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1. Introduction 

In this paper for the sake of illustration the semantics of three 

simple programming languages are specified by giving, for each language, 

a correspondence between the expressions of that programming language 

and certain mathematical objects . Each programming language has been 

chosen so as to demonstrate some few essential features or to show the 

capability of the specification technique. The paper concludes with 

a very short summary of a mathematical language LAMBDA, the intended 

model for which can be represented in terms of a very familiar 

structure, namely the family of sets of integers. The point of the 

language is that it is a very simple language and its terms .give 

explicit definitions far all the us ual recursive definitions on a 

very large variety of structures which can be viewed as substructures 

of the model. To begin with, however, we shall discuss how these 

topics relate to Computing Science. 

The figure depicts the similarity between the process of compiling 

and running a program and the process of semantical specification to be 

described here. In the diagram, the square nodes denote sets as 

follows: 

N = integers 

M = run-time machine states 

S = abstract mathematical states for semantical evaluation. 

Th e circular nodes denote objects as follows: 

Prog = the program being executed or defined 

Code = the machine code obtained from the compiler 

Den = the mathematica l object (function) obtained from the 

semanticso 
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We consider that (in this simple case) the program expects an integer 

as input and produces an integer as output. The program qS intended 

to realise some function between integers, shown as a dotted line , on 

the diagram. 

Consider first the execution of the program by a conventional 

computing machine. First, the compiler is applied to the program to 

produce by syntactical manipulation the code. An initial machine 

state is determined by applying the function Input to an integer from 

the domain of the program function. The code and the initial machine 

state are then subjected to the Run function and a final state deter

mined. The value of the program function for the given initial value 

is extracted from the final machine state by the function Output. 

The upper half of the figure depicts an entirely similar situation 

for semantical specification. The semantics of the programming 

language yields a denotation of the program as a mathematical function 

(from abstract state to abstract state). An initial argument for 

this function can be obtained using the Initialize function and the 

output value determined from the final state by the Extract function. 

The difference between the two halves of the diagram is that the top 

part is abstract and conceptual, while the lower half has to do with 

the representation of data and processes in concrete terms. It may 

very well be difficult to explain the correspondence between the two 

sides. The lower half may also change fre~uently, while the upper 

half is permanent. 

This diagram is clearly a simplification of the real case but 

such a correspondence has been constructed for more realistic cases, 

for example, PAL, ALGOL60, PASCAL. One reason for studying the 

mathematical semantics of programming languages is that we are 

interested in proving things about programs. Executions of particular 

programs can only give demonstrations of their behaviour in particular 

cases. Using the upper half of the diagram we can give criteria for 

saying whether implementations are correct for all programs. Currently 

we can only do this and then carry out proofs for modest examples, 

but work continues to expand the scope of these proofs. 
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2. Some Notat ional Preliminaries 

We s hall insert here a fe~ notational conventions for products, 

s um s and function spaces of domains, which we s hall ne ed to explain 

the various semantical functions. 

2.1 Produ ct s. The product of domains A, B i s denoted by A x B, 

a nd that n is a member of Ax B by IT: A x B. 

The components of IT are denoted by ITo A and IT, : B. 

That i s , the subsc ripts 0,1 se lect the l eft and right members 

respectively. Finally if we have 01 : A and ~ : B then we denote by 

<O!,~> : AxB the member ofAxB obtained by cons tructing a pair from 

these two values . All thi s we can diagram in rule s as follows: 

IT ' AxE O! :A !3 :B 

IT o : A <O! , P> :AxB 

TTl: B <Q' ,B> 0 = 01 

IT = <TTo , TTl> <01, f,>, = i3 

In such a rule each of the statements below the line can be deduced 

from the statements a bove . 

2.2 FUllctions . If we denote by Ax:A.(···x···) the function from 

A to B obtained by abstract ing for x in A on the expression (· ·· x···), 

which has values in B, and if we u s e the arrow notation w:A~B to 

indicate a mapping from A to B, then we have these rules: ~ 

x:A O!:A 

{~(!) :B (···x···):B (Ax:A.(···x · ··))(O!) = ("'01"') 

q>=Ax:A.<p(x) Ax:A.·· 'X" · ·:A~B 

We can read the fir s t rule as s aying that if m:k*B, then O! :A impli es 

<p( 0!) :B; furthermore the equation (Jl = Ax:A.<D(x) holds . The second 

rule is the conve r se in that if x:A impli es ( •. ·x···): B for a ll x, 

then we can wri te Ax:A. ( .. ·x ••• ): k*B. Finally the last rule provide s 

that if O! : A, then (Ax:A ... ·X"· )(01) = • .. 01 .... This means that an 

explici t d efinition of a function ·gives the expected function values 

for suita bl e arguments . 

