740 consisting of a closed-loop piece of linen on which little wooden

bars control the steering of the loom - an invention which may go back

before 1690.

The explanation of the binary character of weaving is that each

crossing of two threads marks a point in a digital weaving pattern.

Mathematical thinking is, as is all human thinking, sequential.

Neither the computer nor the loom are bound to the time sequence

maybe computer programming could learn from the loom and from weaving

programming how to get rid of excessive sequentialization.

A third example of formalization is book-keeping, again with a

formal tradition of centuries. The book-keeper restricts himself to

the correctness of his books which are essentially extended forms.

He insists on having the same final sum in both the "Credit" and

"Debit" column, but he leaves the verification of the semantics of

his data outside the books - precisely what the programmer does at

the computer.

A similar reduction of a complex reality to simple forms and

subsequent formal processing is the population register, the census -

another origin of automatic computing.

183

r

In 1889, Hermann Hollerith filed his final patents for the

punch-card system designed for census processing, and the US census of

1890 was the first one to be elaborat.p.rl automatically - one of the

two first rather, because the Austrian census of 1890 was also run on

Hollerith machines, imported and improved by Otto Schaffler, who got

the first patent for 'computer' programming in 1896. It took me three

years to reconstruct the life of this Austrian pioneer.

I have mentioned already the blue-print. There was one attempt

to formally define the blue-print. In 1907, a Spanish pioneer,

Leonardo Torres y Quevedo, submitted to a meeting of representatives

of Academies of Sciences in Vienna a paper containing the proposal for

a notation for the formal description of mechanical constructions. As

an example, he formally defined a small machine the description of

which he had published a year before, a gadget for the automatic

computation of the product of two complex numbers. The formal

definition looks almost like APT and the formal description in the

proposed language consists of 31 equations, including even the box of

the gadget. Torres applies in his paper arguments in favour of formal

definition which are as valid today as they were sixty years ago. (The

Academies did not accept this paper.) As a final example for formal

ization, I want to take science in general - including philosophy of

science.

For 200 or 300 years, science and technology have worked on what

could be called a formal model of the universe. The method is basically

the ancient Greek concept of Atomisms and Axiomatization. In the first

two decades of this century this method had reached a peak of success.

Russell and Whitehead had formally defined Mathematics. In Physics and

Chemistry, atoms had become an established reality and laws of nature

had been used to master not only all kinds of material but also all

kinds of energy which must have been proven to equally have atomic

character. In Psychology, a direction called Associationism was most

powerful. It teaches that all we sense, remember and think is based

on atomic sensory inputs (elementary sensations) and consists of their

combination by the laws of association. The situation of science

around 1910 called for somebody to generalize it to a philosophy of

~ cience of atomic and logic character.

1P4

,.

This man in fact appeared. I t was the young Viennese engineer

Ludwig Wittgenstein, born in the year in which Hollerith filled his

patents. At the end of the First World War, Wittgenstein had finished

a manuscript entitled "Tractatus Logico-Philosphicus", which was

nothing else but an algorithm for a formal definition of the universe

in terms of logic and logical atoms. These atoms he called elementary

sentences (the Vienna Circle later used the term protocol sentences).

Try all possible logical combinations of all elementary sentences,

says his general algorithm, check by means of verification whether they

are factually true or false; throwaway the factually false ones and

collect the true ones, and you will have a perfect and complete formal

description of the universe. From this algorithm, Wittgenstein

correctly concluded t he end of philosophy. For if that principle is

made to work, there is nothing more to consider. And the last

sentence of the Tractatus consequently reads: What we cannot s peak

about, we must pass over in si lenc e .

Wittgenstein's derivations were not wrong, but some of his assumpt

ions were " One could mention Godel here, namely that not each logical

decision process must come to a decision, and one could speak about the

difficult i es of verification. But much more basically, there is the

fact that outside logic there are no atoms. We know this from physics

and chemistry, where we have finally got a class of small particles

which do not just promise a perfect description of the physical universe.

The same fact could be establi~hed for psychology . First of all it is

true for language. Even in the smallest unit of language (say: a

gesture) one can f ind the pack a full story. Wittgenstein recognized

this fact around 1933, and he started a philosophy II in which for

instance the meaning of a word depends on the language game wit hin

which it is used.

What is of impor~ance for computer science is the fact that the

digital computer perfectly realizes the world of the Tractatus. What

ever happens in a computer system is a combination and sequenc e of true

atoms of information _ of bits _ and about what cannot be said in

bits the computer indeed keeps si l ent. It is only we who talk about

: t. To make it clear in terms of Wi ttgenstein II: the meaning of any

"".'~-",,~ on the comput e r game wi thin which it is used. There

185

.'

