
THE SEMANTICS OF PARALLEL PROCESSING 

Rapporteurs: Mr . G.M. Arnold 
Mr. 1. King 

H. Bekic 

Mr. P . M. Melliar-Smith 

Summary 

Dr. Hans Bekic developed a mathematical technique for formal 

definition of the semantics of combinations of elementary actions, 

and extended this to encompass parallelism by determining the fixed 

points of infinite sequences of such actions. 

Dr. Bekic began by pointing out that, although IBM Vienna 

Laboratories was doing work on parallelism, he intended to cover aspects 

of the semantics of programming languages, but with some emphasis on 

parallel programs. 

From the start of the work on programming language semantics, the 

main approach was the use of abstract machines in what was described 

as the "constructive way" of language definition. In this one considers 

the states of the language interpreting machine, where ~ (the initial 
o 

state) is determined by an abstract version of the program and its 

input data, and where the iterative application of the interpreting 

function yields successive states ~1, ga ••• until either termination 

is reached or the computation proceeds forever. A particular feature 

of the PL/I definition is that the state transition function was 

allowed to be non-determinate, or, to express it in better understood 

terms, it is not a function from a set of states to a set of states 

but, rather, from a given state it produces a set of possible answers, 

and is thus a function from a set of states to a set of subsets of 

states. 

Dr. Bekic continued by saying that since the above work his views 

of descriptional semantics had been much influenced by the work of 

Landin and of Scott, and that in his recent work he had moved in the 

direction of mathematical semantics. However the problem of non

deterministic programs remained and formed the basis of the material 

105 



to be presented; namely, can one have a mathematical view of semantics, 

and can one deal with nondeterminate functions in a way that captures 

the underlying pra gmatic notions. 

Dr. Bekic first indicated briefly why the constructive technique 

of language definition fai l ed to cover intuitive notions of associating 

meanings with express i ons i n a language . Drawing the s i mple analogy of 

a purely descript i ve l a nguage of arithmetic expressions , one associates 

with each expression a ce rtain value : thus, in a language which uses 

Roman numeral s , the value of each numeral , V, X, I, is a number, 5 , 

10, 1. Extend the language to include composite expres s ions, and 

write (in list notation) 

+, (Ell ,ea) 

then by associating values with the expressions Ell and ea , the result

ing value is a function of those values. In particular, if the 

expressions Ell, ea involve identifiers, or are identifie rs, then one 

must know from outside, or from context, what the values of these 

identifiers are going to be. 

Thus is introduced the notion of environment, a function from 

identifiers to whatever one chooses as values. The interpreting 

f unction now takes not only an expression but also an environment, 

and yields a value. Although this is a trivial example, it indicates 

a difference in approach compared with the earlier work; there is no 

reason why the idea of environments giving meaning to identifiers 

cannot be carried over to algorithmic languages . Although expressions 

will denote either numbers, or more complicated things such as trans

formations of the machine state having more complicated values, the 

interpreting function will still take an expression, or statement, 

and an environment of the appropriate form, and will produce a value 

for the expression or a more complicated result for the statement. 

It is necessary to distinguish between identifiers, which are 

associated with values, and denotations, which are the objects 

associated with programs or subprograms. As the programming language 

probably contains assignment statements, one has a notation of store, 

which maps storage locations to values, and the denotation of an 

assignment statement will just be a transformation from stores to 

106 

: 



stores. Furthermore, one may arrange things in such a way that the 

denotation of composite statements depends only on the denotations of 

the simpler components. In this way one can represent the input-output 

behaviour of the program, and in so doing abstract from many things that 

might be considered irre levant, so reducing the complexity of the 

machine state. However this also abstracts from details that for some 

purposes one might be interested in; in considering programs as 

expressions of algorithms, it may be essential to be able to analyse 

two different programs evaluating the same function using different 

algorithms . In other words there is a notion of denotation that 

covers more than just the function computed by an algorithm, namely 

the steps by which t he function is computed. 

