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The first of Dr. Rabin's lectures was devoted to the assessment of
the complexity of several combinatorial problems. The main question of
interest in each case is whether the problem is of polynomial, super-—
polynomial or exponential complexity. That, however, is an open question

for a large number of problems.

Examples:

1) The Graph Isomorphism problem: Given two graphs Iy and s, is

there a mapping ¢ of the 'y vertices onto a subset of the I'; vertices

such that the images of two connected vertices are connected?

2) The Map Colouring problem: Given a graph I and a number of

colours, can the vertices of " be coloured in such a way that no two
connected vertices have the same colour?

3) The Satisfiability problem of propositional logic: Given a

logical expression A(p, ,psys.++yP), can a truth assignment of the prop-
ositions p ,p2y...p be found which will make A true?

In general, any problem of this nature can be reduced to one of
deciding whether a given set of objects has a given property. The

notion ot a problem can thus be formalised as follows.

Let P be a set of bit strings. Decide, for any given bit string w,
whether wEP or not.

The number of bits in w is called the size of the problem. If AL
is an algorithm for solving the problem, the complexity FAL(n) of AL is
defined as the maximum number of steps which AL takes to solve problems
of size n. If there exist constants C and k such that

rAL(n) Cn

for all n, then the problem is said to be of polynomial complexity. If
no such constants exist, then the problem is of superpolynomial complex-

ity. If there exists a constant C and a problem size n such that

- n
FAL(n) 2 C
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for all n= n hein cookem is of exponentiel complexity. Of

course‘tk- coder o0 complexity may change depending on the automaton
whiech olves the problem, but for the purpose of distinguishing
setwean polvnomial and exponential complexity we may assume that the
problem is being solved by a Turing machine.

Definition: A problem P polynomially reduces to a problem Q if
there is a Turing Machine calculable map ¢ : {0,11*¥ »+ {0,1}* such that

@(vw)€Q if, and only if, wP and furthermore the time to calculate

@(w) is a polynomial function of | w

It is clear that if P is polynomially reducible to Q and the
complexity of Q is polynomial, then the complexity of P is polynomial,
Conversely, if the complexity of Q is not polynomial, then that of P

is not polymomial.

The notion of polynomial reducibility leads to that of polynomial

completeness, defined as follows:
A problem P is polynomially complete if

1) P is solvable in polynomial time on a non-deterministic

Turing Machine.

2) Every problem which is solvable is polynomial time on a non-

deterministic Turing Machine ig polynomially reducible to P.

A non-deterministic Turing Machine is one for which at every
step of the computation (defined by a state S and symbol under the
head o) there are a number of options of the type:print o, move X,
go to S. All halting computations must produce the same answer. The
time that the non-deterministic Turing Machine takes to solve the

problem is defined as the time of the shortest computation.

The remainder of the lecture was taken up by an outline of the

proof of the following result, due to S. Cook:

Theorem The propositional satisfiability problem is polynomially

complete.

- First one has to show that the problem can be solved by & non-
deterministic Turing Machine in polynomial time. This follows from

the fact that a possible computation is the one which guesses an
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assignment of truth values for the propositions and then verifies
(deterministically) that the expression is satisfied. The verificat-

. 3 3
ion can be done in about n~ steps.

Second, every problem which can be solved by a non-deterministic
Turing Machine in polynomial Lime must be shown to be polynomially
reducible to the propositional satisfiability problem. This is done
as follows. Suppose that T is a non-deterministic Turing Machine
which accepts a set of strings S in polynomial time. For every input
string w one can construct a propositional expression A (in conjunctive
normal form) such that A is satisfiable if, and only if, wES. Further-

more, the size of A is a polynomial function of the size of w.

The idea of the construction is that A is a conjunction of sub-
expressions, each making an assertion about the computation. All
assertions are true if, and only if, wES. Furthermore, since the
length of the computation is a polynomial function of |w|, the number
o squares scanned, and hence the length of each sub-expression, is a

polynomial function of |wj.

In the course of his second lecture Dr., Rabin proved that several
very important and interesting problems were polynomially complete.

The first result illustrated was in the form of the following theorem.

Theorem Satisfiability of proposition formulae is polynomially
reducible to the satisfiability of proposition formulae which are
conjunctions of disjunctions of at most three literals, (where by a

literal we mean either a propositional variable cr its negation).

