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Se l ec t ed from t h e fi e ld of "C omputational Compl exity ", the se 

l ec tures wi ll d eal with two aspects whi c h may be t e rm ed "Arithme ti c 

Compl exi t y " a nd "Analyti c Compl e xi t y ". Some other a s p ec t s of th e 

subj ec t wi ll be covered by Profes s o1 Ra bin in a separate ser i es o f 

l ecture s dur i ng thi s ~ em inar· . 

Ari thOle Li (; Cora pl exi t y 

On p. can ju" tify s tudi c s of t hi s s ubj ec t with the ass e r tion that 

Ilumerica l ( 0 1' a, i t hm eti cal) c om pu tation i s very mu ch a t the centre 

of Computing S c i e n ce act i v i t i es . It there for e follows that any 

Jrnowl edge t hat c a n be obta ined a bou t t h e a l g o r ithm s u sed mu s t b e a 

use ful a ddi t. i on to Computing Scien ce a s a whol e . Howev e r, the 

a utho r' s own inta r es t goe s ra th e I' beyond t hat ge n e r a l i deal: 

t h e r e Il r e t wo pl 'inci p a l r eas on s fo r s t udy ing ari t hme ti c c ompl exity 

as a .:s pec j a .L c ast' of c omputat i ona l c om pl exi ty . The f irs t i s the 

'lue s ti on o f wh e th er a pa,·t i c ul lll· a l go ri t hm c an b e s hown to be the 

mo't I' ff ici ent way p oss i bl e f o r s o l v ing a g ive n t y pe of probl e m. 

~u c h a re s ul t will certainly be u s eful in that i t obv i ates the n eed 

to s earc h f a " bett" ,· a lgo,·i t hms . Sec ond l y , a nd perha ps t h e mo s t 

s a ti s f y ing a s pe c t , i s t hat s tudy wi ll revea l a c ompl e t e l y n ew 

a l g o l' i t hm. One c a n See tha t we h ave t he beginnings of a sys t e mati c 

way of l oo king at a l go rithms , and be i ng abl e to find new ones. 

Obj ecti ves of t he s t ud i es 

\·: :-::-.c nt i n ll y w(' ar e try ing to iii <.: cove r how many arithm eti c 
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operations are needed to solve a given problem. In this respect 

such studies differ from what is termed "Analysis of Algorithms" 

in that we are not trying to find out how many arithmatic operations 

are used by a given algorithm, but rather trying to find the best 

way to solve a given problem, in terms of the arithmetic operations 

involved. In general, we are interested in di scovering how many 

additions/subtractions, multiplications/divisions or other operations 

are required to compute a set of algebraic expressions. 

Taking first the simple example belo,,-: 

= 

= 

(ao - all (b l - bol + aobn + ~ 10
1 

albl 

This example has already been discussed in the lecture by Profes sor 

J. Hopcroft, and refers pos sibly to the problem of doing double

precision multiplication. Evaluation by the le ft-hand side 

requires four multiplic~tions and one addition, by the right-hand 

s ide, three multiplications and four additions. We can in~ediately 

ask ourselves the following questions: 

1 . I s there another way u sing just t wo multiplications? 

2. Is three the minimum number of additions? 

3. Is one the minimum number of additions? 

4. I s there an unavoidabl e trade-off between the number of multip

lications and additions? 

These are typical of the kind s of questions we can raise when con

fronted by such a problem. It is hoped that the present di scussion 

wi 11 show that there are some answers to the se questions, and also 

that t here are many mc.re unre so lved problems. 
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Mathematical formulation 

The general problem may be stated in a rigorous fashion as 

follows: we have a given number of variables (indeterminates) 

Zl' Z2' •.• , ~ and we wish to compute certain rational functions 

in these variables 

when we are given some part of these functions 

In the example, what we might be given are the rational numbers 

themselves and the variables Zl' Z2' ... , Zk. However in general 

we can say we are g iven the set B, and from this we are to build 

whatever it is that we are interested in computing. We then can 

ask the various questions l isted above. The general problem as 

otated here is too difficult to so lve , but we can first consider 

the linear case as a simpler sub-prob lem. By this we mean that 

the variahles Z, are partitioned into two sets, denoted (x
1

,x
2

, ... 
and {Yl ' Yr;;' , Y.l and we ass ume that the expressior.s to be 

computed are linear in the xJ • This may be stated in the form: 

+ (: 
That is 

-t ;::; ~ t. x n X + ~ 
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where the ~ ' .I are rationa l functions in y, and t h e e l ements "\ 

(the con stant terms) are also functions in Yk' 

We may now g i ve the following definition of the " rank" of t h e 

matrix ~ . 

Definition 1 The column (row) rank of ~ , denoted by Pc (~) (p, (~)) 

is the largest number of co lumns (rows ) s u ch t hat no linear combinat ion 

of them yields a co lumn (row) with al l entries rational numbers. 

Thi s concept of "rank" is not that normally defined for a 

matrix that i s , the l argest numbe r of linearly independent co lumn s 

(rows ): it i s in fact the number of columns (rows) whi c h will not 

yie ld a co lumn ( row), a ll of who se entrie s are con s tants. Th e 

weighting functions themse l ves must be rational numb e r s . Note that 

this definition impli es that the row and column r'ranks " are not 

necessari l y equal. 

We can now derive several res ul ts from this dpfinition of rank . 

