COMPLEXITY OF COMPUTATIONS

S. Winograd

Rapporteurs: Dr. A.J, Mascall
Dr. C.R. Snow
My, D. Wyeth

Selected from the field of "Computational Complexity'", these
lectures will deal with two aspects which may be termed "Arithmetic
Complexity" and "Analytic Complexity'". Some other aspects of the
subject will be covered by Professoi1 Rabin in a separate series of

lectures during this seminar,

Arithmetic Complexity

One can justify =studies of this subject with the assertion that
numerical (or arithmetical) computation is very much at the centre
of Computing Science activities., It therefore follows that any
knowledge that can be obtained about the algorithms used must be a
useful addition to Computing Science as a whole. However, the
author's own interest goes rather beyond that general ideal:
there are two principal reasons for studying arithmetic complexity
as a special case of computational complexity. The first is the
question of whether a particular algorithm can be shown to be the
most efficient way possible for solving a given type of problem.
Such a result will certainly be useful in that it obviates the need
to search for better algorithms. Secondly, and perhaps the most
satisfying aspect, is that study will reveal a completely new
algorithm. One can see that we have the beginnings of a systematic

way of looking at algorithms, and being able to find new ones.

Objectives of the studies

lissentially we are trying to di<cover how many arithmetic

47

operations are needed to solve a given problem. In this respect
such studies differ from what is termed "Analysis of Algorithms"

in that we are not trying to find out how many arithmatic.operations
are used by a given algorithm, but rather trying to find the best
wvay to solve a given problem, in terms of the arithmetic operations
involved. In general, we are interested in discovering how many
additions/subtractions, multiplications/divisions or other operations

are required to compute a set of algebraic expressions.

Taking first the simple example below:

a_b

o0 = a'ObD

agb, + &b, =+ (8, = &) (b, -b) + a b, +ab,
a, b, -

alb1

This example has already been discussed in the lecture by Professor
J. Hopcroft, and refers possibly to the problem of doing double-
precision multiplication. Evaluation by the left-hand side
requires four multiplications and one addition, by the right-hand
side, three multiplications and four additions. We can immediately

ask ourselves the following questions:

1. Is there another way using just two multiplications?

2, Is three the minimum number of additions?

3, Is one the minimum number of additions?

4, Is there an unavoidable trade-—off be tween the number of multip-

lications and additions?

These are typical of the kinds of questions we can raise when con-
fronted by such a problem. It is hoped that the present discussion
will show that there are scme answers to these questions, and also

that there are many more unresolved problems.

48

Mathematical formulation

The general problem may be stated in a rigorous fashion as
follows: we have a given number of variables (indeterminates)
Z,, 2,, «.. , 2, and we wish to compute certain rational functions

in these variables
¥ e (21, 2, «on Zk) i = 12 samst
when we are given some part of these functions
BQ (2,5 2., vovy 2,) .

In the example, what we might be given are the rational numbers

themselves and the variables 2, Z «+sy %, . However in general

27
we can say we are given the set B, and from this we are to build
whatever it is that we are interested in computing. We then can
ask the various questions listed above. The general problem as
stated here is too difficult to solve, but we can first consider
the linear case as a simpler sub-problem. By this we mean that

the variables Z, are partitioned into two sets, denoted (xl,x sww 5 XK)

2’ n
and (Yl’ Yos see ym) and we assume that the expressiors to be

computed are linear in the x;. This may be stated in the form:

‘*’l ﬁl’l (ylg yzg "oy ‘Yn) s e il,n (yl, yz, P yﬂ) xl
¥, = X,
¥, B, (yyaygs cees ¥) cee By (s For eees ¥) X,

That is

49

where the &,, are rational functions in y, and the elements @

(the constant terms) are also functions in Vi o

We may now give the following definition of the "rank" of the

matrix ¢.