The proof of this theorem is illustrated by example. Suppose we
have a proposition formula and to each of the logical symbols we
associate new proposition variables. Equivalences can then be set up
so it can readily be seen that, by correctly choosing the new proposit-
ion variables, the original formula is reducible to a proposition

formula which is a conjunction of at most three literals.

The next topic concerns the concept of restricted colouring
problems and in these restricted problems there is no graph, merely a
set of u vertices and three colours. A colouring means that each of

the vertices will be assigned a colour and a restriction is a condition

i
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of the form that the pair (i.i) of vertices shall not be coloured by
these colours 'he map colouring problem is of course a special

cage of this.

Theorem A restricted colouring problem is reducible to the ordinary
map colouring problicm, and from the computational point of view they

are equivalent.

The next step is to show thot satisfiability of special formulae,
to which satisfiability of all formulae is reducible, is not just

reducible to but is a restricted colouring problem.

Consider the special formula which is a conjunction of small
formulae each a disjunction of at most three variables. Since the
conjunction is true if and only if each of the conjuncts is true, we
say that if the second term is true then it is coloured by b and if
the third term is true then it is coloured by c. So it is a question
of colouring the terms or nodes, and for that to be a truth value
assignment there are no restrictions. And thus from such a formula,
interpreting each of the conjuncts as a vertex, certain restrictions
are obtained and this is a restricted colouring problem., This problem
if solvable implies that the formula can be made true, otherwise the
formula cannot be made true. Hence satisfiability of special formulae

is a restricted colouring problem and we obtain the following result.
Theorem The map three-colouring problem is polynomially complete.

This is because the propositional satisfiability problem is
polynomially complete and is reducible in polynomial time to satisfi-
ability of special formulae, which is a restricted colouring problem,
and every restricted colouring problem is reducible to a map colour-

ing problem which involves only three colours,
The next topic¢ concerns n-cliques.

An n-clique is a graph In on n vertices, every two of which are

connected.

Now the clique problem is the computational problem that the graph
contain an » clique as a sub-graph. Alternatively it is an

.somorphisi u

W

lem: is |n isomorphically embeddable in T'?
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This clique problem is polynomially complete and this can be shown

by observing tho® bthe special propositional formulae satisfiability

broblem is a clique problei.
I P

Summing up so far we have the pic

Given a set of strings, B € {0,11¥, is w&B for given w's?
We now introducs Lhe (ollowing notat:
P is the class -1 all problems which are solvable by deterministic

algorithms in polyncmiial timej

NP is the class of all problems which are solvable by (possibly)

non-deterministic algorithms in polynomial time.
We can assert
PEP = f0,11%* = BE P,

However this is not true, on the face of it, for problems which can

be solved by non-deterministic algorithms.
There are now the following three cardinal questions.

1) Is P = NP? Either of the two answers would be interesting.
If this is true then this would mean that every algorithm which is
non-deterministic and terminating in polynomial time can be reduced
to a deterministic algorithm terminating in polynomial time. If
however, PZNP, as is currently suspected, then the complexity of the

k

solution to these problems is not bounded by n* for any k.

2) 1Is NP closed under complementation? If this is false then

of course you have proved that P#NP.

3) Does NP contain problems of truly exponential complexity?
So here is an example of a situation where very original, but rather
simple, ideas shed a completely new light on problems which people
were trying to solve over the years. Also this gives a caution signal
that there may be an inherent exponential complexity with seemingly

very simple combinatorial problems.

The next chapter in the lecture discusses a class of results
obtained by Michael Fisher and Dr. Rabin where there are definite
answers with respect to the complexity of the decision problems in

question.
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First a discussion of the theories of- addition of natural numbers

and the addition of real numbers.

Let
N
R

{0,1,2..},the set of all natural numbers including zero,

Il

the set of all real numbers.

I

Starting with the two structures which are commutative semi-

groups
N = (N, +) and R = (R, +)

we then consider elementary statements about addition which can be
expressed by using first-order predicate logic. Taking a formalism
with the quantifiers ¥, the logical symbols, and the non-logical
symbol +, we have the idea of sentences o Vx Yy [x+y=y+x] and
T ¥Yx Y2 1y [x+y=z]. Now the first sentence is true for natural numbers

and this is written
U&/F: o (where k= means 'is true in')
AMsoN= o7 a,nder—_ (- PO

Next we introduce the notation Th) for the theory of addition of
natural numbers, and we say Th) & {oWl= o} (& means 'is by

definition').

Presburger (c. 1930) proved that Th(/) is decidable; Th{¥) is
called Presburger's Arithmetic, denoted by PA.