The fir s t resu l t , stated by the theorem below, allows u s to obtain 

a lower bound for t h e number of multipli cations/divisions required 

to evaluate the expression . 

Theorem 1 Every a l gori t hm for computing ~x + '1' from 

Q(YJ' ... , Y. ) U Q (x" ... ,xn ) requires at l east max (p, (4 ) , Pc (4 )) 

multipli cations/divisions, even if mul tipl ication by a rational 

number i s not counted. 

Thi s means t hat if we compute 4 x + '1' , s tarting with a ny 

possible rational functions of the (Yl' ... , Ym ) and the variabl es 

(x.
" 

••• , x . ) as data for constructing t h e a l gori thm, t hen we s hall 

need to perform a number of mu l tiplications equal nt least to the 

largest of t he two ranks in order to perform the computation , a nd 

this is even i.f mu l tiplication by a fixed retional numher is not 

co un t ed. 

S imilarly , the fo llowing l h eorem a ll ows u s to pl ac"a bound 
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on t he number of additions/subtractions, s imply by subtrac ting the 

number of rows in the matrix from the nwnber of non- z ero co l umns. 

The orem 2 Every algorithm for computing ~t,. x from Q(Y1' ... ,Y. ) 

I I Q(x
" 

... , x. ) requires a t l ea st p(~) - t additions/subtractions, 

where p(~) i s the number of non-z ero columns . 

What do these two rather innocuous theorems t e l l us? Firstl y, 

we can see that in the example given ear l ier we had already obtained 

the optimal re s u l t. We have: 

so t hat the minimum number of multipl i cations is indeed three. 

Here we have replac ed (Y1' . . . ,Y. ) by (ao ' a,) and the (x" ... ,x. ) 

by (bo ' b, ). We a l so see that the minimum number of additions i s 

one. However the necessary trade-off is still unknown; the algorithm 

s imply shows us how we can ac hieve the theoretical resu l t. Another 

result eas ily s hown i s that for forming an inner product: 

I a, b , = ( a" a~ , . . . , ao ) 
1;; 1. 

sh owing t hat the minimum number of multiplications i s n, a nd of 

additions i s n-1. We know a l ready how to do this of course. 

Another exampl e i s a 3x4 matrix multiplied by a vector. Expressing 

t h i s in the form: 

b, -(: b~ b3 b" o 0 0 0 0 0 00) a, 

b" a a a b, b" b" b" 0 a a a a., 
bd a a a 00 a 0 b, bab:,b" 
1>. a'2 

51 

,. 



we obtain 12 for the minimum number of multipli cations, and 9 for 

the number of additions. The rearrangement allows us to obtain 

a matrix with al l the columns linearly independent by replacing 

the (Yl' . . . , Ym) with the b's and the (x, , ... , xm) with the a's . 

The normal a l gorithms would indeed achieve this, and we can see 

that in general the product of ~, q ~ requires pq multiplication 

and p(q-1) additions . 

Taking now the case of a symmetric matrix: 

\ 

a, a." "" b, b, b" b3 0 0 0 

] a-" a, a". b2 = 0 b, 0 b~ bs 0 

"" a" as bs 0 0 b, 0 ba bd 

we s ee that the minimum number" of mu l tipli cations i s s ix. The 

following identity does perform the evaluation using 6 multiplications 

and so i s optimal: 

In general, An ,n .!>. , where A i s symm etric, r equires n(n+1 ) / 2 

multiplications . 

Another exampl e , computing the produ ct of two compl ex numbe r s , 

r equires a minimum of three mul t iplications . Thi s can be done a s 

follows : 

a c - bd = a c bd 

ad + bc = ( a + b)(c + d) - a c - bd 

It i s hoped by now that it s hould be cl ear that thu li.near 

Ca se we have been s tudy ing , although a s pec ial cal:)e , s t.il l g i ve s 

a g ood many use ful r esults f or a. wi de r angt' o f pr obl ems . 
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Another e xampl e we can examine , stil l using the linear case , is 

the evaluat ion of a po l ynomial. Here we may write : 

n 

p (x) = "i~ = (1. x • .f • ...• ,(') 
(

8.0, . ) 
8.0 ' 

Once we have the form of t h e right-hand-side . we see t hat t here are 

n linearly independent columns. namely. t h e seco nd to the ( n+ 1) st 

columns . Therefore the evaluation r equires at l east n mul tiplicati ons 

and n+ 1-1 additions for an nt h order po l y nomi al , whic h we know can he 

done using Horner's Rule. For t h e case of a system of po l y nomia l s we 

see that there is no reaso n to search for clever s olutions; the tota l 

number of mul tiplications is simply the sum of lhe degrees. as i t is 

a l so for the additions. Furthermore . for a polynomia l in k variab l es 

ve also have the result that (n+ 1 )' -1 multip l ication and ( 0+ 1)' -1 

add i tions are needed. whi c h can al so be done by st raight fo rwa rd 

extensions of Horner ' s Rule. There are variou s other linear problems 

that can be examined. hut it i s hoped t hat lhe f o r egoing examples 

have been s ufficient to convey Lhe ideas, I n c identally. there are 

very few results concerning non-l inear functions : one particul arly 

interesting resul t . due to St.raussen. is that t h e numbe r of mulli p

lications needed to compute all the symmetric functions on n \'ariahle~ 

is n l og 11. 

