MATHEMATICAL SEMANTICS

D.S. Scott

Rapporteurs: Dr. P. Henderson
Dr., P. Lauer
Mr. J. Rushby

i Introduction

In this paper for the sake of illustration the semantics of three
simple programming languages are specified by giving, for each language,
a correspondence between the expressions of that programming language
and certain mathematical objects. Each programming language has been
chosen sco as to demonstrate some few essential features or to show the
capability of the specification technique. The paper concludes with
a very short summary of a mathematical language LAMBDA, the intended
model for which can be represented in terms of a very familiar
structure, namely the family of sets of integers. The point of the
language is that it is a very simple language and its terms give
explicit definitions for all the usual recursive definitions on a
very large variety of structures which can be viewed as substructures
of the model. To begin with, however, we shall discuss how these

topics relate to Computing Science.

The figure depicts the similarity between the process of compiling
and running a program and the process of semantical specification to be

described here. In the diagram, the square nodes denote sets as

follows:
N = integers
= run-time machine states
S = abstract mathematical states for semantical evaluation,

The circular nodes denote objects as follows:

Prog = the program being executed or defined

Code

the machine code obtained from the compiler

Den the mathematical object (function) obtained from the

semantics.

87

A

DEFINITION S - S
A
Initialize Extract
¥y
5:?’
¥ 3
_ v
P ' Function
rog N i - N
i
Input Output
%
%
?
(2]
v
%

];_/[

\ Run
CONCRETE M
IMPLEMENTATION

88

We consider that (in this simple case) the program expects an integer
as input and produces an integer as output. The program «s intended
to realise some function between integers, shown as a dotted line on

the diagram.

Consider first the execution of the program by a conventional
computing machine. First, the compiler is applied to the program to
produce by syntactical manipulation the code. An initial machine
state is determined by applying the function Input to an integer from
the domain of the program function. The code and the initial machine
state are then subjected to the Run function and a final state deter-
mined. The value of the program function for the given initial wvalue
is extracted from the final machine state by the function Outﬁut.

The upper half of the figure depicts an entirély similar situation
for semantical specification., The semantics of the programming
language yields a denotation of the program as a mathematical function
(from abstract state to abstract state). An initial argument for
this function can be obtained using the Initialize function and the
output value determined from the final state by the Extract function.
The difference between the two halves of the diagram is that the top
part is abstract and conceptual, while the lower half has to do with
the representation of data and processes in concrete terms. It may
very well be difficult to explain the correspondence between the two
sides. The lower half may also change frequently, while the upper

half is permanent.

This diagram is clearly a simplification of the real case but
such a correspondence has been constructed for more realistic cases,
for example, PAL, ALGOL60, PASCAL. One reason for studying the
mathematical semantics of programming languages is that we are
interested in proving things about programs. Executions of particular
programs can only give demonstrations of their behaviour in particular
cases. Using the upper half of the diagram we can give criteria for
saying whether implementations are correct for all programs. Currently
we can only do this and then carry out proofs for modest'examples,

but work continues to expand the scope of these proofs.

89

2 Some Notational Preliminaries

We shall insert here a few notational conventions for products,

sums and function spaces of domains, which we shall need to explain

the various semantical functions,

251 Products. The product of domains A, B is denoted by A x B,
and that T is a member of A x B by m: A x B,

The components of m are denoted by m, : A and m, : B.

That is, the subscripts 0,1 select the left and right members
respectively. Finally if we have o : A and B : B then we denote by
<a,B> : AxB the member of AxB obtained by constructing a pair from

these two values. All this we can diagram in rules as follows:

m: AxB o A R:B

m,: A <a,P>:AxB

m: B ; <@,>, = o
T = <W, ,M=> <o,p> =B

In such a rule each of the statements below the line can be deduced

from the statements above,

2.2 Functions. If we denote by Ax:A.(***x*+*) the function from
A to B obtained by abstracting for x in A on the expression (eoexeee),

which has values in B, and if we use the arrow notation ©:A*B to

indicate a mapping from A to B, then we have these rules: “
0: 3B x:A oA

{CY:A. ("'X"‘):B (AX:A.("'X"'))(Q): ("‘Q""')
o(a):B

o=Ax:A.0(x) Ak fA, ¢ ax etV

We can read the first rule as saying that if ©:A*B, then o:A implies
o(o):B; furthermore the equation @ = Ax:A.o(x) holds. The second
rule is the converse in that if x:A implies ('°'x--'):B for all x,
then we can write Ax:A,(+++x+++): A*B, Finally the last rule provides
that if otA, then (Ax:A,+eexee+)(@) = +oeqses, This means that an
explicit definition of a function gives the expected function values

for suitable arguments.