When analysing Algol 68 using the denotational approach there is 

a problem that the "collateral composition" of functions does not yield 

a further function; that is, if s tates transformations are considered 

to be composed of several individually indivisible steps, the collateral 

composition of two such step sequences is a non-deterministic operation 

(if one merges the two sequences there ~y be many outcomes computed by 

the complete set of mergings). This complicates the chosen denotations 

in two ways. Firstly, rather than being simply state transforming 

functions they must be at least sequences of such functions. The 

second complication is that, due to the element of non-determinism, 

t he denotation of a given expression might be a set of such sequences. 

Dr. Bekic added that in the latest definition of a large subset of PL/1 

in the "new style", the complications due to non-determinism and parallel 

interaction have been left untouched. 

Denotation 

The main purpose of the presentation by Dr. Bekic was to introduce 

the formal notations of d.enotation and to indicate how mathematical 

semantics can be employed, particularly for solving recursive equations 

for functions . In what follows, denotations are treated as if they are 

functions. Although such functions are state transformations, programs 

do not in general use a variable for the state. For instance, in serial 

composition 

107 



f ; g 

the expansion of which is the function 

the variable ~ is never used in the program. 

A useful combinator is that which besides changing the state also 

yields a value - in programming usually termed an "expression with 

side-effects". This is written 

let v 

••• v 

e • , 

Here e is a state transformation which also yields a value, while v 

is just a state transformation 

e X-+VxX 

v X -+ X 

For this combination one may write 

As. let <v, S' > = e (S) 

v (S') 

which explains the combinators of simple let notation. To include 

combinators such as parallel composition 

f II g 

it is necessary to reinterpret all objects as more complex objects 

and reinterpret the combinators in terms of these more complex objects. 

Such a language of combinators has proved to be quite convenient 

for representing given source language programs, so that from a PL/r 
or Algol 68 program one may derive a particular denotational expression 

using these combinators. This may be done by an extended version of 

the interpret function by which the semantic correspondence is defined. 

Such a derivation is a static process which, rather than executing the 

program, produces the corresponding meta-language program in terms of 

njll,":" and Itletn. 

A more complicated notion of denotation is called "action", 

after a related notion defined in the Algol 68 report. Using the 

idea of "action" and the notion of "hand-translating" source programs 

into meta language programs it is possible to formulate some notions 

of compiler correctness. 

108 

~. 

; 



In the questions that followed, Dr. Bekic confirmed that his talks 

were covering the "new style" of language definition in which the new 

definition of PL/I had been carried out. He added that although there 

had been changes in the meta language, the most important change was 

away from the idea of an interactive machine and towards the association 

of meanings with expressions. Questioned about the example he had given 

of an expression with side effects, he said that the notation 

let v : e 

described a declaration which allocated storage and returned the 

location for subsequent use; e is basically meant to return a value, 

but in doing so it changes the state. Following further questions he 

added that the "let " binds e and S to the body of the function associated 

with v. 

Actions 

In his second lecture Dr. Bekic introduced the more complicated 

notion of actions, went on to define certain compositions of actions, 

and finally dealt with the problem of solving recursive equations for 

actions. 

Rather than considering simple state transitions, one must 

consider compositions of such transformations from others which may in 

some sense be considered to be indivisible or elemental. The notion of 

action is based on sequences of elementary transitions, but is more 

complicated in that an element in the sequence determines what is done 

next, but the next element may be dependent o~ the current state as 

well as on the continuation. Thus is obtained the following definition 

of an action: 

Let X be the set of computational states, and 

let g be a state value from the set. 

A = 0 + X-+ ( (X-+X) x A) 

The action A is either the empty sequence Q or depends on the 

given state e;. Thus there is a function from X, the set of states, to 

a pair. The first member of the pair is a state transformation of the 

set, and the second member is the remaining actions to be done. Thus, 

if a is an action, then apply a to the state s: 

109 

I-
I 



a(~) = <f,a'>, f:X~X 

The action determines what happens next and what is left to be 

done. This definition of an action is similar to the head-tail definit

ion of a list. It is also necessary to admit the possibility of infinite 

actions in the sense that the above lists may become infinite. The 

disjoing union sign is used here, although the sets are already disjoint, 

because the set is used as a definition in the same manner as Scott, in 

that there is an undefined element. This is still not enough, however, 

in non-deterministic programs, because of the possibility of choosing 

what to do next independently of the current state, since we may choose 

freely anyone of several posibilities. 