2.J The following rules for disjoint s ums are not quite 

compl e t e . They rely on tagging the e l ements with values ° and 1 to 
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determine their ancestry. 

a :A+B a:A S:B 

<O,a>: A+B <1 ,13> : A+B 

~= a %= 1 

a, :A a, :B 

We assume 0,1 :T, but T may have other elements; thus additonal rul es 

might be required. 

3. The Firs t Language 

Thi s programming l anguage manipula te s integer s t ac ks. It is 

intend ed that programs r epresent mathematical functions from N to N, 

where N i s the domain of intege r s . Evaluation starts with the 

initial value on top of the stack and fini s hes with the final value 

of top of the s tack. Fo r each express ion € in the programming lang

uage we s hall give a function ~€] from state to state, where the 

state consists of jus t the s tack. 

Thus we have the foIl owing bas i c domains 

Exp = expressions (for c ommands) 

N - integers 

S = stat es (or s tacks ) • • 

We can d e fine states as follows : 

S = NxS 

We allow L to denote t he empty s tack. Thus in general, if a : S then 

a = <an,a,>, where ao :N i s the 1£p of the s tack, and 

a,:S i s the tai l or remainder. 

We can easi ly define the other neces sary fun ctions by : 

Initiali s e (n) = <n,L> 

Extract (a) = ao 

The semanti cal equations for the first language are as follows: 
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(1 ) IT E2.l?J a = a, 

(2) C.!J2.1] a = <°0 , 0 > 

(3 ) pnv] a = < 0 1 0 ,<On , 0Il» 

( 4) r 1 e J a = <CIa, ~ e TI a, > 

(5 ) r~; € I J O' = [e' ]((e Da ) 

(6) ~ dummy] a .- a 

(7) r ze ro] a = <O,a > 

(8) r suc] a = <OU+1 ,01 > 

(9 ) r pred'] a = <°0 -1,01 "'> 

(10) r ev e ' j a = (a~=ob e a, , [e ' ~ a, 

( 11 ) [*eJ a ~ (ao=O) -:> *e ( ~e lP) ,a, 

Taking these equa tions in orde r , we s ee t hat (1), (2) and (3) 

define obvious e l ementa ry s tac k manipul a tion ope r a ti ons (EQE, r e peat 

and invert). Equa tion (4) s ays that if an expressi on i s pre fix ed by 

1 then t he expre ss ion i s actually to be appl i ed t o the topl e s s stack, 

and t he ori g ina l top i s to be subsequently r epl aced. Equation (5) 

give s the us ua l de finition for sequ ential c ompos ition of s trings of 

commands . Equa t ions (7), (8 ) and (9) corres pond to e l ementary arith

met i c opera tions whi ch ar e carri ed out on the top of the s tack . 

Equation (1 0 ) g i ves a conditiona l c ommand in t he s ource l anguag e , 

wh ere e or e' i s chose n d epend ent upon the value at the top of the 

s tack i s zero or not. In t hi s defi nition p => e1 ,eG i s t h e u s ua l 

condi tiona l whi ch evalua tes to c i the r the va lue of e, . or the value of 

e~ dep<ndent upon the tru t h of p . Of course only one of e, or e~ i s 

being evalua t ed . Fi na lly Equation (11) gives a simpl e iteration of 

r epeating e zero or more times un t il t he top of the s tack i s non ze ro . 

The t es t ed e l ement i s removed wh e th er r epetition oc curs or not . 

