
•

VII I

CONSTRUCTING SYSTEMS FROM PARTS:
WHAT STUDENTS SHOULD LEARN

ABOUT SOFTWARE ARCHITECTURE

M Shaw

Rapporteur: [an Welch

VIII . 2

•

VIII . 3

Constructing Systems from Parts:
What Students Should Learn
about Software Architecture

Mary Shaw
Carnegie Mellon University

Pittsburgh PA
http://www.cs.cmu.edu/ -shaw

G'it"'"" and Design================:=

"Point of view is worth 40 IQ points"
-attr to Alan K;ty

Software architecture provides
new points of view on

integrating components into systems

G 'iteC,"" and Design================~

VIn . 4

Outline

• Software architecture in context
• Abstractions: style, components, and connectors
• Decisions: choosing among alternatives

• Architectural mismatch and its amelioration
• Credentials: partial, evolving specification
• Resource coalitions: prospects for an informatics

marketplace

G'ileCIU" and Design=================:=

Topics of these Seminars

Focus Human Problem Solution Client

UI design Engineering Software
design architecture

Topic
Product Problem Patterns
design frames

G'iteCIure and Design=================~

VIII. 5

Design for Real People

• Challenge:
Disintermediation -- direct connection of non-experts to

software -- raises the bar for usability

• Successes:
Spreadsheets, the Web, integrated office suites, (perhaps)

Visual Basic.

No te: these largely originated outside computer science

• Gentle-slope systems:
Learning curve should match the reward curve -- a little

effort should generate some useful results, more effort
should be rewarded proportionally

• People who study CS know woefully little about
this

G'iteclIm and Design ==================:=

Engineering Design --. Decisions

• You must discriminate among
> different kinds of problems
> different kinds of solutions

• You must make informed choices to match
solutions with problems
> different kinds of problems match different kinds of

solutions

The decisions with the most impact are the ones that
deal with overall system organization

G 'iteC"''' and Design ==================:=

•

VIII . 6

Engineering Design

Engineering is ...
Creat ing cost-effective so lutions to practical problems by

applying scien tific knowledge when possible, building
things, in the service of mankind

• Warning--
No amount of technique, method, tool ing, or other rate or

automatic suppo rt can subs titute for actually
understanding the problem -- and the limitations of the
possible solutions

• Distinction: innovative vs routine design
Virtuosos are required for novel applications; variations

on familiar themes can be carried out by more ordinary
folk

G 'ilecture and Design==================:==

Problems and Solutions

• Problem
> Requires context -- the subject matter of the system

» Relevant parts of real world, their properties & relations
» Often nonformal and in heterogeneous notations

> Software designer must be able to learn about domain
» phenomenology, technology of description, formalization

> Problem frame == principal parts + solution task

• Solution
> characteristics of the machine that solves the problem
> draw on standard parts, templates, ..

> software architectllre, patterns, programming cliches

G 'itecture and Design==================;:==

..

VIII . 7

Patterns

• Structured fonn for explanation of design element
> Uniform structure similar to handbooks
> Provides rationale and terms of use as well as definition

• Strength in families
> Collections of related patterns intended to work toge ther
> Often call ed "pattern languages"

• Not limited in subject matter
> Principally found in object-oriented design at present
> Also suitable for sys tem-level design elements

G ,uecMeand Desjgn=================~:=

Nut S !on

Typical Descriptions of
Software Architectures

.. J
• Descriptions of software

systems often include a
section on "the architecture of
this system"

• Usually informal prose plus
box-and-line diagram

• Lots of appeal to intuition

• Little precision, rarely formal

r-::hilecture and Design =================~:= ~ "

VIII. 8

{{sampfe arcliitectura[aiagrams]]

GrchiteCtllre and Design ===================
"

Typical Descriptions of
Software Architectures

> "Camelot is based on the client-server model and uses
remote procedure caIls both 10caIly and remotely to
provide communication among applications and
servers." [Spector 87]

> "We have chosen a distributed, object-oriented approach
to managing information." [Linton 87]

> "The easiest way to make the canonical sequential
compiler into a concurrent compiler is to pipeline the
execution of the compiler phases over a number of
processors." [Seshadri 88]

> "The ARC network [foIlows] the general network
architecture specified by the ISO in the Open Systems
Interconnection Reference ModeL" [Paulk 85]

G-rchitecture and Desigll ===================
"

VIII. 9

Observations about Designers

• They freely use informal styles (idioms)
> Very informal, imprecise semantics
> Diagrams as well as prose, but no uniform rules