Tarski (e. 1929) had shown that the theory of addition and
multiplication of real numbers Th({R,+,x)) is decidable; this is

Tarski's Arithmetic, TA.

Theorem There exists a ¢>0 such that for every algorithm, AL,
for deciding PA there exists an no (n, depends upon the algorithm)
such that for every n>,n, there exists a sentence ¢, 1(0)=n so that
AL takes more than 22cn steps to decide o, where 1(0) denotes the

length of o.

Thus every algorithm from a certain point is doubly exponentially
bad. Two questions arise as a result of this; How big is ny? How
small is ¢? The quantity c¢ depends on the formalism and so a formalism
can be devised with certain shorthands which has the effect of increas-

ing the size of ¢ until ¢ becomes about 0.05. It then turns out that
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super—-exponential explosion sets in with formulae which are of the

order of the size of the algorithm.

Theorem let AX be a system of axioms for PA such that of AX is
decidable in polynomial time. Given ny, and d>0 for every n=n, there
exists a true theorem, w€ PA, 1(w)=n, whose shortest proof (from AX)

n

a
is longer than 2° |

So the trouble is not just that we wish to solve this algorith-
mically in a deterministic way and this makes our procedures very long,
but even if we introduce heuristics, instead of algorithms, it isn't
an answer because the proofs to be produced will be so long that for

modest n the size will exhaust the physical size of the universe,

Similar results hold for TA except that the lower bound is

exponential not doubly exponential.

In the third lecture, Dr. Rabin gave a brief outline of how the
results concerning the exponential complexity of the theory of addition
of real numbers and the super-exponential complexity of the addition of

natural numbers are proved.

Suppose there is an additive semigroup <H,+> which contains the
natural numbers as a subsystem, for example the real numbers. Only
addition is considered; however it is possible to reproduce a multi-
plication table up to a very large number using a short formula
involving just addition., The following key lemma is a precise state-

ment of this.
Lemma,

Let <H,+> o <N,+ (e.g. <H,+>=fR). There exists a d>0 so that for
every n there is a formula Mn(x,y,z), 1(Mn) sdn, satisfying a,b,c,€,H
<H,+> = Mn(a,b,c) if and only if afN, aSZBH,a.b=c, where 1 denotes
length.

The size of the formula Mn(x,y,z) is bounded by dn, and Mn(x,y,z) is
satisfied by the triple a,b,c if and only if a is a natural fnhumber
less than or equal to 2‘?'l and a.b=c, It is necessary to define a.b.

Since a is a natural number, a.b is by definition
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a.b & b+b+,..+b
sum of a b's

and

0.bL0,

Thus a short formula of size up to dn written just in terms of
addition, expresses multiplication by a, where a is a variable integer
assuming values between O and 22n. In particular, the following result
follows

Mn(a,0,0) = a€N a,sfn,
that is a,0=0,

Put in another way, a short formula of size dn can single out from

among the real numbers, integers up to 22n. This in itself is a non-
trivial fact, because it is not difficult to define integers up to 2°
using systems of equations, but to extend it to integers up to 22n is

rather hard.
n
Once we have integers up to 2° and their multiplication table,

it is possible to code arbitrary 0,1 sequences up to size 2" in terms
n
of unique integers up to 2° (since the number of 0,1 sequences of
n

size up to 2" is 2° ). The trick is to write a number m as

m=e + € .2+ e.2% + ... + ¢ 2* where K ~ logsn.
So m corresponds to the sequence (eo,e1 ,ez,...,€ ). Since the number
n
m ranges between O and 2° , these sequences range over all 0,1 sequences

of length 2,

Since it is possible to code 0,1 sequences of length up to 2", it
means that one can talk about non-deterministic computations terminat-
ing in exponential time. Using standard Godel type methods, one can
diagonalise over thesé computations and it then follows that every
decision procedure (for the addition of real numbers) should take at

cu
least 2 steps, where ¢ is a constant,

This result applies essentially to every group; the reals, the
complex numbers and therefore the field of complex numbers. In the
case of a general field, instead of considering the additive group,
the multiplicative group is used. Aﬁ element a is fixed as a parameter

[a] =1
and a“a’a®.,. used to code the sequences. Thus, as before, one can
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recapture the.integers. Hence, it turns out that even for decidable

fields the complexity is always at least 2cn.

The complexity of decision procedures in the addition of natural

numbers can be deduced from the following lemma.