(O t her conve ntions of what to do wi t h the top of the s t a ck are of 

cou r .e po ss ibl e . ) 

Thus we have deve loped a sys t em of equations whi ch gives a 

dc nota t i on to eac h express i on in the language . Tho t is t o say , f or 

eac h express i on in the programming l anguage , th e semanti c a. l equations 

dete r mine a mathematic a l object (a function) whi ch defin es t he 

ma t hemati ca l mean ing of that express ion. Of c ourse , we eas ily unde r

s tand th ese {-qua ii oo .::; as we r ead them, a nd we c an i mag ine a na i ve 

imp l eme ntati on f or real izing the computati ons . However , t he seman

t i cal equati ons are ind epend ent of impl ementati ons and re pr ese ntations . 
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4. The second language 

Thi s language will be used to demonstrate how jumps and labe l s 

in the sourc e ,language could be handled by an extension to the 

semantical equations . We are going to extend the fir st language by 

the addition of a bloc k express ion: 

and a g·oto s tatement: goto L!. To define the semantics it i s 

neces s ary to extend the bas ic domains to include labe l s, environments 

and continuations: 

Lab = l abels 

Env = environments 

c = continuations 

with the fo llowing definitions 

Env 

c 
= 

= 

La b -+ l S -+ S] 

S -+ S 

We redefine [e D s o that now the Ivgical type of the denotation i s as 

follows : 

[€ tl: Env -+ [C -+ [S -+ S]] 

that i s if 8:Exp, p:Env, and e:c, then f€]p e : S-+S. 

Functional appli cations are written here in left associative form; 

t ha t i s , fgh = (f( g) )(h). It i s inte nded t hat pcontains definitions 

for all the labe l s oc curring in 8, and that e is a function to be 

appli ed after the evaluation of 8 i s fini s hed (a continu~tion). 

Thus , in the "norma l" evaluation of a s tatement (without jumps ) we 

will have 

[ e e ~' 8 UP 0 = v = a" , 

where a' = [el pIso and Is is the "harml ess " continuation or i dentity 

trans formation I , : S-+S with I s (0) = 0. The exact semant i cal equations 

fo r the sec ond l anguage are as follows. 
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(1) lE£.E.D p8a = 8(a1 ) 

(2) Il.!:E!J p8a = 8 «ao ,a » 

(3 ) [inv] pAa = 8 «a1 0 ,<ao , all») 

(4) ~ le ] p8a = [e 1p (Aa' .8 kao,a'» )a1 

(5 ) lle ;e' J pAa = Ue ~p([e' ]pe)a 

(6) rrdwnmd p8a = 8 (a) 

(7) [zero ~ P 9a = 9 «0, a > ) 
(8) (sud p8a = 8 «ao +1 ,a,. » • 
(9) ~] p9a = 8 «ao - 1 , a1 » 

(10) [e Ve' n pea = ( ao =<l)=> ff8 Dp8a1 , ie' Jpea,. 

(11 ) n*e]p 9a = (ao =0)=>1:8]p ([*e ]p9)a, a, 

(1 2) [haltD p8a = a 

( 13) ~ qp9a = p(L)cr 

(14) ~begin e u ;~ :8,;L" «2; ••• r".' :C n end~pea = A~ (a) 

where Ao = [80 Dp' Al 

9, = [el ]0' 82 

92 = [82 ] p' 9" 

9n = [e n Dp' 9 

and p = P[9lf82, ... ,9n/~,L2, ... ,r..D, where 

In Equation (14) p' is the same as P except the values of ~, ... ,r". 
are changed to 9" .•• , 9n , r espectively. 

Equations (1), ( 2) , (3), and (6), (7), (8), (9) differ from 

before only in that consideration has been taken of the need to 

appl y the continuation. Equation (4) is more subtle: we first . have 

to prepare the new continuation Aa'. e « 00 ,a'» in order to save 

the top (ao )' With this in hand we then evaluate e with the tail of 

the original stack (a1 ). The result i s the s am e as before if we 

re strict ourselves to the first language as a subset of the se cond. 

Similarly, Equation (5) a l so gi ves the same meaning as before, but 

note the change in order. This time using the continuation [e' Dp8 

impl i es that 8 i s evaluated before the original continuation e is 

appli ed but it comes after the evaluation of e . Equation (10) is 

upgraded to t ake account of the new form s for [e], [e'D. Equation 
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(11) makes use of the continuation in exactly the same way as (5). 

The last three equations are new and account for the extended power 

of the expanded language . 

Equation (12) force s us to ignore the continuation while making 

no change of state. (13) se lects the state transformation stored in 

the environment as the value of the label; it ignores the contin

uation because this i s a broken jump and p(L) ~ the new continuation. 