Deterministic Actions 

Therefore, rename the set A to be the set of deterministic actions 

dA. An action then is just a set of deterministic actions, and the set 

of actions is a subset of the sets of deterministic actions. 

A collection of actions can be built up from elementary items. 

So far, there is the null action. Let f be a state transformation 

which is an elementary action, then: 

[fJ(g) = <f,2> 

Applying f to the state ~ gives a pair, namely f, as the step 

which is performed, and the remaining action which is null. Thus for 

each state transition there is a corresponding elementary action 

consisting of just that state transition. 

Serial Composition 

To define a Serial Composition of two actions, define operations 

on the superset of deterministic actions. Strictly, dA is not a subset 

of A because dA is essentially an element of A. However, elements may 

be identified between the sets and thus one may regard dA as a subset. 

Greek letters will be used for elements of dA and Latin letters for 

the more general actions. 

The serial composition ajS of a and S devolves onto the restricted 

set dA. It is convenient here to picture actions as forming a rather 

complicated kind of tree. Complicated because there is a dependency 

on S at each node. 

110 

I . 



Choosing ~ a3 the current state, an action f can occur followed 

by a state to which nction g can be applied. Eventually thie process 

must terminate with the null action. Equally, from another state ~' 

there might be the undefined action Q. Note that U is included 

implicitly as a starting element. 

This gives a representation of the set dA. (A is just a set of 

such animals.) The inductive definition of serial composition . is 

0'; 13 = (0' = Q -+ Q, ) 
(a=Q-+I3, . ) 
(T -+ "~.let <d,c!> = a(~) <f,a';13> ) 

If the first element 0' is undefined, then so is the result, since 

there can be no continuation. If the first element is null then the 

composition consists of the second, and otherwise there is a function 

from states to pairs. 

The gain here, is in the recursive definition. Since the domains 

involved are continuou" and the elementary objects like conditional 

expressions are continuous, such definitions can be used to derive a 

continuous function from an infinite sequence. The function to be 

defined is a serial composition of actions, not just deterministic 

actions, and this is given by: 

a;b = (0';13 I Q€a,l3€b} 

the set of all compositions of deterministic actions. 

~ne way to explain this is to choose an element of a and an 

element of b, and compose them, but that is not the way it is normally 

considered. One thinks of doing a, and, having done it, one of the 

many possibilities has been realised. 

111 



Parallel Composition 

Consider first the parallel composition of deterministic actions: 

a II ~ 

but the result of this must be a non-determinate action, and conditions 

will again be recursive. Postpone the problem of recursive definition 

of functions using sets, because of the ordering problems. It is not 

obvious how ordering relations are to be defined, so sets will not be 

introduced in this definition. Rather, let the definition depend on a 

third parameter, written as an index, giving a three case function, 

taking two deterministic actions and this hidden parameter . The hidden 

parameter can be an infinite tape of choice values: t € T , T = [0,1 } x'C 

Define next (al lSI, . 

First the simple cases:-

(aiISI, = (a=Q-+ i3 

~ s = Q -+ a 

(a = S = Q -+ U 

If the first action is null then the composition comprises only 

the second, and vice versa . If both are undefined, so is the result. 

This is compatible with the previous definition. Moreover if a 

is undefined and 13 is not, commencing with a stops with an undefined 

outcome. However, commencing with 13 may make it possible to continue. 

Only when a is performed is the action undefinable. This is where 

the choice parameter is used. If the next token on the tape U, is 

zero, continue with the next part of a and only then go on with 

parallel composition. Introducing a new operation here, a1 Is 
"left parallel" indicating that, without choice, the first step of a 

is executed first, the definition is completed with 

where U, signifies the use of the tail of the choice value tape. 

112 

--



(a1I S)t is defined as follows : 

(a11 13 ). = (a = Q ... 13 ) 

10' = Q ... U 
) 
) 

(T ... AS·let <f ,0" > = 0'( ~) < f , (0" II 13 ) tl t> ) 

Thus when 0' is not null or undefi ned, the composition i s a more 

complicated action, namely a function transforming ~ the current state 

into a pair, the result of the first step of 0', and the parallel 

composition of the remainder of 0' with 13 under the tape, having used 

the first token on the tape . 