DB Sums The following rules for disjoint sums are not quite

complete, They rely on tagging the elements with values 0 and 1 to

90

determine their ancestry.

o:A+B ' oA 8:B

Op :T <0, >: A4B <1,8>: A+B

O= <Cp ,0y>

Oy = 0 O'O=1

Oy tA o, :B

We assume 0,1:T, but T may have other elements; thus additonal rules

might be required.

o The First Language

This programming language manipulates integer stacks. It is

intended that programs represent mathematical functions from N to N,
where N is the domain of integers. Evaluation starts with the
initial value on top of the stack and finishes with the final value
of top of the stack. For each expression e in the programming lang-
uage we shall give a function Ee] from state to state, where the

state consists of just the stack.

Thus we have the following basic domains

Exp = expressions (for commands)
N = integers
S = states (or stacks) *

We can define states as follows:
S = NxS
We allow L to denote the empty stack. Thus in general, if 0:S then

0 = <0,,0,>, where 0,:N is the top of the stack, and

gy i8S is the tail or remainder.

We can easily define the other necessary functions by:

Initialise (n) = <n,1>

Extract (o) = o

The semantical equations for the first language are as follows:

91

(}‘

(1) [ppop] © = 0

(2) rrpt) o = <0y,0 > [
(3) rinv] o = EOys 45T 50y

(4) Trte]o = <G,[le]o>

(5) reje']o = Ee'R(EeRU)

(6) M dummy’] © = a

(7) Tzero] o = <0,0 >

(8) Tsuc) o = <G,+1,0,>

(9) Tpred] o - <oy-1,0>

(10) Tfeye'] o = (0.=0)o¢ oy, [e') o

(11) [*e] g (O’O::O)‘J *e ([eﬂo),cl

Taking these equations in order, we see that (1), (2) and (3)
define obvious elementary stack manipulation operations (pop, repeat
and invert). Equation (4) says that if an expression is prefixed by
1 thén the expression is actually to be applied to the topless stack,
and the original top is to be subsequently replaced. Equation (5)
gives the usual definition for sequential composition of strings of
commands. Equations (7), (8) and (9) correspond to elementary arith-
metic operations which are carried out on the top of the stack.
Equation (10) gives a conditional command in the source language,
where ¢ or e¢' is chosen dependent upon the value at the top of the
stack is zero or not. In this definition p @ e, ,e, is the usual
conditional whichevaluates to cither the value of e; or the value of
e, dependent upon the truth of p. Of course only one of e; or e, is
being evaluated. Finally Equation (11) gives a simple iteration of
repeating € zero or more times until the top of the stack is non zero.
The tested element is removed whether repetition occurs or not.
(Other conventions of what to do with the top of the stack are of

course possible.)

Thus we have developed a‘system of equations which gives a
denotation to each expression in the language. That is to say, for
each expression in the programming language, the semantical equations
determine a mathematical object (a function) which defines the

mathematical meaning of that expression., Of course, we easily under-

stand these cquations as we read them, and we can imagine a naive
implementation for realizing the computations. However, the seman-

tical equations are independent of implementations and representations.

92

4, The second language

This language will be used to demonstrate how jumps and labels
in the source language could be handled by an extension to the
semantical equations. We are going to extend the first language by

the addition of a block expression:
begin €~3Lly ey 3hotegs oo 3 Lyie, end ‘,‘

and a goto statement: goto Ly. To define the semantics it is
necessary to extend the basic domains to include labels, environments

and continuations:

Lab = 1labels
Env = environments
C = continuations

with the following definitions

Env
C

Lab - [§ + S
S+ S

I

We redefine [e] so that now the logical type of the denotation is as

follows:
[ell: Env» [C 4[]S » S]]

that is if e:Exp, p:Env, and 8:C, then [e]p 8 : S48,

Functional applications are written here in left associative form;
that is, fgh = (£(g))(h). It is intended that pcontains definitions
for all the labels occurring in e, and that & is a function to be

applied after the evaluation of € is finished (a continuétion).