Preconditioning 

Remaining st ill with linear fun et.ions, Lhe r" e are other questiofl S 

t hat we can also ask about these. Considering the evalualion of 

polynomials, we take a particular case of eva lua titl!{ a {" ou /"tlt degre e 

poly nomial with many different va lues o f' the variable x: -
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"" x + "" X + "" X + a , X + Bo 

= "" ( [x (x+x) + 13 J [x (x+O') + x+y J + 6 ) 

wher e CI :::; 

a , 
~ - -

"" 
y 

ao 

"" 
6 "0 - -

"" 

2"" 

- 0' 

- 0' ( 0' + 

- By 

( a~ _ 0' (0' + 1)) 
"" 

1 ) - S 

Thi s a l g or ithm appear s in t he paper by Todd a nd i s attri buted to 

Hotzkin. If the qua nti ties 0' , S , Y, 6 , depending on l ,Y on the 

coeffic i ents , are fir st evaluated and then used en th e identity, 

only t hree mu l tiplicat ions and five add itions are needed f or eac h 

evaluation . Of course we must invest 7 multiplications and 7 add

itions for the initial computation of t he 0' , 13 , v , 6 , but thi s is 

obvious l y wo r thwhil e if the eval uati on is to be done many times . 

Wh e n we are confronted with such a n a l gorithm, the que s tion that 

immediate l y s prings to mind i s wh e ther th e re exists a no t he r identity 

wh ich uses even fewer mul t i pli cations , or i s thi s one minima l ? 

Examining t hi s problem with the formali sm we have already 

d eve l oped, we see t ha t t he a ct of computing the 0' , R . ", 6 effect

ively means that any fun ction of th c (x, , . . . , xn ) en our general 

express ion (whe r e the x, Xn have been u sed to r e prcsent the 

coeffici ents of t hc po l y nomial) i s g i ve n t o u s . So now we can as k 

tho same que s tions a s 

fun c tions of h oth tho 

be f ore , onl y now s tarting wi t h rati ona l , ' 

(y" ••• , y. ) and (x" ... x" l. In I.hi s 

t il(' r' ollowing t heol' em h old~ : 

Theorem 3 Every algorithm 1' 01' c onq.Hliing tPl ~ tl !'r'ol!! 

Q(.Y " ••• Ym ) '/ Q (Xl ' ... , Xn) ,'cquil' cs at l ca," P, (1, ) / 2 llIu l Lipli -
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cations/divi s ions and P (~) - t additions/subtractions . 

Thus the required number of mul tiplications i s now the rank 

divided by two, the numbe r of additions bei ng the same as befor e . 

Ini t i ally at l east , these results are rather s urpri s ing. They 

mean that 

(a) It i s possi bl e to reduce the number of multiplications 

required if we are wil l ing to precomput e some of the 

coeffici ents . 

(b) The number of multiplications cannot be reduced by morc 

than one half. 

(c) There i s nothing that can be done to redu ce the number 

of additions. 

The result of Todd and ~otzkin can now be stated as a coro llary 

to thi s theorem: At l east t(n+1 ) multiplications and n additions are 

required to compute P (x) = £ a, x even when prec onditioning of the 
i = 0 

coeffi c i ents i s allowed. 

At this poin t , one could give a simi l ar se t of results a s was 

done for t he fi rst theorem , but instead, l et us just concentrate on 

the polynomial case we have started with, a nd see what re sult s have 

actually been obtained with practical algorithms . We can li s t the 

fo ll owing : 

One a l gorithm u ses t(n+2) multipli cation s for n<9, a nd t(n+1) 

mul ti pli cations for m:9 , with n + 7 additions. This however has 

the drawback that the algebra.ic operations involved in the prccon-

di tioning may resul t in complex numbers , even wh en th o ol'ig ina l 

coeff i c i ents are real, s ince they require taking roots of polynomial s . 

Anoth e,' reali ses the computation in t(n+4) mul t iplications a.nd 

n+3 additions. Thi s still requires operations which pxtract Lhe 

roots of polynomials, but re s ult s in real numbers after precondition

ing if t he original c oeff i cients are real. 
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Another a lgorithm s hows how to do the computation in n/2 + 0(n2 ) 
.1 

mul t ipli cations and n + 0(n 2
) additions, u s ing only the four arith-

meti c operations in the preconditioning. 

But we may s till have other questions about us ing any of these 

a l gorithms : in particular what i s the eff ec t on the numerical 

accuracy of these a l gorithms? 

Taking the very specific example 

l '. .1 ~ .i 2 11. 2-
81 x + 

81 
x + 

27 
x + 

27 
x + 

9 

, 
Horner s rule gives 

(( (il x + i l) x + 17) 
11 ) 2-x + 27 x + 9 

Todd a nd Motzkin' s algorithms gives 

i 1 ((( x(x+2) + 21) (x (x+2) oj x-15) + 360) 

In s pecting thi s l ast express ion, we see that we are confronted 

wi t h a scriou :::i problem in rOUfHling errors when we have s mall x. 