> Communication takes place anyhow

• Their vocabulary uses system-level abstractions
> Overall organization (s ty les)

> Kinds of components, dis tinguished by role in system

> Kinds of interactions among components

• They compose systems from subsystems
> Tend to think about sys tem structure s tatically

> Often select organization by default, not by design

GrC/Ii(ectllre and Desigll ===================
"

Component Properties

• Functional < .••• What many folks mean by "specification"
> Type, signature, pre/post conditions

• Structural < ...• What many folks mean by "architecture"
> Packaging: component type & allowed interactions

• Extra-functionak·.·-What often appears in product spec
> Performance, capacity, environment, global properties

• Family < •• _- What often is included in "conjig mgt"
> Shared assumptions, constraints on aggregates, envelope of

allowable variation

G· rchitecture alld Desig1l===================
"

VIII. 10

The Architecture of a Software System ...

• Defines the system structurally, in terms of
components and interactions among components
> We believe the interactions are so critical that they

should be recognized explicitly as design elements

• Shows correspondence between requirements and
elements of the constructed system

• Addresses system-level properties such as scale,
capacity, throughput, consistency, compatibility

• Captures and preserves designer's intentions
about system organization and structure

GrCfl iteCIUre alld Desigll==================

"

Software Architecture Topic Areas

• Descriptive techniques
> Notation (ADLs), descriptive formalism, graphical tools

> Design methods focused on use of a notation

• Abstractions about architectures
> Classification and comparison of styles
> Interactions of multiple views

> Patterns as descriptive vehicle

• Homogeneous (fixed-style) architectures for
particular targets
> Product families
> Domain-specific architectures
> Specific styles/frameworks (0-0, event, dynamic, ",)

Grch irectlt re and Desigll ==================c:==
"

•

VIII. 11

Software Architecture Topic Areas

• Heterogeneous (multi-style or ad hoc)
architectures as seen in practice
> Design, including use of COTS, reuse
> Interoperability and mismatch resolution
> Evolution

• Analysis
> Quali ty attributes
> Behavior, pe rformance

> Reverse engineering, architecture recovery

• Formal methods
> Specifications and formalisms
> Models

G-rchilee/ure and DeSign=================:::=
"

Key Ideas

• Structure matters -- overall organization,
kinds of components, how they interact

• Interaction matters -- how a component
must interact, not just what it computes

• Abstraction matters -- the designer's view
of interaction, not just the procedure calls

• Decisions matter -- different kinds of
problems require different solutions

Provide a solid basis in models, notations, and
tools to support developers ' intuitions

Grelliteclure and Des;gn ==================::=
"

VIII . 12

Anticipated Benefits

• Clarify intentions
• Make decisions and implications explicit
• Pennit system-level analysis

TesVAccept Maintenance

update document (6%) -..
test & debug (28%)

Reduce maintenance
and evolution

costs, directly and
indirectly

trace logic (23%)

G implement change (19%)

Architectureatld Desig,,====================

Outline

• Software architecture in context
• Abstractions: style, components, and connectors
• Decisions: choosing among alternatives

• Architectural mismatch and its amelioration
• Credentials: partial, evolving specification
• Resource coalitions: prospects for an informatics

marketplace

"

G'it,eIU" and Design ====================;;:==

•

VIII . IJ

Building Systems from Parts

• The hype:
n ••. and then we' ll be able to construct software systems
by picking out parts and plugging them together, just
like Tinkertoys ... n

• The hard cold truth:
It' s more like having a bathtub full of Tinkertoy, Lego,
Erector set, Lincoln logs, Block City, and six other
incompatible kits -- picking out parts that fit specific
functions and expecting them to fit together

G· rchitecture and Desigll==================
"

Elements of Architectural Style

• Patterns of system composition
> Constraints on component and connector topologies
> Example: pipeline

• Family of compatible parts
> Selection of interoperable components and connectors
> Example: clients and servers

• Conventions about the meaning of architectural
descriptions
> Semantic interpretations
> Example: lines mean pipes, boxes mean filters

G,;/eCIU" and D,,;g,,=================,,=

VIn . 14

Pipeline

Data flo'NASCIl stream
,4

----+!~ 1,-,_ .. -----'r-----+i~~'-_-_-_-' __ ·:;;.>_ • .-~I~==~>
Computation fil ter

G, rchitecturt:Qlld Design ===================
"

Data Abstraction (Classical Objects)

Proc call

obi is a ma nager

op is an invocation

G~"Chit('ctrtrl.: "lid /)es ign ===================;;=
"

tS
"" Process

VII I. is

Events

,
'~"

?