In Equation (14) the 9, are defined together recursively since 

the new environment p' involve s all the others. If there are no 

jumps, this is just a composition. If there are jumps, the P'will 

select the proper meaning. Of course we could even jump outside the 

block as given by a continuation already specified in P. We see in 

thi s way how the scope of label definitions is kept s traight. If we 

get to the end of the block, we fall through using 9, the original 

continuation specified upon entry. 

5. The third language 

In this third programming l anguage we try to include something 

of the, concept of a stored program - together with procedure calls 

which involve the usual idea of a variable as the parameter of a 

procedure. This language can be taken as an extension of the second, 

except for brevity the ability to compute with integers is dropped. 

The necessary ' equations can easily be restored as they involve no 

special problems . Instead of integers the elementary items stored on 

the stack are trees of functions, here called denotations. , 

For the bas ic domains we have: 
, 

Exp = express ions .. 
Idf = id'entifi er s 

Env = envi ronments 

C = continuations 

S = states 

D = denotations 
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The las t four are defined by: 

Env = Idf .... D 

C = S .... S 

S = D x S 

D = [&+S] + [DxD] 

A denotation i s therefore either a function or a pair of denotations ; 

that is it i s a binary tree with functions (continuations ) at the ends 

of branche s . (It i s a good question why such a domain as D exi sts .) 

In the following, typical elements of the domains will be denoted 

thus: 

€ Exp e c 

t: Idf cr S 
V'r' 

P Env ° D 

The di s joint union ( as described in section 2.3) enables us to se.parate 

elements of D into two kinds according to the following scheme: 

<O,e> :D 

<1,<0 , ,0 ..,» :D 

if e: [&+S] 

if <0,,° 2 > : [DxD J. 

The two elements of D, <O,i> a nd <1, i> , can be used for true and false, 

r espe ctivel y , and we shall construct conditionals in terms of them. 

In case we wanted integers we would have to add +N to the domain 

equation for D, but it would compli cate the subscripts . 

As before, we have t he rul es of semantical evaluation expressed 

u s ing 

IT - ] Exp .... Env.... C .... S -+ S , 

where the type s of the variou s components of each equation is given by: 

expression environment 

~ ~ 
18 U pRcr = 

continuationJ't 
initial state 
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The semantical equations are as follows: 

(1 ) {hal t V pea = a 

( 2) JconH p8a = 8 (a) 

(3) [.E..Q..E. ~ pea = 8 (a, ) 

(4) [cD pea = 8 ( <p ( ,. ) , a > ) 

(5 ) ffdbl n pea = 8 «ao,a » 

(6) [inv n pea = A (a, O ,<ao , a,,») 

(7 ) fftrue~ p8a = A «<0, v ,a » 

(8 ) [fal se n p8a = e «<1 , v ,a » 

(9) ffpaid pAa = 8 «<1 ,<ao ,a, ,?» ,all» 

(10) [ spli t] p8a = A(aoo::> .L,<aUlO ,<aOll , a, » ) 

(11 ) [apply] p8a = 9(aoo ::> aOl (a, ), .L) 

(1 2) II save ~ pAa = S«<O,S>,a » 

(13) p,,,.€ J pSa = S«<O,S' > ,a » where 

S' 1.0 ,a'. {d(p[o/~J )( Aa" .d')a 
, 

= 

( 14) [€ ;€' j pAa = h ~p ( h' ~p S ) a 

(15) [€ V€' ] pSa = aoo::>{e jp9a, , (€' np9a, 

(16) [teD p8a = {€ TIp (Aa' .9 «ao , a'> ) ) a" 

(17) ITbe gin €u ;1:1 :£1 ;Ez :£ 2 ; ••• ;E'n :e n endllp9a = Au (a), 

wher e So = [€ o ] p' A, 

9, = rre, ~ p' 82 

82 [02 ) 
, 

= P 93 

= 

and 

These rul es are suffici ently different that it is worth going 

through them one at a time : 

(1 ) ~ ignore s the continuati on and yi elds t he current s tate 

as the r esul t. 

(2) continue is the same as dummy in the earli er languages. 

(3) .E..Q..E. removes the top value of the stack. 