Note that s ince such a l gorithms might we ll be used for buildi ng up 

the el ementary function s ubrout ine s (suc h as sin x), where it i s 

qui te common to call the routine f or small x, i t will prove extreme l y 

unsuitable in practice. Fortunate l y , thi s i s no t the only way of 

do ing the evaluat ion. We a l so have , for ins tance, 

i1 xG x - ~) + 

ancl even better, 

85)(lx tl 
81 . 3 \3 

x _ -32)+ x 59) + 8660 
- 81 6561 

(
1 ( 1 1 ', 25\ : 1 (11 \ 1 1) 430 3 x \3 x + }) + 27 ) \3 x \3 x + 3}+ 3 x - 27 + 729 

Here thc e venly-ba l a nced coeff i cients great l y reduce t he rounding 

error probl ems incurred by the Todd and Motzkin a l gorithm . Thus we 

see that there i s s ti ll a l arg e freedom of choice among a l gorithms 
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with t he same number of arithmetic operations, but having different 

nume r ical accuracy. But the freedom i s even l arger than this exampl e 

indicates: in most cases we have rational functions approximating ·1,0 

the e l ementary functions, which adds an extra degree of freedom to 

t he choices we can make. In general, it was found that where one 

has a system of polynomi a l s , like the case of a rational function, 

where one has two pol ynomials, the freedom of choice for se l ecting 

g ood a l gorithms increases with the number of polynomial s , and one 

can find very c l ever ways for optimising the a l gorithms. 

In one practical study, Rabin and Winograd were abl e to find a 

preconditioned way of evaluating one of the elementary functions in 

a FORTRAN compi l er for which the coefficients we re given by the 

manufacturer in the manual. The preconditiona l method and the orig

inal method both resul ted in the Same numer i cal accuracy . 

Final l y , one shoul d note that t h i s method of preconditioning is 

general l y useful wherever one has the probl em of continual l y re-eval 

uating a set of expressions where s ome of the paramete rs remain 

fixed . Hoffmann and Winograd have l ooked at the probl em of finding 

the minimum path between any two nodes in a graph, and succeeded in 

reducing the number of additions from O(n
d

) to 0(n
5

/
2

) u si ng pre

conditioning. It can be said that one important concept that thi s 

area of investigation has brought to l ight i s that of prec onditioning, 

which has found more application than even t he theory may indicate. 

Di scussion 

Professor Hopcroft as ked how i t had been possible to discover 

that diff erent preconditioned methods existed for the problem 

quoted in the lecture. Dr. Winograd rep l ied that by study ing the 

proof of the theorem one was a bl e to obtain guidelines on how to 

search for other a l gorithms, even t hough there was not a mechanical 

way of l ooking for them . In the case cited the speaker had found 

three other a l gorithms in addition t o t he three that were illustrated. 
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Professor Page asked for an indication of the degree of difficulty and 

length of the proofs for which the speaker had quoted so many interest-

ing and useful coro llari es. Dr. Winograd decided that since there was 

still a little time remaining for this particular lecture he would 

sketch a partial proof of Theorem 1 • The theorem 1S proved in two 

parts; firstly one proves that the nwnber of multiplications needed 

at least equal to the column rank. The first part of t he proof is 

somewhat easier than the second and is as follows: 

If Pl, P2, ••• 1\ are the k multiplications/divisions in an 

algorithm for computing ~x + ~ then the value computed by every step 

of the algorithm can be expressed as 

k. 
\ 

L 
i =1 

s, x, + f (Yl , •.• ,Yo) where r, ,s, ~ Q and 

fry, , ..• ,Yo )EQ(Yl , .•• y. ). 

is 

Therefore ~x + ~ = R. P + Sx + F where R is a t x k matrix of scalars, 

S is a t x n matrix of scalars, F is a column vector of functions in 

Q(Yl , .•• ,y.), and p is the (COlumn) vector (Pl ,P2, •.. ,Pk). It is 

easily seen that it suffices to consider the case p, (~) = t. Assume 

k < t = p, ( ~ ). There exists a row vector v such that vR = 0 and 

therefore ~x = vRp + vSx + v(F-~) = vSx + v(F-~). But the entries 

of ~ are not all scalars , and by equat ing coefficients we get a 

contradiction to the assumption that k < p, ( ~) . 

Bi-linear Forms 

Continuing on t he theme of Arithemet ic Complexity, we will now 

consider some spec ial functions, a system of hi-linear fonns. The se 

are functions of the form 

, 
'f =L.L. k ~ 1. 2 .... t. 

i =1 i=l 

and we are int e rested in the arithmetic complexity involved in 

computing the values of bi-linear forms. Naturally all t he general 

results given earlier apply, s ince the function i s linear both in the 
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and in the y' £, but we a s k the question: Is it poss ibl e to 

·.ckt eve more by cOlls1derin,r- the fact that it is bi-linear? The 

~: l :J W'e r to t h i s ques tion is lIye s " as we s hall see . 

The fir s t theorem we cons ide r is : 

Theorem 4 The minimum number of multiplications/divis ions required 

t o compute (~k J is the same as the mi nimum number of multipli cations . 

In other words, we can say that any d1yisions used in the r. alcu

lat ion of r~k1 are unnecessary, s ince we can do as well using onl y 

mul tipli cat ions . We may a s k why this the orem is eve n considered , 

s ince the or iginal express ion of a bi-l inear fo rm contains no 

divi s i ons, but two exampl es will s how that in some circumstanc es , 

the introduction of some divi s ions can reduce the number of mul tip

licati ons/divisions requi red . For example 

a ) 

b) 

~ l 

X 

det(A ) 

can be computed us ing 6 multipli cat.i ons / divisions 

but require s 7 multiplications. 

the de terminant of the matrix A can be calcu

lated us ing only multiplications, but a more 

effi c ient way of calculating de t(A) is by 

us ing Gauss i an Elimination which of course 

us e s divi s ions . 