\' ?

d
~?
U/

'\ .

G lircctn" and O"i.<" ==========I=m=p=l=iC=it=ln=,v=o=c=a=ti=o=n=
i~

Repository (Blackboard)

Blackboard
(shared

data)

ks4)

G'iIW"" ""d J)"i8" =================
"

VII I. 16

Comparison of System Patterns

System ,,-lodel Components Connections ControlStruct

Pipeline

stream -> filters Oocal data flow data flow
stream processing) ASCII streams

Data abstraction (object-oriented)

localized servers procedure decentralized,
state maint (ADTs,objs) call single thread

Event

spontaneous independent implicit asynchronous
reaction processes invocation processes

Repository

central 1 memory direct access internal or
database N processes or proc call external

G ,irc,tu" aud D"(~"

Connectors are First Class

Beyond the module level:

l~

How a component interacts with its environment is
as important as what it computes.

connector

r.2c"jl('(.'C/lr~' lil/d lhrign ===================::== ~ 2$

omponent

•

•

VII I. 17

Why distinguish connectors?

• Locality: Information about component interaction
is usually distributed through the app lication code
and hence hard to find and change

• Separation of concerns: Different expertise and
design considerations are involved in designing
application and inter-componen t interactions.

• A bstraction: Designers use abstrac tions ("RPC")
that don't appear in code; code contains calls on the
procedure libraries that implement the abstractions

• Choice: Explicit design elem en ts are m ore likely to
receive focused consideration and less likely to be
ignored or defaulted,

GrChiteClIlre and Desigll================
"

Architecture Description Languages

• Provide text and/or graphical notation for system
descriptions using these abstractions

• May support one or many styles
• Support analysis, code generation, compilation
• Most focus on a few aspects of the problem
• Organization compatible with unix-style

environments, less so with PC development

G ,;,eClure and Desig"================,,,=

VIn .1 8

Example: Canonical Compiler

~ ! Lex H Syn H Sem H Opt H Code F

This is the textbook version

Changing your point of view
can lead to more useful view of system

8 'i"CI"" a",/ D,sig ,,=================,=, =

Canonical Compiler: Troublesome Details

Te7\! ->/ L~-: :->l
~-' j

Pipeline?
No, Batch Sequentia l

G' l rChil('ct ltrf.,' and f)t:~jgll==================
"

•

VIII . 19

Example: Modern Canonical Compiler

,.- // , ... , . -
:-~: : _._ -._ _ __ .. __!___ __. __ -, ~ .. "" __ .,-;:,,1'".

-'" -: -'-- -'~'~L~f2:f'l'""' ,->

G "ccc",,, a"d 0'.1;-""=================.-:;;=

Example: Modern Canonical Compiler

Vestigial data flow

\

~
Computations

(transducers and
transforms)

G"tW"" u"d [)"iK"=================:~

VII I. 20

Canonical Compiler/ Revisited

Tree

SymTab

G "'CCcl'''' alUl Desig" =================."5=

Outline

• Software architecture in context
• Abstractions: style, components, and connectors
• Decisions: choosing among alternatives

• Architectural mismatch and its amelioration
• Credentials: partial, evolving specification
• Resollrce coalitions: prospects for an informatics

marketplace

G'ille,,,,, ""d [)"ig"==================:",,:,,. =

VI II . 21

Building Systems from Parts

·The hype:
If you just use the XYZZY method, everything will work
ou t fine

• The hard cold truth:
Different problems require different organizations; each
organization or method has strengths and weaknesses;
there is no "silver bullet" or universal so lution. Careful,
deliberate choices are required.

GrChireCtilre and Design ================"",=
"

How Do You Choose an Architecture?

• Organize the next system like the last one
• Adhere to company coding guidelines
• Follow the latest fad
• Use a prescriptive methodology or tool

•
• Use the definitive architecture for your

application domain
• Evaluate alternatives on the basis of

> characteristics of the application requirements
> constraints of the operating environment

G litectu" and Design=================,,=

VIII.22

Status of Results

• Not all CS results are established scientific truths; we do
have interesting observations and generalizations.