(4) Execution of an identifier results in the corresponding 

denota tion p tE) being placed on top of the s t ack. 
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(5) dbl duplicates the top s tack element 

(6) inv exchanges the top two s tack e l ements 

(7)(8) true and fal s e push their denotations onto the top of the 

stack. 

(9) pair combines the top two e l ement s of the s tack (denotations ), 

into a tre e of denotations . 

(10) split undoes pair. (Here the conditional is u s ed in a 

s lightl y different way than before: t :::> 0"0 ,0"1 means t hat 00 

i s s elected if t = 0, and a1 if t = 1. Note that if the top 

el ement i s elementary and can not be split, the~~we. cont inue 

with an empty s tac k. It would be easy to make other 

conventions if de s ired.) 

(1 ·') apply expects the top s t ack e lement t o be a d enotation, 

which i s then appli ed t o t he r emainder of ohe s tack. 

(1 2) ~ records the conti nua t i on on top of the stack as a 

repeatabl e action and continues with the same continuation 

(self application:) . 

(13) With A we have a def i ned function which requires an 

argument befor e it can be applied. The immediate effect i s 

s imply to push the denotation S' of this function definition 

onto the s tack. Thi s denotation is such, however, that if 

appli ed ( say by (11)), it will consider the top stack 

e l ement (6 ) as the argument corre s ponding to ~ (so p[6/~J). 

(The continuatio~ part of the d efined A' is taken simply as 

the identity function, since no other continuation seems to 

be especially call ed for.) 

(14) sequential composi tion is the same as before. 

(15) the conditi onal form transfers according to the test of t he 

top of the s tack. 

(16) With! we t emporari l y ignore the top of the stack as before. 

(17) blocks are treated as before, ex cept now label s and ident

ifi e r s a r e the same. (Note that no equati on is given for 

go to s ince t hi s can be programmed as 

goto ~ ;: "; apply; halt. ) 
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6. The language LAMBDA 

Only the ·briefest s ummary of this model f or pure lambda calculus 

is given here s ince it has been the subj ect of a series of lecture s 
. ~ 

at the 1974 Kiel Logic Summer School and a long paper will appear in 

thos e proc eedings, whi ch al s o will conta in a long bibiography of 

related paper s . 

The plan is to represent a very l arge vari ety of structures in 

terms of a very familiar structure , namely the family of se t s of 

integers. A se t of integers will be construed here as an infinite 

object being obtained by enumeration . We can th~nk of a set of integers 

as a multi-valued i nteger the e l ements of which a processor i s out

putting one by one, in s ome (unimportant) order. The singled-valued 

integers correspond to the se t s with just one e l ement . For simplici ty 

of notatioIl, 

itself (e. g . 

ve identify 

3 for [ 3J). 

sets of a s ingl e integer with the integer 

We u s.e '" (omega) to denote the set of (non 

negative) integers: w = (0,1,2, ••• ) , and 

Pm to represent the powerset of w: Pw = lx I x C w) . The domain Pill 

is the " s tate- space " for the l anguage LAMBDA . The functions we USe on 

this space are novel in that they are not only multi-valued, but mulii

argmented as well. They are certai n of the mappings from Pw i nto pw. 

If values are multi-valued , arguments should be too, for don't y ou 

want to compo se these functions? The question i s: why are multi-valued 

functions inte r esting or us eful ? 

If f(x) is the empty set, this means that the process initiated by 

applying f to x gi ves no output. We u se the symbol L for t hi s low 

informati on value: f(x) = L, and we say t hat t he funct ion value is 

undefined . If f(x) = w, t hi s corresponds to the process with a "short" 

in it - it just puts out a ll the integers, one after another. We use 

T for this high-information consta.nt: f(x) = T, and we say that f(x) 

is overdefined . These a r e the extreme cas es , and we are r eally inter

ested in intermediate cases, say 

f (x) = 3 I J 10 U 29 . 

We think, intuitively, of a function as a processor performing a 

transformation which, as it sees more and more of the input, it gives 
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more and more of 
i· , 

the output. Such trans formations could be ca l led 

s nume ration operators, since they compute by enumeration. Now, if 

t he re i s a way of (theoretically) computing these functions, then 

t he functions should be continuous - this is the essential point . 
th 

Le t en denote the n finite subset of w. (Note that if x E' Pw then 

x = U [en I en ex}.) If f is continuous, then (by definition) we 

have for all x in Pw: 

f(x) =1 ' U(en ) I en::: x}. Thi s means that for every 

fi nite subset contained within the va l ue of the function, there i s a 

f inite subse t of the a rgument which determines tha t subse t. As a 

consequenc e these functions are monotone - the more y ou give of th e 

j nput the more you get of the output. 