Theorem 5 The minimum number of mul t ipli cations/d i vi s ions required 

to compute (~kJ doe s not change if we d emand that each produc t i s 

a product of two linear fo rms . 

Theor em 6 Le t n be the mini mum numbe r of multi plic ation~ '-equired 

to compute (~K J, a nd TI the number if the commutati ve law is no t 

used . The n 

n :S' n $" 2n. 

Thi s th eol'em may seem a little odd, !-j inee \ , 0 have been co nsid

ering computati ons u s i ng the commutative law and now we are wond e ring 

about a n algebra wi thaut the commu ta t ive l aw. Le t us firs t co ns i der 
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a n exampl e whe1'e the c ommutat i ve l aw he l ps us , 
... 
',' 

Cons ider the sys t em of bi-linear form s 

(

all 

"''' , 
and t he following theor em of Hopcrof t and Kerr : 

Theroem 7 Eve r y algorithm for c omput i ng Po.,. ~ X B .d J:n 

commutati v i ty requi re s a t l eas t J-:nl mult i pli ca t ions , 

Thus app l y ing t hi s the orem to our exampl e we s ee 

commutativi ty we r equ ire 18 mul tiplications , wh e are a s 

commuta t i ve l aw, the f oll owing a l gorithm gi ves us t he 

only 17 mu l t i pli cat ions , 

all b11 + al G b od} = ( ar , + 1>" ,) (a1,,+ br, ) ~1 a, G 

all br ~ + ar" b" " = (a" + 1>",, ) ("'r 2 + b,,, ) - a 1 ] a, G 

"'r, b]3 + a, ~ b,,~ = ( a, , + 1>."'3 ) (a, " + br ~ ) a,. 1 a, .G 

a, , b,. + a, G bG 4 = (ar , + b" . )( "'r 2 + b, < ) - all a 1 2 

all br. + a1 <:! b.'::;! F = (all + 1>" 5 )( ar Cl + br F ) - ar,a' 2 

a."" br, + ad " b" , = ( aa , + b" , ) (8.,,~+ b]1 ) - aa1a..c:! :d 

a" 1 bI G + aa.:: b.<::lG = ( a" 1 + b"J ) ( aa", + b'2 ) - a .c: l8..:a G' 

"''' , b' 3 + a.:;:o<;l b:--? s = ( a" , + b"Cl )( 8."" + br~ ) - a.,d 1 &,d G 

a eD b14 + aGoG b..d 4 _. ( ad1 + u-,," )( a.",,, + br 4 ) - a..d 1 a .d;;S 

a", , blf~ + a",,, b" r .- ( 8." 1 + b",. )( a",, + b, F ) - a .dl a.c:!G 

without 

t hat wi t hou t 

u s i ng t he 

r esul t i n 

br , b" , 

- br " 1>." 2 
- b1 a bGd 

- b}.Q bG4 

- b, • b" r, 

- b, 1 b2, 

- b, ~ 1>.",~ 

- b, 3 1>."" 

- br 4 1>." . 

- br " 1>~ s 

The orem 8 The mi ni mum number of mul t ipl i cat i ons requi red t o compute 

[' .1 i s n, even if we demand tha t saeh prod uct i s a product of a 

li near form in the XI S and a li near f orm i n th e y l s . 

Thi s i s simpl y stating that without the use of t he commutative 

l aw , no improveme nt can be obt a i ne d by mix i ng t ho x ' S ",·i t h t he y ' s . 

The ore m 9 ] r ( '¥ r:} ure bi -l in ear f o rm s s u c h that 'f, , . . . Yk a r e 

l i ne ar l y j nd o pc ntlc nt and e a c h o f t hem can be c om~)u tcd 1 n one produ c t , 

,. 

f' 

,. 

I 
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but it can be shown that the number of additions also grows by 

An log,:, 7 

This is an illustration of a property of many a pplications of matrices 

o.s stated in the following theorem. 

Theorem 10 The number of mult/div's required to compute A x B < a nOt 

~ " " " operations " " " A x B < b nOt 

~ " mult/div's 
a nOt " " " " " A < c 

~ " " " operations " " " A2 < d nOt 

~ " " " mult/div's " " " AB + BA < e nOt 

~ " " " operations " " " AB + BA < f nOt 

~ " " " mult/div's " " " A-l < g nOt 

~" " " operations " " " A-I < h nOt 

where A, Bare n x n matrices. 

We hope that by now the reader will be convinced that bi-linear 

forms are as interesting and worthy of study, and that the value of 

non-commutativity has also been demonstrated. 

Now let us take a system of bi-linear forms (~k} and associate 

with it a single tri-linear form 

= t Ii 
1C=~.1=11=1 

Here we have introduced the dummy variables Zk to construct 

the tri-linear form. 

Theorem 11 The minimum number of multiplications required to compute 

l~k} without commutativity is the smallest integer n such that 
n 

T(~<) = }.r. L, (x) M, (y) N, ('i.I. where L .. M, and N, are linear 

forms. 

.. 

1 = 1 

The proof is so simple as to be little more than an obs ervation 

n 
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where PI • • • Pn are the products 

required in the computation of (~K} 
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n 

~ 'I'K = L: c. L. (X) M. (Y) by a previous theorem 
1 = 1 

n 

L. (k) M. (y) N. (z) 

(where N (z) = L: 
k= 1 

From this we have 

• r 

Corolla n::: If '1'. = l, L: a, jk x. Yj , k = 1 .. . t , 
1=1 1= 1 

t • 
and 'I' = l, r b. j • YJ z. , i = 1 ... r , 

Ie= 1 .1 = 1 

are such that a,.1k = b, J. for all i, j,k then both systems require 

the sarne number of multiplications, and an algorithm for computing 

one sys tem can be "transposed" into an algorithm f oc' computing the 

other. 