Definition 1 The column (row) rank of &, denoted by p, (&) (D,(@))

is the largest number of columns (rows) such that no linear combination

of them yields a column (row) with all entries rational numbers.

This concept of "rank" is not that normally defined for a
matrix that is, the largest number of linearly independent columns
(rows): it is in fact the number of columns (rows) which will not
yield a column (row), all of whose entries are constants. The
weighting functions themselves must be rational numbers. Note that
this definition implies that the row and column "ranks" are not

necessarily equal.

We can now derive several results from this definition of rank.
The first result, stated by the theorem below, allows us to obtain
a lower bound for the number of multiplications/divisions required

to evaluate the expression.

Theorem 1 Every algorithm for computing éx + ¢ from
O(yyy vevy ¥a) UQ (x5, +vuyx,) requires at least max (p. (2),p.(8))
multiplications/divisions, even if multiplication by a rational

number is not counted.

This means that if we compute ¢ x + ¢, starting with any
.possible rational functions of the (Y1! ...y Vo) and the variables
0 5 wowp xm) as data for constructing the algorithm, then we shall
need to perform a number of multiplications equal at least to the
largest of the two ranks in order to perform the computation, and
this is even if multiplication by a fixed rational number is not

counted.

Similarly, the following theorem allows us to placea bound

50

on the number of additions/subtractions, simply by subtracting the

number of rows in the matrix from the number of non-zero columns.

Theorem 2 Every algorithm for computing &.,, x from Q(yy, ...,y,)
11 0(xyy «vvy X,) requires at least P(3) - t additions/subtractions,

where f(8) is the number of non-zero columns.

What do these two rather innocuous theorems tell us? TFirstly,
we can see that in the example given earlier we had already obtained

the optimal result. We have:

8, b a, 0 b,
8o bl + a, bo = 251 o bf‘.
a; by 0 a,

so that the minimum number of multiplications is indeed three.
Here we have replaced (y,,...,ym) by (a,, a) and the (xl,...,X@)

by (by, by). We also see that the minimum number of additions is

one, However the necessary trade—off is still unknown; the algorithm
simply shows us how we can achieve the theoretical result. Another
result easily shown is that for forming an inner product:

by |
a, by = (ay, 8g4000y an) by,

1 .

n~1-=

3

by

showing that the minimum number of multiplications is n, and of
additions is n-1. We know already how to do this of course,
Another example is a 3x4 matrix multiplied by a vector. Expressing

this in the form:

a, a, az a4 b by by by by 00O 0 00000

b e 85 9a || 2lel 0 0 0 0 Bibbyt0 000

by 0 0 0 0 0000O bybybyhy

ag 87184
830871 2. e

51

we obtain 12 for the minimum number of multiplications, and 9 for
the number of additions. The rearrangement allows us to obtain

a matrix with all the columns linearly independent by replacing
the (y34 «++y ¥,) with the b's and the (xy,..., X,) with the a's.
The normal algorithms would indeed achieve this, and we can see
that in general the product of A,,, b requires pq multiplication
and p(q-1) additions.

Taking now the case of a symmetric matrix:

A

a, a, ag by by by by O 0 O a,
ay as ag by | = 0 b O by by O :
a; as Aag ba 0 0 b, O by by ae

we see that the minimum number of multiplications is six. The
following identity does perform the evaluation using 6 multiplications

and so is optimal:

a; by + ayby + ayby (a; - ap - ay) by + ap(by + by) + ag(by + by)

a'eb] + a‘ib:a + a’lba a'e(bj ok bg) + (&4— an - a,—._) b'd + ag (bz + b.ﬁ)

agby + arb, + aybs :a’d(b] + bd) T a‘!-(b‘d * bd) < (ab - Ay a.5) bs

In general, A,,, b , where A is symmetric, requires n(n+1)/2

multiplications.