This definit i on is still very restricted compared to that in 

existing programming languages; namely a state is indivisible, a 

single entity, and it is known of the functions only that they trans

form that entity. There is no notion of parts of a state. If there 

was such a notion, then parallel composition could be defined in a 

more direct way, without trying to mix or describe all possible 

sequences produce the same effect. Even with such more complicated 

states, there will also be parallel compositions which act on a part 

of the state, and it will still be necessary to decide on their 

meanings. 

The operation a l Ib can now be specified as the set of all (all 13 ) 

over T. 

a II b = ({ a ll 13 ) t I Q€ a, 13 e b, te T1 . 

Consider further two very simple, compositions: 

a or b 

Since the actions are defined as sets. This is just set-union 

a or b = a U b. 

Al s~ a conditional, 

if p ~ a else b, where p is a predicate on states . To show 

the testing of p as a separate step, define it as follows : 

if P ~ a ~ b = {A E; .<l,(p(F.) ... a,T-+ p) > lQ€a, 13 eb} 

and p: X'" (T,F} 

It is an action of functional type, and its first component is the 

identity function, the next step being either a or b depending on the 

state. 

113 



Recursive Definitions 

Define an action by 

a = if P ~ Q else f; a 

orbya=f V (g;a;k;). 

The usual technique for solving such equations is to start with a as 

undefined, and in the general case a = F(a). Thus, starting from Q 
and iterating F, we form a limit to the sequence obtained. Since the 

objects which are obtained are sets of determinate actions an order

ing between such sets is needed. It is easy to define an ordering on 

determinate actions. If the branch of the action tre e for one action 

a ends in undefined whereas for another action S at that point there 

is a continuation possible, then S is more defined than a, written 

a=j3. 

This relation could be extended to sets, to introduce 

aEb = \fQ€ a " S€ b <Ef3 

and conversely. Thus, a is less defined than b if for all a in a and 

S in b a is less defined than S , and conversely, for all S there is 

an a less defined than S. Then considering the case a = (a,y} and 

b = (a,S,y}, suppose asS2V. Then if aEb there is a continuation, S 

as a continuation of a. But equally, if b=.a there is a continuation, 

since S and a may continue to y. Thus the relation is not an ordering. 

Thus the whole idea of using sets as the universe over which to 

solve the recursive equations is wrong. 

An alternative approach uses elements and the notion of the 

hidden parameter. Consider the following examples. Take 

a = (fvg)11 h;a. 

This example has no conditionals, and t hus the determinate actions 

can be considered as sequences of functions. Starting with Q and 

applying F(a) to it as above gives a whole set of possibilities, and 

thus a whole family of functions dependent on hidden parameters. 

Given any deterministic action a, and taking the right hand side 

above, first prefix it by an h and insert an f or a g at some point. 

(That point might be infinitely distant, since it cannot be assumed 

that in parallel execution either one of the two actions is necessarily 

114 

,. 

I 



performed within any specific period of time. One of the two actions 

may be r epeated for ever.) This gives the following family of functions: 

¢ E (f,g}, O~nSW 

¢ is either f or g, and n ranges from zero to w. For a given nand 

¢, F is defined as follows:-

with ¢ inserted after n elements. 

Consider the restricted case of actions as sequences of functions, 

then, given an nand ¢, this definition is not complete . Some provision 

must be made for n larger than the length of t he sequence. The 

undefined case needs to be corrected. Thus the insertion is not made 

after the nth element, but after min(n,l(h;a)) elements if possible 

where l(h;a) is the length of the sequence. Anything that would have 

been inserted after undefined will not be inserted because sequences 

ending in undefined are neutral over composition. This ad hoc 

definition of a family of functions, covers all possibilities of non

deterministic operations. 

The finding of a fixed point of the original equation can now be 

approached, in the deterministic case, by applying functions iteratively. 

Since there is a choice of which functions to apply, consider sequences 

of the form 

and replace Q by the application of further such functions forming 

F n 2 (Q) 
¢2 

F n k 
¢ 

k 

(Q) • 

Then form the limit of that sequence: 

Lt 
k_ 

F n1 
¢, 

Now that limit is for a given sequence of n, ¢ values. 

i.e . 

where N is the set of numbers between zero and w. Thus, the choice 

tapes may be considered as presenting n,¢ pairs instead of truth 

vafues, in order to determine the choice of function. 