I

will be for ever a gap between the formal universe in our systems and

the informal reality, between the domain of the programs and algorithms

and the life of people and communities - a gap which remains to be

bridged by the human being, before and outside the mechanical and

formal tools.

The Present

The computer has accelerated formalization in certain mathematical

fields, and outside mathematics, has made it a practical need - simply

by being itself formal.

The instruction set of the processing unit, the machine language,

is an absolutely formal system with both syntax and semantics defined

by the switching circuits provided by the electronics engineer who in

turn was programmed by the mathematician who wanted the tool to be able

to solve practical problems. The universality of the computer resulted

from totally pragmatic motivations - the best case that could occur.

The way from the instruction set to the programming language is

marked by steps which again were essentially practical. The idea of

the flow diagram helped to pin down the general lines of a program -

to any desired detail. What has to be mentioned next in this context

is Zuse' s "Plankalklil", a perfectly formal language going tar beyond

mathematics, which Zuse proved by writing a game of chess in his

formalism. It is a pity that he could not continue this work and

that not more attention was paid to it: it could have accelerated cons

iderably the development of programming languages. It was Rutishauser

in Europe with his "Rechenplanfertigung" who triggered algorithmic lan

guages independent of the American efforts to automatize formula

translation. Fortran and Algol were the results.

At this point of the paper, before proceeding, I should insert a

detailed chapter on the theory of languages. But since I can assume

that my readers know this theory fairly well, I can restrict myself to

a few keywords, just to l~ out a framework for the continuation of my

line of thoughts.

186

[

The theory of scientific language as developed by Peirce, Morris

and the Vienna Circle, distinguishes three levels of investigation, to

which I want to add a level a which historically has always been the

first item in language descript i on : the alphabet . Here, we see

language starting from an atomic concept, which however does not help

for its essential content.

We find the only true atom, the bit, which can be used to

construct a code for any alphabet, so that the character appears as a

molecule: a combination of bits, a d iffer ent one for each character.

On the next level, an intermediat e l evel which I will not number, the

combination of characters yi elds the word - a unit of language as

mysterious as the human mind, well supporting the particular meaning

which the bible attaches to the word Verbum. As easy as it is to

code a word, as difficult is it to catch its meaning, to define

formally what a traditional word means. Only the constructed meaning

offers itself to formal definition .

The proper levels of investigation are syntax, semantics and

pragmatics. The purest definition of syntax makes it a set of rules

to define all well-formed sentences; it describes the combination of

characters or words absolutely independent of any meaning. The perfect

syntax of a well-constructed language permits mechanical checking,

whether the sentence is well-formed, and the r e jection of syntactical

errors.

Semantic studies the meaning of the (well-formed) sentence. The

ideal principle would be to verify the factual truth of each sentence.

The Tractatus (and with the Tractatus the Vienna Circle and Logical

Positivism) assumed that verification was possible for a sentence

(at least in principle), but time has shown that many difficulties

inhibited any successful programme to do so. The Austrian-British

philosopher Sir Karl Popper concluded that since verification was not

possible, we are obliged to try to falsify sentences •• best we can.

Only those sentences which resist falsification are allowed to remain

in our basket of temporary knowledge, and there is no final one except

the tautological truth within formal systems.

1~

The failure of Automat:ic Translation of natural language is certainly

connected to those difficulties. Only in the constructed world of logic

and mathematics and the computer are we on safe ground. There we have

the chance of formally defining the meaning and to prove semantical

correctness.

The third level of the theory of languages is pragmatics - every- ,

thing not covered by syntax and semantics, like the use of the language,

its user, the fashions and dialects, the history of the language (i f

applicable). What to achieve, in other words, with a designed language

is pragmatics; th i s shows again that pragmatics is the begin and the end

of language investigation, and syntax and semantics are only middle

sections of it; and secondly, since it is obvious that there is no hope

to formalize pragmatics, it makes clear once more that syntactic and

semantic structures are essentially embedded in real life. We will

never attain a total formalization of anything.

Let me shortly mention the distinction between natural and

const ructed languages, a distinction I have used already; natural

languages can be alive and dead. There are mixtures between natural

and formal languages. An example for this case is the medical l anguage

of which certain formal parts, the indication of t h e body temperature,

for instance, like any other value of a physical measurement, can be the

subj ect of formal handling and, therefore, of computer processing .