Thus, in the "normal" evaluation of a statement (without jumps) we

will have
[e|oto = 80" = 0o,

where ¢ = [e]pI ;0 and I, is the "harmless" continuation or identity
transformation I, :S+S with I, (0)= 0. The exact semantical equations

for the second language are as follows.

&

93

(1) [pop] péo = 6(o)

(2) [zpt] péo = 8(<o,,0>)

(3) [inv] peo = 08(<oy5,<0,,017,>>)

(0 freloee = [P0 lonp>))o
(5) fese’ ¥ pho = Jelo(fe" Toe)o

(6) [dummyf pbo = 8(o)

(7) [zexol péo = 6(<0,0>)

(8) [sucl pro = 8(<0y+1,0,>) .
(9) 1fpred] poo = B(<gp-1,0,>)

(10) feve] poo = (05=0)2[e Ipboy,[c’ Iooy
(11) [*e] poo = (0,=0)2fe Jo ([*c Jo8)o,o0,
(12) fhalt] ebo = ©

(13) [goto L] pbo p(L)o
(14) fbegin e, 3Ly i€, 3Lo 655, L, te, endIpfo = 8, (o)

where fp = [eo [P’y
91 = ﬂel HOIQQ
62 = fezlo’ 8y
8, = fe, o0
and p‘ = p[algeg,onc,en/lﬂ_ ’LQ,---,tln u’ where

in Equation (14) o’ is the same as p except the values of L, ,...,L

are changed to 8;,...,6,, respectively.

Equations (1), (2), (3), and (6), (7), (8), (9) differ from
before only in that consideration has been taken of the need to
apply the continuation. Equation (4) is more subtle: we first. have
to prepare the new continuation Ao, 6(<0o ,0">) in order to save
the top (Ub)- With this in hand we then evaluate ¢ with the tail of
the original stack (o). The result is the same as before if we
restrict ourselves to the first language as a subset of the second.
Similarly, Equation (5) also gives the same meaning as before, but
note the change in order. This time using the continuation He’ﬁpe
implies that ¢’ is evaluated before the original continuation 8 is
applied but it comes after the evaluation of €. Equation (10) is

upgraded to take account of the new forms for [el, le’ 0. Equation

94

(11) makes use of the continuation in exactly the same way as (5).
The last three equations are new and account for the extended power

of the expanded language.

Equation (12) forces us to ignore the continuation while making
no change of state. (13) selects the state transformation stored in

the environment as the value of the labelj it ignorés the contin-

uation because this is a broken jump and p(L) is the new continuation,

In Equation (14) the 6; are defined together recursively since
the new environment p’ involves all the others, If there are no
jumps, this is just a composition. If there are jumps, the p will
select the proper meaning., Of course we could even jump outside the
block as given by a continuation already specified in p. We see in
this way how the scope of label definitions is kept straight. If we
get to the end of the block, we fall through using 6, the original

continuation specified upon entry.

5. The third language

In this third programming language we try to include something
of the concept of a stored program - together with procedure calls
which involve the usual idea of a variable as the parameter of a
procedure, This language can be taken as an extension of the second,
except for brevity the ability to compute with integers is dropped.
The necessary equations can easily be restored as they involve no
special problems. Instead of integers the elementary items sfored on

the stack are trees of functions, here called denotations, .

For the basic domains we have:

Exp = expressions a .
Idf = identifiers
Env = environments
= continuations
= states
D = denotations

95

The last four are defined by:

Idf + D

S+ S

DxS

[s+s] + [DxD]

Env

A denotation is therefore either a function or a pair of denotations;
that is it is a binary tree with functions (continuations) at the ends

of branches. (It is a good question why such a domain as D exists.)

In the following, typical elements of the domains will be denoted
thus:

e + Exp e : C
g % 1df g : S
& 0 : Env § : D

The disjoint union (as described in section 2.3) enables us to separate
elements of D into two kinds according to the following scheme:

<0,6>:D . if 8:[s+8] -

<1,<8,,8,>>:D if <6,,5,>:[DxD].
The two elements of D, <0,/> and <1,.>, can be used for true and false,
respectively, and we shall construct conditionals in terms of them.

In case we wanted integers we would have to add +N to the domain

eduation for D, but it would complicate the subscripts.