Another example, computing the product of two complex numbers,
requires a minimum of three multiplications. This can be done as

follows:

ac — bd = ac - bd
ad + be = (a + b)(c + d) - ac - bd

It is hoped by now that it should be clear that the linear

case we have been studying, although a special case, still gives

a good many useful results for a wide range of problems.

52

Another example we can examine, still using the linear case, is

the evaluation of a polynomial. Here we may write:

Px) = 3 aid = (1, %2, .., ¥) ()
an /
Once we have the form of the right-hand-side, we see that there are
n linearly independent columns, namely, the second to the (n+1)st
columns. Therefore the evaluation requires at least n multiplications
and n+1-1 additions for an n'" order polynomial, which we know can be
done using Horner's Rule. For the case of a system of polynomials we
see that there is no reason to search for clever solutions; the total
number of multiplications is simply the sum of the degrees, as it is
also for the additions. Furthermore, for a polynomial in k wvariables
we also have the result that (n+1)¥-1 multiplication and (n+1)*-1
additions are needed, which can also be done by straightforward
extensions of Horner's Rule. There are various other linear problems
that can be examined, but it is hoped that the foregoing examples
have been sufficient to convey the ideas. Incidentally, there are
very few results concerning non-linear functions: one particularly
interesting result, due to Straussen, is that the number of multip-
lications needed to compute all the symmetric functions on n variables

is n log n.

Preconditioning

Remaining still with linear functions, there are other questions
that we can also ask about these. Considering the evaluation of
polynomials, we take a particular case of evaluating a fourth degrec

polynomial with many different values of the variable x:-

53

4 3 2
84 X + ag X +az; x + a; x + ap

= ar ([x(x+x) + B] [x(x+a) + x+y] 4+ 8)

vhere @ = %8 =8
2ay
a4 a,
B - co(2 (et 1)
fa a4
a.
ye-Arimonsl gty Y4 T8
as
5 =8 _ By
8y

This algorithm appears in the paper by Todd and is attributed to
Motzkin., If the quantities o, 3, ¥, 6, depending only on the
coefficients, are first evaluated and then used in the identity,
only three multiplications and five additions are needed for each
evaluation. Of course we must invest 7 multiplications and 7 add-
itions for the initial computation of the «, 3, v, &, but this is
obviously worthwhile if the evaluation is to be done many times.
When we are confronted with such an algorithm, the question that
immediately springs to mind is whether there exists another identity

which uses even fewer multiplications, or is this one minimal?

Examining this problem with the formalism we have already
developed, we see that the act of computing the o, R, v, & effect-
ively means that any function of the (x1 , «+.y X,) in our general
expression (where the x; ... x, have been used to represent the
coefficients of the polynomial) is given to us. So now we can ask
the same questions as before, only now starting with rational
functions of both the (y,, ..., yg) and (%, ... x,). In this casc

the following theorem holds:

Theorem 3 Every algorithm for computing ¢,,, [lrom

Olyy s ooe ¥u) "0 (x5 0y Xy) requires at least p,(¢)/2 multipli-

54

cations/divisions and p (8) - t additions/subtractions.

Thus the required number of multiplications is now the rank
divided by two, the number of additions being the same as before.
Initially at least, these results are rather surprising. They

mean that

(a) It is possible to reduce the number of multiplications
required if we are willing to precompute some of the
coefficients.

(b) The number of multiplications cannot be reduced by more
than one half.

(¢c) There is nothing that can be done to reduce the number

of additions.

The result of Todd and Motzkin can now be stated as a corollary
to this theorem: At least 3(n+1) multiplications and n additions are
required to compute P (x) = 5 a; x even when preconditioning of the

= iQ
coefficients is allowed.

At this point, one could give a similar set of results as was
done for the first theorem, but instead, let us just concentrate on
the polynomial case we have started with, and see what results have
actually been obtained with practical algorithms. We can list the

following:

One algorithm uses %(n+2) multiplications for n<9, and +(n+1)
multiplications for n=9, with n + 7 additions. This however has
the drawback that the algebraic operations involved in the precon-
ditioning may result in complex numbers, even when the original

coefficients are real, since they require taking roots of polynomials.