115 

I 



These generate a set, a, of all infinite sequences of elements 

h,f,g. 

Each time an f is applied, it is certainly prefixed with an h, and 

there mayor may not be one more f or g inserted, thus forming all 

sequences having for every subsequence the number of f's plus the 

number of g's, less than or equal to one more than the number of h's. 

Actions with Choice Nodes 

Rather than prove of the above example either that the set of 

limits really gives the required set a, or that the constluction really 

solves the original equation, it is of more interest to kno" for ., 

certain class function F, how generally, one can devise such a family 

of non-deterministic functions and use this same method. 

To do this, introduce another space of objects, called actions 

with choice nodes. Above, a tree represented actions of a certain 

kind. Now introduce a more complex tree in which branches are labelled 

with zeros and ones to denote possible alternatives at each choice . 

Thus all possible paths are contained in the one tree. 

The equation for this set will be:-

A = 0 (x'" x) x A ) + (0,1} ... A 

and again compositions similar to those above can be defined, for 

example a;b in which the second tree can be appended to any end of 

the first. In the case of a\ \b there are the same trivial cases for 

null or undefined, but in the other case, a new tree forms dependent 

upon the choice of zero or one. In the case of one, take the next 

step of b. 

Define a fWlction "range of" 

r:A"'A 

A gives all the possibilities required, and in addition to A gives the 

labelling of particular subtrees with zeros and ones. What is needed is 

to leave out the labelling information, so the range of A, r, is the set 

of paths in the tree disregarding labels. This rather impreci se definit

ion, could be given a precise inductive form. The crucial property of 

116 



r is that it is not a continuous function, since there are no continuous 

functions from elements to sets, but it has the useful property of 

compatibility with the various compositions. For example 

r (a;b) = r(a);r(b) 

This allows, given some equation a:F(a), the forming of the correspond

ing equation on the set a, a = ~(a), which can be so lved because the 

~IS are continuous and so are their compositions. The fixed point may 

be formed by the usual construction a = Y ~ and a step made into the 

other space using a = ra where a solves the original equation because 

F(!:. ;.) = L(:~ ;.) = La 

and because ~ is compatible with all the functions and therefore with 

their composition F, and of course a is the fixed point of P. 

An Example 

For his third lecture, Dr. Bekic considered the example of a 

very simple equation for an action a: 

a is the effect of an action f in parallel with a 

Certainly this is not deterministic. Using the technique above he 

introduced a family of functions Fn of a deterministic action a which 

insert f after the n'th position, with a qualification on the insert

ion that f can not be inserted beyond the undefined symbol regardless 

of n. 

The limit of the elements of a is the set of limits Fn ,Fn ••• Fn 
• 2 k 

of u, where these run over all infinite sequences of the modified 

integers containing the element w as above. 

F is the operation of ins erting f at the beginning of the 
o 

sequence. An infinite number of such operations causes an infinite 

number of fs. In all other cases the sequence will be terminated by 

the undefined symbol, as in the sequences: 

u 

f u 

and also the sequence fW 

117 

• 

I ,. 



Then Dr. Bekic introduced an alternative approach to the definition 

of the semantics of such parallel processing making use of the set A 
of actions with choice nodes and with trees in which these choices 

are recorded. The choice tree can be applied to a particular tape to 

obtain family of actions. 

ap: A x T -+ dA 

~(a,t) selects a subtree of a, according to the tape t, by deleting 

edges from the tree. 

The function r (a) = [~ (a,t) 1 tET1 

yields all possible values of applying all different tapes. 

Dr. Bekic further considered the equation 

a = F(a) 

to define the family of functions Ft. 

F t :! -+ dA 

Ft: (dA ..£J ,\ -+ dA 

Ft "of a is the result of the operation on the choice tree producing a 

further choice tree which can be applied to a given tape. Thus the 

type of the function is a choice tree to a family of functions. The 

determinate actions are themselves a subset of the choice trees, so 

that although Ft is a function over A it is certainly a function over 

a subset. 