• Brooks proposes recognizing three kinds of results, with
individual criteria for quality:
> findings -- well-established scientific truths -- judged by

truthfulness and rigor
> observations -- reports on actual phenomena -- judged by

interestingness
> rules-of-thumb -- generalizations, signed by an author but

perhaps not fully supported by data) -- judged by usefulness
with freshness as criterion for all

• Discriminations among styles and classification are
observations, based on examining system descriptions

• Suggestions about style selection are rules of thumb

~
ane's design guidance is properly validated finding

Architecture alld Desigll ===================::=
"

Taxonomy of Architectural Styles

Data Flow
Batch sequential
Dataflow network

acylic, fanout, pipeline, unix

Closed loop control

Call-and-return
Main program/subroutines
Information hiding

ADT, object, naive c1ientlsrvr

Interacting processes
Communicating processes

LW processes, distrib objects,

Event systems

Data-oriented repository
Transactional databases

True client/server

Blackboard
Modem compiler

Data-sharing
Compound documents
Hypertext
Fortran COMMON
LW processes

Hierarchical
Layered

Interpreter

G,UeClU" and Design===================~=

•

VIn . 23

Classification Basis for Taxonomy

• Constituent parts
> Components, connectors

• Control issues
> Topology, synchronicity, binding times

• Data issues
> Topology, continuity, mode, binding times

• Control-data interaction
> Isomorphism of topology, flow directions

• Type of reasoning supported

GrChitecrure and Desigll ==================::=
"

Software Design Decisions

• Design spaces for function and structure

• Some functional requirements favor or disfavor
certain structures

> capture these as a set of preference rules
> develop prototype designer's advisor

Functional
require
ments

Structural
design

decisions

·PhD thesis (Tom Lane) on user interface decisions
·Similar problems for other software decisions

GrChiteclureand DeSigll =================::==

"

VIn.24

Rules of Thumb Re Data Flow

• If your problem can be decomposed into sequential
stages, consider batch sequential or pipeline
archi tectures.
> If in addition each stage is incremental, so that later stages can

begin before earlier stages finish, consider a pipeline architecture.

• If your problem involves transformations on continuous
streams of data (or on very long streams), consider a
pipeline architecture.
> However, if your problem involves passing rich data

representations, avoid pipelines restricted to ASCII.

• If your system involves controlling continuing action, is
embedded in a physical system, and is subject to
unpredictable external perturbation so that preset
algorithms go awry, consider a closed loop architecture.

G'itect"re and Design===================

Rules of Thumb Re Objects and
Repositories

• If a central issue is understanding the data of the
application, its management, and its representation,
consider a repository or abstract data type architecture.
If the data is long-lived, focus on repositories.
> If the representation of data is likely to change over the

lifetime of the program, abstract data types or objects can
confine the changes to particular components.

> If you are considering repositories and the input data is noisy
(low signal-to-noise ratio) and the execution order cannot be
predetermined, consider a blackboard.

> If you are considering repositories and the execution order is
determined by a stream of incoming requests and the data is
highly structured, consider a database management system.

G'itect"re and Design==================::==

VII I . 25

Rules of Thumb Re
Processes, Virtual Machines

• If your task requires a high degree of flexibility/
configurability, loose coupling between tasks, and
reactive tasks, consider interacting processes
> If you have reason not to bind the recipients of signals to their

originators, consider an even t architecture.

> If the tasks are of a hierarchical nature, cons ider a replicated
worker or heartbeat s tyle.

> If the tasks are divided between producers and consumers,
consider a client-server style (naive or sophisticated).

> If it makes sense for all of the tasks to communicate with each
other in a fully connected grap h, consider a token passing
style .

• If you have designed a computation but have no
machine on which you can execute it, consider an
interpreter architecture.

G'i/ecll'" and Des;gn ===================;,,:=

Outline

• Software architecture in context
• Abstractions: style, components, and connectors
• Decisions: choosing among alternatives

• Architectural mismatch and its amelioration
• Credentials: partial, evolving specification
• Resource coalitions: prospects for an informatics

marketplace

G,;tectuu and Des;gn ===================; .. :=

DISCUSSION

Rapporteur: [an Welch

Lecture One

VIn.26

A participant asked if Professor Shaw could clarify what she meant by programmed system.
She rep li ed that she meant a software system in general. He queried whether she meant a
sys tem composed of one or many components and whether complex systems ever had an
overall architectural view . In hi s experience complex systems evolved over time, perhaps
over many years, without anyone act ive ly designing an overall arch itecture. She responded
that research into how people spent their time maintaining sys tems had revealed that a
significant proportion was spent rediscovering the underl ying architec ture of the system. If,
when changes were to be made to a sys tem, an overall architecture was available then
considerable producti vity increases could be expected. For those real li fe systems where no
architectural design had taken place there are tools being developed that di scover the
architecture by examining the software artefacts.