Another realises the computation in 3(n+4) multiplications and
n+3 additions. This still requires operations which extract the
roots of polynomials, but results in real numbers after precondition-

ing if the original coefficients are real.

5 1
Another algorithm shows how to do the computation in n/2 + 0(n?)
1
multipiications and n + O(n?) additions, using only the four arith-

metic operations in the preconditioning.

But we may still have other questions about using any of these
algorithms: in particular what is the effect on the numerical

accuracy of these algorithms?

Taking the very specific example

7
Horners rule gives

(B x+3)xed)xr L) xsl

Todd and Motzkin's algorithms gives

£ ((Cx(xr2) + 21) (x (x#2) 4 x=15) + 360)

[nspecting this last expression, we see that we are confronted
with a serious problem in rounding errors when we have small x.
Note thatl since such algorithms might well be used for building up
the clementary function subroutines (such as sin x), where it is
quite common to call the routine for small x, it will prove extremely
unsuitable in practice. Fortunately, this is not the only way of
doing the evaluation. We also have, for instance,

1 ko BN T ESYE e T B 59\ , 8660
(3 iy *= 3) * 81) (3 =8 = 3)+ ® = a1} " 656

and even better,
i I 13 25 11 AN Ix. L. 4 430
GxEx*3)rai3c(gx+ 3)* 3+ 27) T 729

Here the evenly-balanced coefficients greatly reduce the rounding
error problems incurred by the Todd and Motzkin algorithm. Thus we

sec that there is still a large freedom of choice among algorithms

56

with the same number of arithmetic operations, but having different
numerical accuracy. But the freedom is even larger than this example
indicates: in most cases we have rational functions approximating to
the elementary functions, which adds an extra degree of freedom to
the choices we can make. In general, it was found that where one

has a system of polynomials, like the case of a rational function,
where one has two polynomials, the freedom of choice for selecting
good algorithms increases with the number of polynomials, and one

can find very clever ways for optimising the algorithms.

In one practical study, Rabin and Winograd were able to find a
preconditioned way of evaluating one of the elementary functions in
a FORTRAN compiler for which the coefficients were given by the
manufacturer in the manual, The preconditional method and the orig-

inal method both resulted in the same numerical accuracy.

Finally, one should note that this method of preconditioning is
generally useful wherever one has the problem of continually re-eval-
uating a set of expressions where some of the parameters remain
fixed. Hoffmann and Winograd have looked at the problem of finding
the minimum path between any two nodes in a graph, and succeeded in
reducing the number of additions from 0(n") to O(nﬁ/g) using pre-—
conditioning. It can be said that one important concept that this
area of investigation has brought to light is that of preconditioning,

which has found more application than even the theory may indicate.

Discussion

Professor Hoperoft asked how it had been possible to discover

that different preconditioned methods existed for the problem
guoted in the lecture. Dr, Winograd replied that by studying the

proof of the theorem one was able to obtain guidelines on how to
search for other algorithms, even though there was not a mechanical
way of looking for them. In the case cited the speaker had found

three other algorithms in addition to the three that were illustrated.

57

Professor Page asked for an indication of the degree of difficulty and

length of the proofs for which the speaker had quoted so many interest-

ing and useful corollaries. Dr. Winograd decided that since there was

still a little time remaining for this particular lecture he would
sketch a partial proof of Theorem 1. The theorem is proved in two
parts; firstly one proves that the number of multiplications needed is
at least equal to the column rank. The first part of the proof is

somewhat easier than the second and is as follows:

If p, p2y...p are the k multiplications/divisions in an
algorithm for computing ®x + $ then the value computed by every step
of the algorithm can be expressed as

k k

eripi + ZJ sixi + f(y1,...,¥n) where 1 ,5:¢ Q and
i=1 i=1

f(;Y‘l ,---!Ym)EQ(.Yl av--Ym)-

Therefore &x + b = R. p+ 8x + F where R is a t x k matrix of scalars,
S is a t x n matrix of scalars, F is a column vector of functions in
Q(y1 ye+s¥2), and p is the (column) vector (p; ,ps,...,p). It is
easily seen that it suffices to consider the case p, (¢) = t. Assume
k<t=p (2). There exists a row vector v such that vR = O and
therefore v¢x = VRp + vSx + v(F-p) = vSx + v(F-¢). But the entries

of v&¢ are not all scalars, and by equating coefficients we get a

contradiction to the assumption that k < p. ().

Bi-linear Forms

Continuing on the theme of Arithemetic Complexity, we will now
consider some special functions, a system of bi-linear forms. These

are functions of the form

T = Z‘ ,, Bisk XY . oz Ly By e o il
i=1i=1

and we are interested in the arithmetic complexity involved in
computing the values of bi-linear forms. Naturally all the general

results given earlier apply, since the function is linear both in the

58

and in the y's; but we ask the question: Is it possible to
~ehieve more by con51dering‘the fact that it is bi-linear? The

enuwer to this question is "yes" as we shall see.
The first theorem we consider is:

Theorem 4 The minimum number of multiplications/divisions required

to compute {V¥,} is the same as the minimum number of multiplications.,

In other words, we can say that any divisions used in the calcu-
lation of {¥,} are unnecessary, since we can do as well using only
multiplications. We may ask why this theorem is even considered,
since the original expression of a bi-linear form contains mno
divisions, but two examples will show that in some circumstances,
the introduction of some divisions can reduce the number of mul {ip--

lications/divisions required. For example

31

a) x - can be computed using 6 multiplications/divisions
but requires 7 multiplications.

b) det(A) - the determinant of the matrix A can be calcu-

lated using only multiplications, but a more
efficient way of calculating det(A) is by
using Gaussian Elimination which of course

uses divisions.

Theorem 5 The minimum number of multiplications/divisions required
to compute {Wk} does not change if we demand that each product is

a product of two linear forms.

Theorem 6 Let n be the minimum number of multiplications required
to compute {¥,}, and i the number if the commutative law is not

used. Then

Es

n <mn< 2n.
This theorem may seem a little odd, since we have been consid-
ering computations using the commutative law and now we are wondering

about an algebra without the commutative law. Let us first consider

59

an example where the commutative law helps us.
Consider the system of bi-linear forms

a1 a4 b4 by by 4 by 4 by &
Hi
a1 az g by, bso bay b.a bye

and the following theorem of Hopcroft and Kerr:

Theroem 7 Every algorithm for computing Ag,; x B,,, without
commutativity requires at least F(_E‘l multiplications.
2
Thus applying this theorem to our example we see that without
commutativity we require 18 multiplications, wheareas using the
commutative law, the following algorithm gives us the result in

only 17 multiplications.

87 byy + apobyy = (a3 + bay)(agut Byy) - ayy810 = byybay
817 biu + auboy = (815 + buo)(aya+ byy) - 858, - bubos
817 bya + ayuboy = (857 + bug)layu+ biy) - ag18., - byybo,
851 baa + Byybs = (ay; + baa)(agp+ bya) - ajy8y5 - brabag
a1y bie + ajubue = (857 + bug)ayu+ bye) - ay815 = byebas
8y, byy + oayubyy = (ap, + b?] J(a ut byy) - agyayy - byybyy
8,y byy + apubyy = (ayy + buy)(ag,+ bya) - agj85, - byubey
851 bia + agubos = (ayy + bdd)(a"dd bis) - agyaps - bysbug
sy bya + a8y buy = (8 + bua)(a, bla) - 8uy8yy — byabes
a,q9 byg * ayuboe = (3451 e .s:)(azd e I 8,48, — by bys

Theorem 8 The minimum number of multiplications required to compute
{¥,} is 7, even if we demand that each product is a product of a

linear form in the x's and a linear form in the y's.