In the case of this particular example 

F(a) = fF t (0') 1 tET, nEa1 

Thus fila here is just the operation already discussed of (fIIO')t. 

The definition of parallel composition already required a correspond

ing additional parameter, and the expansion of this determines valid 

conditions for f/ la to have a meaning. The functions Fn , Ft are 

therefore the same but indexed differently, one by tapes and the other 

by integers, and the function Ft can be used to form the set of limits. 

Dr. Bekic demonstrated that this simple relationship between 

F and Ft "does not hold even for the restricted class of functions 

formed by compositions of primitive combinators. Consider an equation 

formed from the combinators but with a present more than once, say k 

times. 

118 

,0. 

f 



a = F ( a ) = G(a, •• • . a ) 

Assume t hat G satisfies a simi l ar equat ion 

G(a,., •••• ~) = GtCo;. •••• '<>:, ) I 
tE T 
0, Ea, 

Then the relationship is not true because diffe rent a, could appear for 

di f f e r ent occu rrences of a. 

Repre sentable Functions 

However the relation is valid for f unctions which are just 

compo s i tions of the functions defined wit h the combinators. Fo r such 

fun ct i ons a family of functions G can be de r ived 

G (8, , ... ';) = ~ (~(8" • • ,8.. ), t) 

obtained by f i rst applying ~ to the choi ce tree s and t hen applying the 

r esult to t . To solve this equation, we must t ake not an inf ini t e 

s equence of t ' s, but a tree of t ' S. Start wi t h t , and if t hat t ha s 

two a r guments, take two additional t's , and so on . The se infinite 

t r ees must be approximated by finite trees which have undefined to 

t erminate each branch. 

Then 
... 

a '" r 
Gt (Gt ( • .. (u) .• ) ,Gt ( • . • (u) ... )) 

t/ 
1., 

t(t;/ , 
t,/ 

t/ "-
" t,,/ 

"-

1 - 2 -

.. ," ,,} 
is no proof There yet that the fixed point of t hi s cons truction is t he 

same as the fixed point - (yF) derived above . To de rive such a proof 

it would be necessary to use t he fac t that ins tead of us ing just one 

tape, t he tape can be split up and differen t pa rts us ed f or diffe rent 

portions of the evaluation, and that converse l y the di fferent po r tions 

of t he tape represent a pattern that exi sts on the whol e tape. 

119 

\. 



A more interesting question relates to what is it that makes 

the function F have a fixed point . 

For a deterministic function, the function just has to be con

tinuous , but for a non deterministic function t here can be no notion 

of continuity. 

If F:A ~ A has a representation like 

f ( a ) = [G t ("I. , . •• , ak ) I tE'=T, '" E' a,} 

If there is one fixed point of F 

a = fix F ={lim Gt(Gt ( ••• J, 
/ ' 

/t" 
t 
't,/ , 

then we can call su ch a function a representable function. It can 

be shown that parall el c omposition, serial compos ition, and the OR 

operation are representable and that their compositions are again 

representable, s o that thi s class of functions i s clo sed against 

arbitrary substitution. It is closed against fixed points. 

Di scussion 

Profe ss or Dijkstra expressed surprise at thi s approach, in 

compari s on with 15 yea~experi ence of non-determinacy. The tech

niques deve loped by exper i ence have been transfe rred to the writing 

of sequ ential programs, to the extent t hat non-deterministic 

sequential programs may have the freedom of a generali s ed petri net. 

But t hi s had only been possible be cause the specific choices have 

no effect on the result, and this is absolutely ess ential because 

of the very large number of poss ibl e sequencing choic es. If the 

parallel computation is to be meaningfully u seabl e then it i s 

nece ssary that t he greater part of t he non-determinacy i s absorbed 

at the earliest possible stage, before its eff ec t s diffuse through 

the computation and are difficult to de s troy. 

Dr. Bekic replied by considering a large program containing a 

small part, or several small parts , which can be highly non

determini s tic . Yet the program can be arranged in such a way that 

thi s non-determinacy van i s hes so that, however the inner parts 

correlate to each other , it can be proved that the whol e program i s 

determinate. Nevertheless , to es tabli s h t his, it i s necessary to 

120 

I" 

I 
I 
I 



model t he behaviour of the inner programs. 