Lemma  For <N,+> there exists d>0 so that for every n there is a formula

Pn(x,y,z), 1(Pn)<dn for which a,b,c € N, and <N,+> & Pn(a,b,c) if and
2n

only O<a,b,c < 22 and a.b=c.

Thus a formula of size proportional to n codes the multiplication
2n
table up to the number 2° Employing the same argument as before,
" n
it is possible to code sequences of length up to 2° and thus the

cn
resulting complexity is 2% .

Godel and Church, by using both addition and multiplication,
obtain undecidability results. Since <N,+> is decidable by Pressburger's
result, we can never hope to define multiplication just by a formula
involving addition, but we can define extremely large chunks of the
multiplication table by short formulae and this gives rise to the
practical undecidability results, which can be seen as chasing after

the results of Godel and Church.

These results point to the moral of this work. There has been a
succession of developments concerning the way we view languages. First,
we started from natural language as translated into mathematics, a sort
of naive set theory, then we used the language in an unrestricted fashion
to write arbitrary expressions and sentences. This lead to the paradox
of the set of all sets which is not an element of itself, so these
arbitrary constructions can be contradictory., The next development was
to formalise the system by introducing axioms. It is known that it
cannot be proved that one has a consistent system, but one hopes the
system is consistent. However, these general languages, like for
example a fragment of the theory of addition and multiplication of
natural numbers, are still strong enough to enable one to write
extremely difficult sentences, sentences which are independent of the
axioms. Thus one has an incomplete system, the language is too strong.
One can then attempt to restrict oneself to certain very limited
fragments, for example <N,+>, which are decidable. Axioms can be

written for <N,+> from which the sentences which are true about the
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addition of natural numbers can be derived. However, the formal lang-
uages still present the problem that theyare an extremely compact means
of expressing statments. As we have shown, in the language of addition
of natural numbers there are hidden large 'chunks of the multiplication
table and this means that one can talk about almost arbitrary computat-
ions which are 2zn big by means of sentences which are of length dn.
These languages are very powerful and one can express in them state-
ments which though decidable are so complicated that their shortest
proof from the axioms is of size 22n. It appears to be a fundamental
difficulty that one is destined not to know the true answer to many

statements.

It is perhaps appropriate to make some comments on the method of
proof, though these comments are completely in the realm of conjecture.
We have one method of proof, for which the shortest proof of a sentence
is essentially of size 22n. No better methods are known, but it is
conjectured that these practically undecidable statements are very
'abundant'. The term 'abundant' cannot be defined because Fﬁepe is
no measure over the space of statements. Such a measure should not
be based on syntactic structure but on semantics, since it is the
meaning of sentences that determines whether a sentence is frequent
or rare not how it is constructed syntactically.. Assuming a measure
existed, it is not unlikely that these extremely difficult sentences
are very abuﬁdant, if not the rule. Consider an analogy with number
theory. One can easily stump the experts by asking a question such
as 'are there infinitely many primes of the form X°+1?' VWhen that
problem has been solved, the question 'are there infinitely many
primes of the form X 4+XP4+177" can be asked. One can go on and ask
many similar questions. It would seem, and this is not based on any
information or proof, that this ability to create arbitrary sentences
just leads to sentences which are practically beyond our methods of
proof. The reason why we are able to prove theorems, and there are
books full of them, is that we, iﬁ a very true sense, only prove those
theorems which we can prove. So by a process of cultural intellectual
revolution, we always make epsilon additions and discover certain
tefritories in which we can operate. Outside these territories, there

are other territories where the shortest proofs are of sizes beyond
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cosmological dimensions and where we will necessarily always be

ignorant.,
Discussion

Professor Scott asked if it is possible to have an inconsistent system

in which the inconsistency was so difficult to prove that it was never
found, but if the system was used with ordinary proofs it would still
be possible to solve problems with it. Dr. Rabin replied that this was
definitely the case., If one has a system in which the shortest proof
of a contradiction is of size say 22200, then one can work with impunity
in such a system., Once one has a contradiction, one can derive 0=1 as
usual, This ties in with another comment on proofs. One possible way
of shortening the very long computations by algorithms is to permit the
existence of errors. An artificial example is that if one wants to be
100% certain of the correctness of a computation to determine whether
or not a fifty-digit number is prime, then it will take about ke

steps. But if one is willing to allow a very small margin of error
then the time of the computation essentially reduces to linear time

in the size of the data. This possibility has not been considered in
detail, bﬁt perhaps should be because in artificial intelligence when
we want to emulate human intelligence, errors are acceptable since

they are part of the human condition.
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