This is simply stating that without the use of the commutative

law, no improvement can be obtained by mixing the x's with the y's.

Theorem 9 1f {¥,} are bi-linear forms such that ¥,,... Y, are

linearly independent and cach of them can be computed in one product,

60

but it can be shown that the number of additions also grows by

An logs; 7

This is an illustration of a property of many applications of matrices

as stated in the following theorem.

Theorem 10 The number of mult/div's required to compute A x B < a n%
S L " operations " " L AxB<bn®
S on n] mul'b/div's] i] Aa < ¢ n%
@ o L " operations L L B Iy < d n%
T " n mult/div"s n] " AB + BA < e n%
< " " operations " . ¥ AB + BA < £ n“
Eon n " mult/div's " 1 " A‘l <g n%
=g " " operations " " " A" < h n®

where A, B are n x n matrices.

We hope that by now the reader will be convinced that bi-linear
forms are as interesting and worthy of study, and that the value of

non-commutativity has also been demonstrated.

Now let us take a system of bi-linear forms {Y¥,} and associate

with it a single tri-linear form

t r
T(y) = Z 2 gy XYy Zg
k= =

Here we have introduced the dummy variables z, to construct

the tri-linear form,

Theorem 11 The minimum number of multiplications required to compute
{¥,] without commutativity is the smallest integer n such that

n
™My,) =+u L, (x) M, (y) N, (%) where Ly, M, and N, are linear

1= 1
forms.

The proof is so simple as to be little more than an observation

n where p, ... p, are the products
Yk = z cxi P). 11 n p
t=1 required in the computation of {V¥.}

63

Sy, ¢ Iy(x) M (y) by a previous theorem

]
g B
Il
-

“ 1(y,) = z L0 M) N ()

t
(wvhere N (z2) = £ ¢ 2)

From this we have

8 r
Coroll&!f If ‘l’k =)-: E a'l.!k xl y.’] k =1 e tlg
1I=1 1=1
- t s
and Y = I % byye ¥y % » i=1...7r,
k=1 =1

are such that a;;, = by, for all i,j,k then both systems require
the same number of multiplications, and an algorithm for computing
one system can be "transposed" into an algorithm fu: computing the
other,

For example:

X1y» t+ Xy = (xl = xa) Yy + x, (yy + y2)
X,¥: t XYa = X, (ya + ye) + (% - %) ¥

and
X1 Y1 =4-X17
Xq¥e + Xy & (xl + xid)(yl + Yz) =Xy = XY
XY = Xy

are "transposes" of one another, and so are the algorithms used to

compute them,

A further example is that of multiplying together the matrices
A and B, We observe that the tri-linear form can représent six
different systems of bi-linear forms, since the x's, y's or the z's
can be regarded as the dummy variable and the remaining two can be
taken in either order. If we use the notation ~ to mean "requires

the same number of multiplications as" we have

64

%xn X Bn xp ~ A'p:m b anm
~ 1. - x By, ~ Apxp x By
e Apxm Buxn g ‘A‘n!m x BDIP

w

Given a good algorithm for one of these problems, mechanically

a good algorithm can be produced for the others.

We conclude by citing an actual example in which all these
techniques are employed to obtain the solution. This example is

that of a digital filter. We have an infinite sequence of incoming
symbols

X]_ ,xg ,xa e s 0800000

and a set of weights y;yz2...yx. We wish to compute the cross products

K

z, = L XYy
1=1
Kk

Zg = L X{4 1Yy
1= 1

etc.