The limit construction is very significant. In the exampl es, 

famili es of functions were defined where the choice phase was not 

critical because the choices are all finite. From a certain n on 

there i s no difference, and all Fn f~om n on are the same for a 

given a . Thus the choice basis reduces to the family Fn , to how 

many functions Fn there are. Of course this is very different from 

the question of non determinacy propagating from the inside outwards, 

from small parts to large programs. There is no way to deal with 

that. 

Professo r Dijks tra considered the simpl e loop. 

while B do S 

for known Band S. The semantics of this can be defined by an 

induc tive limit. The difference to accomodate indeterminacy in S 

i s that, instead of considering the effect of k repetitions, the 

consideration is of the effect of at most k repetitions. 

Profess or Scott drew attention to the different choices in the 

ways in which parallel processes merge, and suggested that it is 

nec essary to consider the way in which the processes have been divided 

into steps and the ways in which these steps can be merged. He 

invited Profe ss or Dijkstra to express the meaning of his loop without 

such consideration . 

Professor Dijks tra explained that the repeatable statement must 

itself be regarded a s non-deterministic, so that its fina l state i s 

not uniquely defined by the initial state. 

Profess or Scott expressed interest in how that indeterminacy 

propagate s as the processing is performed. In a good program the 

non-determinancy can be absorbed , but to provide a general definition 

of the semantic s of arbitrary programs, it i s necessary to consider 

ill - de signed. programs . 

Dr. Bekic asked Professor Di j kstra to determine for his loop 

the permitted combinations of E and S so that the loop remains 

determinate. 

121 

I 



Profess or Dijks tra conside red the construct 

DO : whil e B do S od 

S being a nonde t er mini sti c activity . If we can form, for any pos t 

condition R, the precondi t ion f or the initial s tate such that an 

ac tivation of S i s ce r tain to l ead t o a t 'e rminating operation ending 

with t he sys t em in stat e R, we can introduce a s eri es of preconditions 

Ha (R) = R and --, B 

and for i > 0 

H, (R) = B and up (S , H, _ 1 (R». 

For a dete rmini s tic machine 

up (DO, R) = (E" k ~ 0, H, (R». 

Thi s a s a rul e i s a neglig ibl e complication to the recurrenc e relation, 

and the exi s t ance of thi s t erm i s thr only place where the non 

de t erminacy shows up. 
;} 

Pr ofess or Sco t t enqui r ed the me aning of ~ when the precondition 

B i s eithe r t r ue or fa l se . Profess or Dijks tr~ r epli ed that Ho(R) i s 

the weake s t prec ondition such tha t thi ~ operation will l ead t o a 

t e r minating operati on wi t h fina l state R with la t most zero r epet

itions , but no t hing can have ha ppened and s o R must hold t o s tart 

with. 

Professor Scott asked how the weakes t preconditon for So , s , in 

pa r all e l i s expressed . 

Professor Dijks t r a gave the ex ample 

i f x ~ y -> m: = x 

I I x ~ x-> m : =y 

fi 

Profess or Scott asked for a general express ion fo r s l Is '. Where 

s and s' r un i n par all el, i t was necessary to brea k them into a tomi c 

s teps and to count and sequence all t he s t eps. 

Pr ofess or Dij kstra f elt t hat t hat pa rti cular paralleli sm had 

been ve r y i mpe r fect l y mod ell ed by being c onve rted into a sequential 

opera tion . The impor t ant topic i s the way in which non-determinacy , 

122 



• 

as generated for instance by parallelism, propagates through the 

theory. 

Professor Bekic summarised, saying that in a programming lan

guage where such things can not happen, there can be no general 

parallel operator. There are conditons under which operations may 

execute in parallel, or very restricted operators. Alternatively 

a language may provide genuine parallel composition. Of course, 

in a sensibl e program, sensibl e use would be made of it, but there 

may be other uses of a more general character. On a higher l evel 

one would not wish the non-determinacy to propagate, but the language 

should not be syntac t ical l y restricted. Rather, the definition of 

the meaning of the l anguage must take into account the general case, 

because the most compl ex case can be useful. The objective of 

considering a l anguage with a general parallel operator and the 

defining of its meaning is still a valuable one. 

123 



I 
I 

,. 