For exampl e : 

xl Y, + xdYa = (x, - Jt,a) Yl + x" (Yl + Y~) 

X:d Yl + x-:SY".d = x" (Yl + Y~ ) + (;x.. - x~) Y~ 

and 

= x1y, 

= (xl + x,,) (Yl + y,, ) - x1Yl - x<,y~ 

= )(.,dYid 

are "trans po ses " of one another, and so are the algorithms used to 

compute them. 

A further exampl e is that of multiplying together the matrices 

A and B. We observe t hat the tri-linear form can represent six 

different sys t ems of bi-linear forms, since the x's, y's or the a's 

can be r egarded as the dummy variable and the remaining two can be 

taken in e ither order. If we use the notation ~ to mean "requires 

the same number of multipli cations as" we have 
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A" x n 

l\, xp 

Ap x. 

x 

x 

x 

x 

x 

x 

Given a good algorithm for one of these problems, mechanically 

a good algorithm can be produced for the others. 

We conclude by citing an actual example in which all these 

techniques are employed to obtain the solution. Thi s example is 

that of a digital filter. We have an infinite sequence of incoming 

symbols 

Xl , X2 , XG ••••••••• 

and a set of weights Y,Y2"'Yk' We wish to compute the cross products 

K 

Z, = E x, y, 
1:;;;;: 1 

k 

Z" = r. xl+ lYI 
1= 1 

etc. 

The problem may be written down in matrix form as (for k = 32): 

Y32 

If we " consider 1024 rows, we can part the matrix so that we need to 

find a efficient algorithm which makes no use of the commutative law 

for computing 

x, Xa ( ~: ) xa "3 

"G x.. 

x.. X6 

wher e each Xl repres ents a 256 x 16 matrix and each YJ a 16 x 1 

ve ctor. The fir st result we are to use states that a t l east five 
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multiplications wi ll be required. Now we must look to see if we can 

find a n a l gorithm to do the computa tion in exac tly five mul tiplications. 

Making u s e (i mpli cit ly) 

the following a l gor ithm: 

of a ll the re s ults stated earli er , we produc e 

m1 = ( 2Xl - x2 2X3 + "" )Yl/2 

mG = (2xJ + Xa "" ) (Yl + Ya ) / 2 

I1\, = ( 2xa 3X3 + "" ) (Ya - Yl ) /6 

m.. = (-xa + "" ) (2Ya + Yl ) /6 

mE' = ( 2X2 -Xa - 2"" + x,,) Ya 

We may disregard operations on the y's a s these can be done once 

onl y at the beginning of the computation. From these produ cts we 

have 

XJ.Yl + xaYa = ~ + rna + rna + m.. 

xaY, + xaYa = rna rna + 2m.. 

Xa Yl + "" Ya = rna + rT\3 + 411'l4 

"" Y 1 
+ XF Y2 = rna -rna + 8m.. + ms 

Thus for the computation of the 1024 x 32 cas e approximately three 

multipli cations per row are r equi red. 

Professor SeegmUll er asked whether anything was known about the 

loss of precision involved in the technique s de sc ribed for matrix 

mul tiplication. Dr. Winograd replied by citing some work by Richard 

Brent of Stanford Uni ver si ty who had take n t hree methods for matr ix 

mul tiplication, the s traightforward method , a method re l ated to the 
3 

A2x2 x B
2x5 

method de sc ribed earlier whi ch took t n mul tipli cations , 

and the method described r e lated to Strassen' s method . Thi s study 

was carried out on a l arge numbe r of sets of data, and the methods 

compared for s peed and for numer ica l accuracy , and hi s fi nal con

c lus ion taking nume ri cal accuracy into account was that the me I,h r:- J 
3 

taking tn multipli cations wa s superior. Thi s , however , was a 

pu re ly experime ntal s tudy wi th no theore tical i nve s tigation. 
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1\11;]1 \ lit· (· u!!.W..!..!.,~ 

Anal.\" ti c' ("oJapl ('x·j t y aud rcsses th(l question "H ow mu c h computnt i on 

h, 1."; io lIe- pf'rform('d to obiain a r esult with a given degree> of accuracy?". 

I.nll't"t ' .... t fo("u . ..;ps on Lho . ..; \' computati onal pro cnssp.s whi ch in a certa .in 

.... pn .... f' !lVVI't· ('nd. Thc' process i s intcrruptc)d Itt .s ome point and, if tpo 

CUI'l · ( ' llt vlt lu(' of Lhl' l"l.' . ..;u l t li es wi t.hin ~O"j(' f'rrot' hound t thnt valu <".' 

.is ac(;(~ptf>d, oUll'l"wi . ..;e the compu tat. ion j s continued ul1ti l u satis

f"a ctory I"(~su l t. i ..... ohta in ed . 