The many, sometimes very advanced mathematical structures of medical

knowledge are as formal as any technical construction. But there are

other parts, for instance in a medical record, which are highly

informal; it would be extremely hazardous to submit them to automatic

processing other than storage and reproduction. I am sure that nobody

would entrust himself today to a totally formalized and computeri zed

medica l treatment. This gives an idea of the heavy problems of medical

information processing.

Finally, I have to mention the di s tinction between language
n

meta-language, meta-meta language, and so on (meta language). It is

clear that a natural language can be used ,as meta-language of any level.

The open question is whether we shall see one day a formal language

which is recursive to the degree that it can be described in itself, so

188

that we can do away with a natural language as the ultimate meta

language. So far, I have not yet seen any promising attempt to

aohieve tllis.

Now I will turn to the discussion of three levels of formalizat

ion which have gained importance around the computer; these three

levels are

(1) formal notation

(2) formal definition

(3) correctness proofs.

The first level has been in use for a long time: it is the intro

duction of a formal language which allows mechanical derivations, so

that it is possible to achieve general agreement on the result: if

the rules have been properly observed, the outcome must be accepted

by everybody. What can be challenged are the assumptions or, under

certain conditions, the used notions. These notions will be challenged,

if it is possible to derive contradictions, paradoxa. Then, a next

level must be introduced, a formal definition of the notions, which

is possible - I repeat - only in contructed languages. Constructed

languages have the further advantage that their knowledge can be

acquired in the mother language, so that in the formal field communicat

ion becomes independent of the command of a foreign language (of

English, in the computer field) and of excessive language finesse of

an author (which usually is identical with obscurantism anyway - not

always, I admit).

The second level of formalization, the formal definition of the

applied formal language, is practically always achieved by means of an

abstract machine - the Turing machine is the best known example.

The abstract machine can assume a set of states and moves from

one state to the next on the basis of a well-defined transition

function. Since there is no reason to exchange all parameters during

one transition - rather the transition will in most cases concern only

a small subpart of the structure - it is convenient to organize the

state as a complex system of sub states and to introduce a full set of

189

transition functions, conditioned by state (sub-state) and input (or

next elaborated part of text). A special control mechanism, which can

be a part of the abstract machine, ensures the proper sequencing of

the steps.

The abstract machine can define the syntax and the semantics of

a formal language or a formal system, based on operational or axiomatic

principles. It is certainly known to all of you that the Vienna IBM

Laboratory has designed a notation, a method of definition and finally

the formal definition of the semantics of PL/I, so that I am not just

speaking of possibilities, but of real results (and a result of

non-trivial size).

But formal definition is not the end of the formalization game.

The next level is characterized by correctness proofs for the solutions.

Since no human mind watches the processes running in nano-second steps

through the computer, there is never an instance in which a wrong

assumption can be observed out of the process details. Of course, we

flatter ourselves that in our programs every possibility has been

preconceived a~d that, consequently, there is nothing to be observed

which is not already known. But are we always sure that this is really

so? Even in a purely human operation there is much trust in offered

solutions, and in many cases it would be difficult to object to a

solution, because the whole situation has informal ingredients which

remain dark. (Sometimes the solution is ready, the problem to which

it applies is unknown. There is some logic in such a case: there are

so many more questions than answers that it is economic to work out

answers independently of the questions •••)

A correctness proof establishes a link between a formal question

and a formal answer: it makes sure that the answer indeed fits the

question, that the solution indeed resolves the problem. For this

purpose, however, formal notation and definition are a prerequisite,

but they are not sufficient. A formal environment for the solution

process is to be established. If the correctness proof, then, is

achieved, the user enjoys all the reliability of a formal system.

190

,-

1-

,.

This highest level of formalization requires an extremely clean

field of operation, and definitely not every author in computer

science is fighting for it. The tragedy is that it is possible to

fight for formality on very obscure paths.

On the other hand, it is possible to fight for informality with

apparently sound arguments which are not easy to refute. Programming

in natural language sounds so attractive, so useful, so familiar. Why

should it not be possible? And would it not be the solution for the

average user? Natural language is what he knows, what he needs to

learn (like a programming language). And yet, programming in natural

language - except in trivial applications - is a naive error,

committed and even cultivated, however, by the most sophisticated

computer specialists.

If the problem exceeds the brains of the user, then only the

programming specialist can help - if at all, because even the most

intelligent specialist can only program what has been made clear to

him.

Formal languages are a help for the c lumsy style of a weaker

intelligence, but in no case '. s the clumsy informal style a help

against a lack of command of a formal language.

Whoever has the abi11ty to think clearly and to express hims elf

clearly, can learn P nrogramming language in order to define the flow

of data, energy and material to the precision required by automatic

function. Lack of this ability will produce descriptions or instruct

i ons which the most advanced computer program will not be able to

follow; the computer will do t he right thing by mere (and small)

"hance.