If you cons ider only the continous func t ions , the n y ou C8,n 

i dentify them with the s e t s of intege r s . 

~ of function: 

We do thi s by defining 

Graph (f) = [(n,m) I mE f (en) J. 

, . 
~ __ n e 

This s et of pairs of integers (where a pair can be identified wi th an 

i ntege r by pairing functions) completely defines the functions by 

virtue of the definition of continuity. Once you have reduced a 

f unction to a se t of integers in this wa.y, this set 1S availabl e a s 

t he a r gument of another f unction, since a continous function can 

accept any set of integers as its argument. In this way we obt ain a 

coherent mathematical interpretation of self-application. 

Many of these ideas appear in H. Roger's book on recursive 

function theory. He and Friedberg wrote a paper on enumeration 

operators, and Myhill and Shepherds on had thought about them in an 

early paper. Roger s only considers the O Jl(, ~ 1\ri th recurs ively enwo

erable graphs, and he doe sn't really intra;! d CC a theory of emL"lle r ·

ation operators. Myhill and Shepherds on " " li t a bit further - they 

said "look how many interesting e nume ration operators ther.e al'e;11 and 

gave a page listing various operators. No one se ems to have read 

this page s ince. The author's first A-cal culus mod e l was much more 

complicated to explain, and the idea of using graphs is due to 

G. Plotkin, but he did not think of making a reduction to Pw. 
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The point about a A-calculus model is that there's a theory of 

enumeration operators and a simple notation for them embodied in the 

language LAMBDA. In this language, A-abstraction i s simply the idea 

explained above of t aking the graph of the function : 

A x. T = ((n,m) I m E ~[en/xJ} . 

Every expre ss ion in LAMBDA denotes a set. So the graph of a function 

i s the denotation of the A expression. The inverse of abstraction i s 

application. Suppose u is the graph of a function. Suppose we want 

to decode the information that is condens ed into u, to u-evaluat e 

the function at the argument x . We have: 

u(x) = (m l3en ::: x, (n,m)Eul. 

You s tart the enumeration of the finite subset en of x and look at the 

numbers n (the Godel numbers of the finite sets ) to see which 

ordered pa irs (n, m) appear in u. The numbers m enume r a ted in this way 

form the output. If u is the graph of a continuous funct ion, you 

will just have obtained the desired value of that func tion. That' s 

the whole i dea of the mode l. The othe r primitive s of the language 

(beside s functional abs traction and application ) are the a rithmetic 

notions: 

0 = (01 

x+1 = [n+1Inf'xl 

x-1 = [n ln+1f'x) 

z= ,y = ( nExIUEz) I) (mEy ljk.k+1E'z) 

The id ea of the fir s t t hree i s obvious, "hi le the last i s a multi

valued ver s ion of McCarthy's c ondit ional expre ssion. The test is on 

whether z i s z e ro or po s itive ; in case it is bot h, the answer i s xU y. 

All L»IBDA - definabl e functi ons a r e continuous and computable (in 

the precise sense of having recurs i ve l y enumerabl e graphs ). 

The foll owing l aws of A-cal culus a r e val i d in the mode l: 

( 0') AX. T = Ay. Try/x] 

(s ) ( Ax. T ) ( a) = T ra/x] 

(F) Ax. T = Ax. a iff Vx.T = a 
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In the above, (a/xJ is the notation for the substitution of a term 

for a variable. The first law (a) just means we can rewrite bound 

variables. The second law (~) means that application is the inverse 

of abstraction (continuity is ne eded for the proof of this law!) And 

the l~ law (s) means that two functions have the same graph if and 

only if they take on the same values. 

The following i s not true in LAMBDA: 

( ~ ) AX .U(X) = u 

because not ever y set of integers is the graph of some function. The 

f ailure of this law is not very important. 

Here are s ome exampl es of the denotations of some specific 

expressio~,s : 

AX.l. = [(n,m) I mEl.} = l. 