Onl! of th c' .-.;i !l:pl{' ;-': i {'xamp l e!-> of u ll a l yt i e complf.'xi I y i :-; a s tudy of 

a l gul'i thm!--. for ox t· l'ac·t j np: Ow sq uare root of a number. 'l'hl' variety of 

kn own a l ,go rithrns i ~ illu ::i trfltcd by s ix exa1l1p l e~ contained in Tablf~ 

1. To r'ac.:i li t.atc fI compari son of these mC'thods the numiJC'rs of al'ith

metic operation" used in one iterati on of eac h a l gor i UHI ' " re tabulated . 

~ote t hat scalar mu l tip l ications have been counted s01',, ' a te ly. 

The fir s t example is Newton' s method, which has a po\{er of con

vergence of two. This means that on each iteration the number of 

s i gni fi cant digits in the r esult i s roughly d oubl ed . The se cond meth od, 

basically Newton', method in disgui se , has three mu l tiplications per 

iteration bu t 110 divisions . I n certain Ritua t ions , for ins tance a 

machine on whi c h division takes very much longer t han mul tipli cation, 

this may be a very attractive method . The d ivi s ion 1/a has to be 

,Performed onc e at the s tart of the computation, but thereafter no 

divisi ons arc nece ss ary . 

Example 4 is a somewhat unusual method whi ch will extract the 

s quare roots of num ber s between 0 and 2. It involves essentially 

doubl e i teration but it is the value of x" which approaches the sque.r e 

root . The las t method has a power of c onvergenc e of four, s o that o~ 

each iteration one obtains four t i mes the number of signifi cant digits . 

I n fact, t hi s last formul a i s obtained by applying Newton ' s method 

twi ce , and therefore it is not su rpr i s ing that the power of conver

gence is four, which is t he square of the power of convergence of 

Newton ' s method, and the number of multipli cations and div i s ions is 

two. In general, it i s possible to ta!<e any of these methods ",,,d 

produce new a l gorithms in a s imilar manner. 
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Table 1 ~ 

1 . Xn+l = t<Xn + a/Xn ) p = 2 d = 1 

sm = 1 a/s = 

2. Xn+l = t(3lin - (~)~ ) p = 2 m = 3 

sm = 1 a/s = 3 

3. Xn+l X.Xn-l - a (1 + / 5)/2=1 .618 = X. + x.- 1 
p = 

mid = 2 a/s = 2 

4. ](Q 
a - 1 2 = a, yo = --- p = 2 

m = 3 a/s = 2 

lin + 1 =Xn( l -Yn), YD+l a ~ (1.5 + YD) 

5. lin+! 
1 

(~ + a) (5~ + a) p = 3 = 8x;,' 
mid = 4 a/s = 5 

6. X.+l HXn + a/x. ) 
a 

p = 4 mid 2 = + 
lin + a/Xn = 

sm = 1 10 = ') .. 

p power of convergence 

d number of d i visions/ i teration 

m number of multiplications/iteration 

mid number of multiplications and divisions/iteration 

sm number of scalar multiplicat i ons/iteration 

a/s number of add i tions or subtracti ons/iteration 

Algorithms for extracting the square root of a number 
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If one of these methods is applied say three times and the 

r esulting formula used to extract the square r oot, the number of 

multiplications will have increased threefold and the power of 

convergence will have risen by the power three. In any comparison 

of these methods, one would want to treat the first and last example o 

as being the same because they are both applications of the same 

algorithm. The measure used to compare methods of extracting the 

square root of a number is 

log;, (power of convergence) 
y = 

number of multiplications and divisions/iteration 

Ideally, one would like to use an algorithm which makes y as 

l arge as possible; a combination of a large power of convergence and 

a small number of multiplications o~ divisions/iteration. Unfortun-
• 

a tely, the following result by Patterson indicates that there is an 

upper limit on y. 

Theorem 12 For every iterative method for finding the square root of 

a number, yS1. 

Newton's method, for which y=l, achieves this bound. 

This illustration of one area of analytic complexity attempts to 

give a flavour of the questions which are being asked. A similar 

example is that of general iterative methods; one is given a function 

f and is required to find its root. Table 2 gives three examples of 

such method s. 

The first method has a power of convergence 1.618 and possesses 

t he useful property that it requires no knowledge of the derivative 

of the function in qu.estion. So, this algorithm is applicable in 

cases where it is difficult to calculate the derivative of a function. 

Newton's method i s the second example, which has a power of convergence 

of two and uses the first derivative. In general, if one studies the 

literature one finds that there are iterative methods with arbitrary 

high powers of convergence, but they require higher and higher 

derivatives. This observation leads one to ask if there is some 

kind of relation between the power of convergence and the number 
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Table 2 

1 • 

power of convergence = (1 + /5)/2~1 .618; uses no derivatives. 

2. Xn-t, = lin - f(lIn )/f' (lin) 

power of convergence = 2; uses first derivative. 

power of convergence = 3; uses second derivative. I 

I 
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of derivatives that have to be found. The following theorem gives 

a bound on the power of convergence in terms of the highest derivative 

used. 

Theorem 13 Every iterative method using derivatives up to order d has 

a power of convergence of at most d + 2. 

It is immediate from this theorem that, if no derivatives are 

used, the largest attainable power of convergence is two. In practice, 

the bound d + 2 can be approached, since for every e > 0 there exists 

an iterative method whose power . of convergence exceeds d + 2 - e. 

Thus general iterative methods provide another example where one 

is trying to compare how much computation has to be performed in order 

to achieve a certain accuracy. A final example concerns the problem 

of parallelism. Assuming one has k processors working in parallel 

what is the resulting gain in speed in execution of an algorithm that 

can be expected over the single processor case? Here we disregard 

problems of synchronisation, availability of information etc., and 

assume such problems can be solved. 