As before, we have the rules of semantical evaluation expressed

using
-1 ¢ Exp~=* Env-+ C-> S 5,

where the types of the various components of each equation is given by:

expression environment final denotation
fe |l oo = <6’ o>
continuation}lr 'T
initial state final state

96

The semantical equations are as follows:

(1) [halt)l ppoc = o
. (2) fcont] ppc = 6(0)
(3) Ipop Irec = 6(q)
(4) [ell poc = 6(<p(¢),0>)
(5) fabl [p60c = 6(<0p,0>)
(6) [inv I pec = A(oy0,<00,0,1>>)

A(<<0, 1>,0>)

(7) [tzuel roo
(8) [false[l poo
(9) [pair] peo
(10) [split] péo
(11) [applyl pbo
(12) lsavel pro 6 (<<0,6>,0 >)
(13) frr.e] pbo 8(<<0,6'>,0>) where

o' = 28,0 .[e](p[8/€])(A0".0")0
(14) fese’] pao e lo([e’ Jo8)o

f(<<1, >,0>)

A(<<1,<05,0y0>>,07,>)

]

8(0502 L,<0y;09<Tp17 »T>>)

6(050> Goq(03), L)

(15) [eve’] poo = Oyo2le Iy ,[c’ Ip6oy
(16) [tel o0 = felo(ro’.8(<o,,0">))0,
(17) [begin €, ;B t€13E2:€05..43F, 1€, endllpbo = 8, (o),
where 8o = [eol 9’91
61 = ﬁe-i]] p,ee
92 —1 EQE] p’B;s
en &= Een] p’g
and

' = p[<0,08,>,<0,05>,...<0,0,>/€1 ,Fs,uu., Bl

These rules are sufficiently different that it is worth going

through them one at a time:

(1) halt ignores the continuation and yiclds the current state
" as the result.

(2) continue is the same as dummy in the earlier languages.

(3) pop removes the top value of the stack.

(4) Execution of an identifier results in the corresponding

denotation p(E) being placed on top of the stack.

97

(5) dbl duplicates the top stack element
(6) inv exchanges the top two stack elements
(7)(8) true and false push their denotations onto the top of the
stack.,
(9) pair combines the top two elements of the stack (denotations),
~ into a tree of denotations.

(10) split undoes pair. (Here the conditional is used in a
slightly different way than before: t =2 0,,0; means that ¢
is selected if t = 0, and o if t = 1. Note that if the top
element is elementary and can not be split, the *we_continue
with an empty stack. It would be easy to make other
conventions if desired.)

(11) apply expects the top stack element %o be a denotation,
which is then applied to the remainder oif the stack.

(12) save records the continuation on top of the stack as a
repeatable action and continues with the same continuation
(self application!). I

(13) With » we have a defined function which requires an
argument before it can be applied. The immediate effect is
simply to push the denotation 8 of this function definition
onto the stack. This denotation is such, however, that if
applied (say by (11)), it will consider the top stack
element (8) as the argument corresponding to € (so p[8/g]).
(The continuation part of the defined ®' is taken simply as
the identity function, since no other continuation seems to
be especially called for.)

(14) sequential composition is the same as before.

(15) +the conditional form transfers according to the test of the
top of the stack.

(16) With ' we temporarily ignore the top of the stack as before.

(17) Dblocks are treated as before, except now labels and ident-
ifiers are the same. (Note that no equation is given for

goto since this can be programmed as

goto F = F; apply; halt.)

6, The language LAMBDA

Only the briefest summary of this model for pure lambda calculus
is given here since it has been the subject of a series of lectures
at the 1974 Kiel Logic Summer School and a long paper wiil appear in
those proceedings, which also will contain a long bibiography of

related papers.
}

The plan is to represent a very large variety of structures in
terms of a very familiar structure, namely the family of sets of
integers. A set of integers will be construed here as an infinite
object being obtained by enumeration. We can think of a set of integers

as a multi-valued integer the elements of which a processor is out-

putting one by one, in some (unimportant) order. The singled-valued
integers correspond to the sets with just one element, For simplicity
of notation, we idéntify sets of a single integer with the integer
itself (e.g. 3 for {3§). We use w (omega) to denote the set of (non
negative) integers: w={0,1,2,...}, and

Pw to represent the powerset of w: Pw o= {x | x Cw}. The domain Pw

is the "state-space" for the language LAMBDA. The functions we use on
this space are novel in that they are not only multi-valued, but multi-
argmented as well. They are certain of the mappings from Pw into Puw.
If values are multi-valued, arguments should be too, for don't you

want to compose these functions? The question is: why are multi-valued

functions interesting or useful?