Professor Randell asked if she was talking about the virtual or the real architecture. A virtual
architecture may be compiled into a real architecture that no longer refl ected the virtual
architecture used by the des igne rs to structure the solution. She replied that thi s was related
to the documentation problem. [f the re is no real ga in to programmers in keepi ng
documentation up to date then they won't. One answer is to integrate the architectural design
into the system build process - actually compile from the architecture. Professo r Randell
sugges ted that you may need additional information relating to the environment to make
sense of errors when compiling - fo r example memory model problems. A participant from
ICL suggested that although direct compilation from the system architecture may be
unfeasable at present they have gained from using the system architecture to drive system
testing. This has given a direct payoff fo r keeping the system architecture up to date . Mr
Jackson commented that the key is ensuring that the payoff is to the person who creates the
problem in first place - so if the programmer is the one changing the sys tem then there must
be some direct benefit to hirnlher of maintaining the system architecture or documentation.

Professor Shaw was describing the bathtub problem - in a world of reuse we are faced not
with a set of tinkertoys that can be eas ily assembled together, we have a bathtub of many
types of toys from Lego to Meccano. We want to be able to use apparently incompatible toys
together. To this one participant asked whether this wasn't being solved by technologies
such as CORBA that allow interconnection of different types of components. She replied that
this wasn't the whole story, as besides interconnection you have to decide on the suitability
of the type of toy for the problem and the problem of interrelating two quite different types.
Lego bricks are good for walls and Meccano is good for trusses not vice versa. How do you
reconcile their different innate "types" when using them together?

Professor Randell asked if components and connectors had internal structure. Professor
Shaw replied that connectors don't but components do. There was no reason why
connectors shouldn't and in fact people were working on this problem but there where a few
open questions about the mapping of the interface to internal states for connectors.

Professor Randell asked if all connectors were binary. Professor Shaw replied that only in
her diagram shown they are, but in fact in their tool connectors they can be symmetric,
asymmetric, many~tendriled etc. Also connectors can be static or dynamic. However, people
find it easier to reason about sys tems built from static connectors.

Dr de Lemos asked if there was really any difference between components and connectors -
were connectors not in fact specialised components. Professor Shaw replied that in her view
components were localised points of computation and connectors were message passing
conduits. Dr de Lemos replied that this was not precise enough and could easily be blurred.
Professor Brooks sugges ted that the reason people used this component and connector

•

VIII. 27

model was that genera ll y people had drawn infor mal d iag rams o f components joined by
lines . A connec tor was essentiall y a formalisation of those in fo rmal li nes.

Professor Shaw concluded by say ing that if yo u wished you could certainly have a model
that was just components.

But the d istinctio n between components and connectors was useful because, as Professor
Brooks had sugges ted, peo ple were already fa mili ar with the idea o f re presenting systems in
terms of components and connections between them. Also the really important thing was that
the interactions between components were represented as first class entiti es that exposed the
choices people made about interactions and made reasoning about them poss ible. In the past
interactions were buried in the code which made this very di ffi cult espec iall y as in terac tions
are reall y the heart of how a computer system works.

Professor Randell queried a comment about current ADLs being oriented more to Uni x like
de ve lopment environments rather than PC development environments. What made PCs so
different? Professor Shaw explained that unli ke Unix development env ironments where
compilation units were separately crafted essentially fro m scratch PC development revolved
aro und the use o f w izards that generated code that was modified . Wizards meant high
producti vity bu t make it d iffi cult to make major changes to say the front end of the system.
ADLs don't have any concept of thi s type of development.

In response to Professor Shaw's example o f a compiler architec ture not rea lly being a
pipe line as usually imagined, Mr Jackson made the point that architectural change is often
driven by technological change. His example was the availability of more RAM made online
process ing possible resulting in fewer batch architectures being used. So old compilers were
batch like but the ad ve nt of cheap memory allowed other architectures to be developed.
Professor Shaw agreed that changes in technology led to changes in architectures used to
solve problems.

A partic ipant as ked what was Professor Shaw's definition of design and how did it differ
fro m architecture. To him her lifecycle blurred design of solution and architectural phases.
She suggested that she wasn't defending her lifecycle or phase definitions to the death - they
were more to break away from the waterfall model and open up new views. Indeed des ign
means many things to many di fferent people with architecture overlapping with high level
des ign.

VIn.28