The only other way out is what may be called "invisible program

ming": the design of an automatic system in which the processes -

s impl e or complicated are triggered by trivial actions (inse rtion

of a magnetic card or a coin , depos i t of a loe.d), wh i le the programs

remain totally within the boxes.

"hr. umput.,r is an inte lligence amplif1er, if there is intelligence

; , h~ l l1PU\,. The 00mputer is 5:.:-:"_ uni:"ltell i g' ?nc e e "Ilpl~_fier , if

.llct R' qnoTance ~

191

It is a good goal, it probably is a necessity to protect the

computer user from unnecessary learning (technology in general and

computer technology in particular overburden the user with learning,

in large but more so in small quantities); but there is some psycho

logical economy in dealing with automatic equipment from which one

cannot deviate too far. Quasi-intelligent appearance of the computer

can only lead to deception.

Arguments for and against Formalization

A few keywords for and against formalization are

FOR AGAINST

clari ty clarity

economy learning

security risk

freedom freedom

generali ty, elegance costly, impractical

Clarity and unambiguity are the most important virtues of

formalization. The abstract notions of the formal system are

different from the concrete notions used in natural language, they

~ re free from connotations and tacit assumptions - it is possible to

express no mere and no less than what should be said.

But this is precisely a reason to be against formalization: too

much clarity binds all concerned to an amount which is frequently very

bad or at least cumbersome. There are, of course, formal methods to

leave out parts which are to be specified later, and no precision is

lost - but such methods require a knowledge, a command of formalization

which is not easily available.

There is a more important argument, namely that informal express

I.on carries more information than formal - which is true. Think of

the medical exa!:lple given earlier: medical descriptions, medical

knowledge can be analyzed and transformed into a formal system, but

l here is no doubt that some information is lost in this process.

I n 1"'; ·t \ r can ind~ed be a negative argument

192

Economy, reflected by the shortness of expression, mechani ca l

s implification and repetition, is obviously a strong argument.

Repetition, in particular, yields the basis for savings and is the

precondition for automitization, for

automatic programming

automatic generation

automatic simulation and

automatic documentation.

The counterargument against economy is to say yes, that is all

true, but it requires an amount of education on the producing and at

the applying side which destroys the advantages. This is in fact an

important point which keen formalizers often overlook.

A similar double argument can be presented for security and

reliability gained by formal treatment. Structures become exception

free, mechanic evaluation, perfect syntax - everything is very good

the interpretation goes outside the formal structures and becomes

independent of the personal command of any living language, in which

things otherwise have to be handled.

The counterargument again says that there is risk in the new

principles; nobody can guarantee that they really will be successful,

so that the overall gain is questionable.

Another fine property of formalization is generality and elegance;

problem situations can be preconceived at an early stage of develop

ment, there are no arbitrary entries to the set of concepts and each

of them is accepted only in the most general form; whatever one is

working on, it can be applied to any other field where it applies.

The counterargument here is that generality is costly - not only

in dollars, but also for example in compilation time. Elegance is

often impractical and, in fact, some very practical things are highly

inelegant. The specific solution by many people is to prefer the

general, not the latter for economical reasons. If you want to make

big business, rather you try it with a special patent button which is

different from those on the market than with a generalized button

:' ncluding the common features of all others on the market.

193

Freedom, finally, is opened by formalization for the subsequent

steps, because the system is ideally transparent, all possibilities

can be seen without long trials. But the argument can be turned

around stating that formalization removes the freedom of reinterpret

ing the early description, the possibility to say: you have misunder

stood me, what I really meant to say was the following •••

Of course, nobody will sell such a reinterpretation as a design

principle, but intuitively it might frequently be a power in the

fight between formal and informal.

All those arguments together lead to a basic principle of design

which carries the name of architecture - abstract architecture, I

should say, in order to distinguish it from what the term designates

now - namely the same sloppy way of glueing parts together, which was

formerly called logical design.

One can make an interesting exercise: looking up the Encyclopedia

Britannica and reading what building architects understand by the

term. It is defined as

The art and technology of building, fulfilling the practical and

expressive needs of civilized people. The main goals are

suitability to use by human beings

stability and permanence of its construction

communication of experience and ideas through form.

Are not all of those thoughts perfectly applicable to what we are

doing? Or to what we should do?

The chapters of the Encyclopedia keyword are

use - types

- planning

techniques

expression

materials

methods

content

form

and "Economy prevents work without (or only potential) demand".