If £(x) is the empty set, this means that the process initiated by
applying f to x gives no output. We use the symbol L for this low
information value: f(x) = 1, and we say that the function value is
undefined. If f(x) = w, this corresponds to the process with a "short"
in it - it just puts out all the integers, one after another., We use
T for this high-information constant: f(x) =T, and we say that £(x)
is overdefined. These are the extreme cases, and we are really inter-

ested in intermediate cases, say
£(x) = 3 U 10U 29,

We think, intuitively, of a function as a processor performing a

transformation which, as it sees more and more of the input, it gives

99

H

more and more of the output. Such transformations could be called

cnumeration operators, since they compute by enumeration. Now, if

there is a way of (theoretically) computing these functions, then
the functions should be continuous - this is the essential point.
Let e, denote the nth finite subset of w. (Note that if x € Pw then
x =U {e, | e, £ x}.) If f is continuous, then (by definition) we

have for all x in Pw:

£(x) =11 {f(e;) | e« & x}. This means that for every
finite subset contained within the value of the function, there is a
finite subset of the argument which determines that subset. As a
consequence these functions are monotone - the more you give of the

input the more you get of the output.

If vou consider only the continous funcitions, then vou can

identify them with the sets of integers. We do this by defining +he

graph of function:
Graph (£) = {(n,m) | m € £ (e,)}.

This set of pairs of integers (where a pair can be identified with an
integer by pairing functions) completely defines the functiomns by
virtue of the definition of continuity. Once you have reduced a
function to a set of integers in this way, this set is available as
the argument of another function, since a continous function can
accept any set of integers as its argument. In this way we obtain a

coherent mathematical interpretation of self-application.

Many of these ideas appear in H. Roger's book on recursive
function theory. He and Friedberg wrote a paper on enumeration
operators, and Myhill and Shepherdson had thought about them in an
early paper. Rogers only considers the onecs with recursively enum-
erable graphs, and he doesn't really introlice a theory of enumer-
ation operators., Myhill and Shepherdson weut a bit further - they
said "look how many interesting enumeration operators there arvei" and
gave a page listing various operators. No one seems to have read
this page since. The author's first A-calculus model was much more
complicated to explain, and the idea of using graphs is due to

G, Plotkin, but he did not think of making a reduction to Puw,

100

H

The point about a A-calculus model is that there's a theory of
enumeration operators and a simple notation for them embodied in the
language LAMBDA. 1In this language, A-abstraction is simply the idea
explained above of taking the graph of the function:

A x.7 = {(n,m) | m € 7[en/x]}.

Every expression in LAMBDA denotes a set. So the graph of a function
is the denotation of the)\ expression. The inverse of abstraction is
application. Suppose u is the graph of a function. Suppose we want

to decode the information that is condensed into u, to u-evaluate

the function at the argument x. We have:
u(x) = {m |Jen S x, (n,m)€ul}.

You start the enumeration of the finite subset e, of x and look at the
numbers n (the Gdodel numbers of the finite sets) to see which

ordered pairs (n,m) appear in u. The numbers m enumerated in this way
form the output. If u is the graph of a continuous function, you
will just have obtained the desired value of that function, That's
the whole idea of the model. The other primitives of the language

(besides functional abstraction and application) are the arithmetic

notions:
0w = 0]
x+1 = {n#+1|nfx}
x—1 = [n|n+1ex}
z2x,y = {n€x|0€z} U {mey[]k.k+1€2]

The idea of the first three is obvious, while the last is a multi-
valued version of McCarthy's conditional expression. The test is on
whether z is zero or positive; in case it is both, the answer is x U y.
All LAMBDA - definable functions are continuous and computable (in

the precise sense of having recursively enumerable graphs).
The following laws of A-calculus are valid in the model:

(o) AX.T = Ay. T[y/x]
(B) (Ax.T) (0) = 7[9/x]
(¢) AX.T = Ax. O iff ¥x.T = ©

101

In the above, [0/x] is the notation for the substitution of a term
for a variable. The first law (@) just means we can rewrite bound
variables. The second law (ﬁ) means that application is the inverse
of abstraction (continuity is needed for the proof of this law!) And
the last law (E) means that two functions have the same graph if and

only if they take on the same values.
The following is not true in LAMBDA:
(n) ax.ulx) =u

because not every set of integers is the graph of some function. The

failure of this law is not very important.