Ax .T = [ (n,m ) ImFT} = 1 

Ax.x = [(n,m) I mEen 1 
K = AX . Ay . x = [{n,m) ImE')'y. en J 

= [ (n,m ) I k,1. m(' (k,l) ,IEen } 

= ((",(k ,l)) I I E en } • 

Given any argwnent x , the combinator K fo r ms the function of y , say, 

t hat i s constantly equal to x. There arc many othe r combinators all 

of which can t e interpreted in the model ill L11LS way. If you like , 

y ou can think of LAMBDA as a l anguage of proc edure s - procedures that 

accept procedures as arguments and give procedures as r esults . 

).- abstraction and functional application correspond to procedure 

dec l aration and call. 

Now I wi sh to briefly review the situation with r espec t to 

fix ed points . Continuous functions a lways have fixed points. 

We define: Y(F) '" = U 
n = 6 

This iteration operator give s you the I C1 St j Ixed points of a function 

F . We can think of Y as a function of F ; in fact, Y i s itse l f a 

continuous function. 
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Transferring a result of David Park to this model, the so-called 

Paradoxical combinator: 

is the least fixed point operator. Hence, it gives u s the possibility 

of solving any system of equations in LAMBDA even for mutual fixed 

points. Further it turns out that by use of fixed-point equations a 

set ct is recursively enumerable (r. e.) iff ct = T for some constant 

LAMIDA expression T . This gives us a direct connection between 

LAMBDA and its model and ordinary recursion theory (the theory of 

single-valued partial recursive functions on integers). 

Next we want to get structured values out of this model (we 

have already got the r.e. sets), so let us consider for example 

lists. One way to represent lists in this language is to think of 

them as functions of integer subscripts. We define: 

< > = AX.l = l. 
<xc ,x"" .. x,,> = AZ.Z=O<O ,<X, , ... x,, > (z-l) 

A list of n elements is that function which takes its argument, and 

if that argument is zero, delivers the element Xn, and which other

wise decreases its argument by one and tests to see if you should 

choose one of the remaining components. So as long as i < n, we 

have <xc ,x"", ,x" _ I> (i) = x,. Note that 

Ordered pairs of sets are represented as special cases of a list. 

We will use the usual subscripts for the selectors of ordered pairs, 

so that <no,U,> = <u(O), u(l». Now the combinator 

"expresses" the property of being a pair in the sense that the pairs 

are exactly the fixed points of n. The object n represents the space 

of all pairs; both the range and fixed-points of n consist of exactly 

the pairs. In a way n is a coercion operator, since n(.) always 

coerces a into the closest ordered pair. For example 

n (<x,y,o) = <x,';/>. 
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In a more technical manner of speaking n is a retract. Another useful 

fact is that the lattice corresponding to the range of n i s the natural 

lattice structure on Pw x Pw. This follows from our definition of 

ordered pair, because we have: 

Another example of a fixed- point equa-bion ;_s f = AX. f(x) . Now 

not every set is the graph of a continuous function (becaus e the grs,phs 

of continuous functions have a certain amount of regularity to them), 

but those that satisfy this equation ~ graphs. Therefore the 

combinator 

cp = Af. Ax.f(x) 

represents the continuous function space from Pm to Pm. The fixed 

points of cp form a lattice which is exactly the lattice structures we 

would want for this function space. This is another example of a 

retract. In general a retract is a function a such that: 

a = a'a = AX. a(a(x)) 

Each retract represents a substructure of Pm, namely its range, which 

is the same as its fixed-p-oint set. If a and b are two retracts, we 

can define: 

a x b = AU. <a(Uo), b(Ul» 

a~ b = AU. b·u·a 

These operations correspond exactly to the product and (continuous) 

function space of the spaces represented by a and b. But these 

operations on retracts are continuous. Thus we can apply the same 

fixed-point construction to the formation of spaces. This then gives 

us the theoretical basis for forming the domains needed for the 

semantics of languages like those illustrated above in sections 3 - 5 

as well as providing the fixed-point methods for showing that the 

semantical equations themselves have solutions. 

This discussion has been merely "definition theory". Much work 

is being done - and much more needs to be done - in giving ~. proof 

theory and in developing applications to real languages. There are 

many indications that the method is both sound and flexible. 
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