1M

• •

The notion and the term of computer architecture were introduce"

in a book on the computer "STRETCH" in 1962, and there the definition

given by F.P. Brooks is quite clear and alright. It was applied in

the hardware design of the IBM System/360, but soon the term and the

idea disappeared from literature. It was one of the /360 fathers who

published since then on the notion of architecture, and he points out

what makes good architecture. He distinguishes three steps in design:

Architecture, implementation and realization. Architecture is the

functional appearance of the system to the user (what happens).

Implementation is the logical structure - in detail - which performs

the architecture (how it happens). And realization is the hardware

construct (where it happens) .

The key idea is consistency: if the architecture is consistent, a

partial knowl edge of the system allows the remainder (this is why I

like to define abstract architecture a s creative redundancy - repetit

ion and symmetry are building principles not only in technology but

also in the arts and in music particularly).

Good architecture is also characterized by orthogonality,

propriety and generality. Orthogonality means no unnecessary coup

l ing of concepts or functions which are proper to the essential

requirements. Generality means that each concept, property or

f unction which must be introduced will be introduced in its mo st

general form.

Good architecture will show openendedness and completeness;

openendedness means that there are no unnecessary restrictions and

there is ample spac e for later and further development; completeness

means that there is no arbitrary selection - if a part of a set, then

the full set. Further keywords are symmetry, transparency, compatibil

' ty, reliability; good architecture is stimulating and self-teaching .

Of course, there is the danger that a perfect architecture is

designed, but that it finally shows the property of poor performance -

but such a bad result will not occur, if the whole design was based

on the advantages of clean formal methods. System architecture

requires , in other words, thorough formalization; it cannot be left

t o "natural evo lvement". And this remark opens an interesting

195

relation to "General Systems Theory" - into which I will not l ook

any further, however.

The Future of Formalization

Formalization is not a so litary, esoteric amusement of some extreme

specialists, a theory for the sake of theory. It will become in very

short time:

A production tool,

a management tool and

an application tool.

The computer is much too powerful to produce, to organize and to

apply it by intuition or by casual methods . Information processing

requires more precision in every layout, the faster, the bigger

and the cheaper the equipment becomes - only thorough formalization

offers the tight control which our powerful tool needs, if it should

not go astray organizationally and financially in its growth and its

infinite applications.

Formalization, therefore, will extend to the environment of the

proper information processing equipment, a formal definition of the

total system within which the computer is used will be necessary, an

abstract machine modeling the total enterprise , institution or any

other structure, not only its mechanical parts but also its human,

to its natural structures.

This in turn will sharpen the problems of formalization. Many

questions will be raised: what is the relation between a formal model

and an organism, the relation between all those constructed l anguages

and the natural ones? I have mentioned medical structures as examples

of complex nature - legal structures are another instance of a complex

situation. Although legal language and legal thinking have a certain

formal character, the legal philosophy of formalization i s essentially

different from the logical and technical formalization; to put legal

s tructures on the computer is highly necessary, but extremely

difficult because of the gap between l ogical and legal thinking.

Me!",:,' other examples of problem areas for formalization and compute r

'pplication could be given, a lot of work is ahead of us.

196

,.

Formalization will grow in importance and extension, and it will

have many feedbacks to the structures on which it is applied. Formal

ization will influence

The products resulting from formalized processes.

The enterprises and institutions applying formalized processes.

The professions which will have to go into formal treatment of

their work.

The country in which substantial computer applications will

produce a tight network of formalized systems.

Formalization will develop - forcefully pushed or happening as a

side-effect of computerization - the art of abstract engineering, the

type of engineer very different from the classic mechanical engineer,

but based on the same virtues of compromising between needs and

possibilities, between quality, cost and punctual delivery, between

mathematical precision and illogic intuition.

Formalization will influence society. The life of the increased

population of our planet can only be maintained by means of advanced

technology, and good mechanisms, concrete as well as abstract ones,

will be absolutely needed. But man is more than a machine, and

human behaviour must be protected from totally submerging in a

formalized universe. Also, society is more than a machine which

runs perfectly if serviced by keen social engineers. There are

fields which must be kept away from formalization and mechanical

derivations, and the abstract engineer should warn certain other

professions not to fall into admiration and simulation of engineer

ing, where other principles of life and work should be pursued.

Formalization will have a feedback on the human mind which will

dispose with the advance of formal methods of extremely powerful

abstract mechanisms, which will make people like the rules and' hate

the exceptions - but this would be the contrary to the humanization

of our world, where the exception is more important than the rule.

Liking and understanding the exception will always remain the most

human task for the human being, and in all our work in the formal

ization of information processing we should never forget this side

of our human existence.

197