Here are some examples of the denotations of some specific

expressions:

Ax. L o= {(n,m) |mEL} =1

=T = {(n,m) |meT} =

AX.X = {(n,m) |mEep}
K=3% 1% = {(n,m) |mEry. e, |

- {(n,m) | k,1. m(:(.k,l),lEen}
= {(n(k,1)) | 1l€e,].

Given any argument x, the combinator K forms the function of y, say,
that is constantly equal to x. There are many other combinators all
of which can te interpreted in the model in Lhis way. If you like,
you can think of LAMBDA as a language of procedures - procedures that
accept procedures as arguments and give procedures as results,

A= abstraction and functional application correspond to procedure

declaration and call.

Now I wish to briefly review the situation with respect to

fixed points. Continuous functions alwayvs have fixed points.

o) n
We define: Y(E) = U F (o)
o

This iteration operator gives you the lcist {ixed points of a function
F. VWe can think of Y as a function of F; in fact, Y is itself a

continuous function.

102

Transferring a result of David Park to this model, the so-called

Paradoxical combinator:
Y = . (x.ulx(x)))(x.u(x(x)))

is the least fixed point operator., Hence, it gives us the possibility
of solving any system of equations in LAMBDA even for mutual fixed
points. Further it turns out that by use of fixed-point equations s
set o is recursively enumerable (r.e.) iff o = T for some constant
LAMBDA expression T. This gives us a direct connection between

LAMBDA and its model and ordinary recursion theory (the theory of

single-valued partial recursive functions on integers).

Next we want to get structured values out of this model (we
have already got the r.e. sets), so let us consider for example
lists. One way to represent lists in this language is to think of

them as functions of integer subscripts. We define:

< > Xx--l- = 1.

<Xo gX3 gseesXpy> = Az.z:mo,<x1,...xn>(z~1)

A list of n elements is that function which takes its argument, and
if that argument is zero, delivers the element x,, and which other-
wise decreases its argument by one and tests to see if you should
choose one of the remaining components. So as long as i < n, we

have <Xo yXygyeeesXy— 1% (i) = x,. Note that

L =2<>C x> C Mo yXy> S vos © CXpgXy goseXn™> € 00

Ordered pairs of sets are represented as special cases of a list.
Ve will use the usual subscripts for the selectors of ordered pairs,

so that <up,u;> = <u(0), u(1)>. Now the combinator
T = AU, <ug,uq>

"expresses" the property of being a pair in the sense that the pairs

are exactly the fixed points of m. The object ™ represents the space
of all pairs; both the range and fixed-points of m consist of exactly
the pairs. In a way m is a coercion operator, since m(a) always

coerces a into the closest ordered pair., For example

T (Q,y’p) = Q,y';‘.

103

In a more technical manner of speaking T is a retract. Another useful
fact is that the lattice corresponding to the range of ™ is the natural
lattice structure on Pw x Pw, This follows from our definition of

ordered pair, because we have:

XKoy X1> S Yo,uyr> iff x%CTyo and xSy,

Ancther example of a fixed-point equation is £ = Ax.f(x). Now
not every set is the graph of a continueus function (because the graphs
of continuous functions have a certain amount of regularity to them),
but those that satisfy this equation are graphs. Therefore the

combinator
o = XE; lx.f(x)

represents the continuous function space from Pw to Pw. The fixed
points of © form a lattice which is exactly the lattice structures we
would want for this function space. This is another example of a

retract. In general a retract is a function a such that:
a =aa = . ala(x))

Each retract represents a substructure of Pw, namely its range, which
is the same as its fixed-point set., If a and b are two retracts, we

can define:

axb Au. <a(uo), b(u1)>

a- b Au. beu-ca

Il

These operations correspond exactly to the product and (continuous)
function space of the spaces represented by a and b, But these
operations on retracts are continuous. Thus we can apply the same
fixed-point construction to the formation of spaces. This then gives
us the theoretical basis for forming the domains needed for the
semantics of languages like those illustrated above in sections 3 - 5
as well as providing the fixed-point methods for showing that the

semantical equations themselves have solutions.

This discussion has been merely "definition theory". Much work
is being done - and much more needs to be done - in giving a proof
theory and in developing applications to real languages. There are

many indications that the method is both sound and flexible.

104