If one considers an iterative method, but this time with k 

processors, it is possible to compute the k next approximations, from 

which one can choose the most satisfactory. These k approximations are 

evaluated in parallel but do not cause any conflict. The power of 

convergence increases from d + 2 to k(d + 1) + 1, an increase of almost 

k-fold. This appears to be a useful improvement but consider what is 

meant by the power of convergence. Assume that the initial approx

imation has error 6, and that one wants to continue to iterate until 

an approximation to the solution is obtained within e of the solution 

(hopefully e«6) , then the number of iterations which has to be 

performed is given by 

n ~ logp log'l $ (1 Ie) 

where p is the power of convergence. 

If (d+2) and then k(d+1)+1 are substituted for p, the r eduction in 

the number of iterations, which is the gain in speed of the parallel 

case over the single processor case, is only logarithmic in the number 

of processors rather than . being linear. Thus if 100 processors were 

used in parallel the number of iterations necessary would be reduced 
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'.c'-fo ld not hy 100-fold. 

Discuss ion 

Professor Dijkstra po inted out that the fourth example in the 

methods of extract i ng square r oots was of a diffe rent nature to the 

others . To obtain a cert ain prec is ion with this method i t is necessary 

to maintain that precision from the start, wherea s the othe r algo r i thms 

pe rmit the first step to be computed i n small prec i sion . Dr . Winograd 

explained that t h is method had been i ncluded to i llustrate the wide 

va riety of possible met hods . I t does have the unfortunate property of 

propagating any errors, whereas t he othe r methods al l i nclude a in the 

fo rmula and thi s has a correcting effect.. Thi s lecture concentrated 

on the relation between the amount of computation t hat has to be done 

to achieve a certain amount of a ccuracy ; the properties of the 

algorithms which a re t herefore of interest are the power of convergenc e , 

which i ndicates how fast the error reduces , and the number . of arithmetic 

operations per i teration. The six methods have very different 

pr opertie s from the point of view of stability. 

Professor Dijkstra also expressed concern that the amount of 

computation r equired to evaluate a square root was measured in terms 

of the numbe r of multiplications or divisions .required per iteration 

of the algorithm , as though this was independent of the precision with 

which the computation had to be performed. This concern was shared 

by Dr. Winograd who r epeated the remark of Dr. Rabin that we p~ove 

what we know how to prove. The study · of analytic complexity has only 

provided a partial answer to the question of the amount of computation 

tha t has to be pe rformed to achieve a square r oot to a given accuracy 

In connection with the general iterative methods, Professor Page 

suggested that a possible way to obtain a higher rate of convergence 

lIO uld be to ·apply the fo rmula twice. So if the original formula 

involved Xo and Xo-l, substitute for Xo-l a formula involving Xn - a • 

Dr. Winograd explained that if f is known explicitly, for example 

f(x} = x" - a, this can sometime s be done (as was done in the sixth 

square root exa~ple to obt ain a power of convergence of four) but in 

genera l it is not possibl e . Consider Newton's methOd: 



Xn = Xn_l 

Substituting for Xn_l 

Xn = Xn- 2 

f (Xn- , ) 
f' (Xn-l) 

i1&=l 
~) 

.till 
f' (?) 

The problem arises in the substitution for Xn in f(Xn) and f' (Xn ). 

Since f is not known as a function of variables, nothing is gained by 

making such a substitution. If f is known explicitly, it might be 

possible to compute f(Xn) and f' (Xn) in terms of Xn-l 

Professor Michaelson asked whether the last result, concerning 

paral l elism, included the potential increase in speed of a single 

iteration by a factor of k, due to the use of k processors. 

Dr. Winograd said that it did not and explained that if the gain in 

speed for doing arithmetic operations is considered the situation is 

quite different. Combining results from the two areas suggests that 

if one has k processors and an iterative method which is to be 

executed, the best way to employ the k processors is to leave the 

overall method as a sequential one, but within each iteration do the 

arithmetic in parallel. This corresponds roughly to doing k separate 

jobs in parallel. On average there would be an improvement by a 

factor of k even though no one job would have such an improvement. 

Teaching Aspects 

In summary, we ask whether any of the material which has been 

presented in this series of lectures should be incorporated in a 

University Computing Science course at some level. We believe that 

there are four reasons why the Complexity of Computation has a place 

in a Computer Science Curriculum. 

(a) It raises some interesting mathematical questions. 

(b) Although interest, like beauty, is in the eye of the 

beholder, most Computer Scientists would agree that some 

interesting Computer Science questions are raised. 
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(c) During the s e lectures we have been introduced to new 

concepts or new ways of thinking . 

(d) Thes e new concepts have given ri se t o new algorithms , 

t hat i s, the new ways of thinking abou t a probl em ha 

l ed t o new ways of doing the pr obl em . 

Di scus s ion 

Profess or Hoare made the comment that from what he had seen 

in thes e lecture s , it s eemed that FORTRAN was the wors t po s sible 

tool available to peopl e interested in numerical computation. On 

being asked to explain further he s aid that it was quite clear from 

what Dr. Winograd had said that an under s tanding of r ecurs ion was 

essentia l to the unde r s t anding of these t echnique s , and naturally, 

programm er s , and s tudents in parti cular, who write in FORTRAN have 

a very limited grasp of the principles .of r ecurs ion. 
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