The problem may be written down in matrix form as (for k = 32):

Xy X X3 .0 Xgp ¥i
Xz Xa X5 ... Xa3 ¥Ya
Xa X3 Xg <.+ Xaaq Ya

Yaz

If we consider 1024 rows, we can part the matrix so that we need to
find a efficient algorithm which makes no use of the commutative law

for computing

X X3 Y1
X2 Xa Y2
X3 Xa
Xa Xg

where each x, represents a 256 x 16 matrix and each y, a 16 x 1

vector., The first result we are to use states that at least five

65

multiplications will be required. Now we must look to see if we can
find an algorithm to do the computation in exactly five multiplications.
Making use (implicitly) of all the results stated earlier, we produce

the following algorithm:

m = (2)(1 - Xp = 2%z + X4)Y1/2
m, = (2x3 + xa - xa)(y; + y2)/2
m = (2x3 - 3% + x4)(yz - y,)/6

+

x4)(2ys + y7)/6
me = (2xz - X3 - 2xa + Xg) ya

m = (—xz

We may disregard operations on the y's as these can be done once
only at the beginning of the computation. From these products we

have

X yp tXpy2 = m o+t mpy +mg +omg
Xay1 t Xgyz = my - my + 2my

XaY1 t Xayz = mgp + my + 4mg

Xay, + Xgyz = mp - m + 8my + mg

Thus for the computation of the 1024 x 32 case approximately three

multiplications per row are required.

Professor Seegmliller asked whether anything was known about the

loss of precision involved in the techniques described for matrix

multiplication. Dr. Winograd replied by citing some work by Richard

Brent of Stanford University who had taken three methods for matrix

multiplication, the straightforward method, a method related to the

Aoxa * Boxs
and the method described related to Strassen's method. This study

3
method described earlier which took $n multiplications,

was carried out on a large number of sets of data, and the methods
compared for speed and for numerical accuracy, and his final con-
clusion taking numerical accuracy into account was that the me i hcd
taking %na multiplications was superior. This, however, was =

purely experimental study with no theoretical investigation.

66

Anals Lic Comploexitn

Analytic complexity addresses the question "How much computation
has to be performed to obtain a result with a given degree of accuracy?".
Intere=t focuses on those computational processes which in a certain
sense never ond, The process is interrupted at some point and, if the
curvent value of the vesult lies within some error bound, that value
is accepted, otherwise the computation is continued until a satis—

factory result is obtained.

One of the =simplest examples of analytic complexily is a study of
algorithms for extracting the square root of a number. The variety of
known algorithms is illustrated by six examples contained in Table
1. To facilitate a comparison of these methods the numbers of arith-
metic operations used in one iteration of each algorithm are tabulated.

Note that scalar multiplications have been counted sepuiately.

The first example is Newton's method, which has a power of con-
vergence of two. This means that on each iteration the number of
significant digits in the result is roughly doubled. The second method,
basically Newton's method in disguise, has three multiplications per
iteration but no divisions. In certain situations, for instance a
machine on which division takes very much longer than multiplication,
this may be a very attractive method. The division 1/& has to be
performed once at the start of the computation, but thereafter no

divisions are necessary.

Example 4 is a somewhat unusual method which will extract the
square roots of numbers between O and 2. It involves essentially
double iteration but it is the value of X, which approaches the sqguzre
root. The last method has a power of convergence of four, so that cn
each iteration one obtains four times the number of significant digits.
In fact, this last formula is obtained by applying Newton's method
twice, and therefore it is not surprising that the power of conver-
gence is four, which is the square of the power of convergence of
Newton's method, and the number of multiplications and divisions is
two. In general, it is possible to take any of these methods and

produce new algorithms in a similar manner.

67

Table 1

1. g1 = X + a/%) p=2 d=1

2. X1 = 30K - DR) slee W=
sm=1 a/s =3
3. X4 = %%an_-—l_& p=(1+/5)/221.618
m/d =2 a/s =2
a - 1
4, N = 8 Yo = 5 p=2

X1 =% (-m), »n+ =32 (1.5 + »)

5. Xo4a =8—;§-(X§ +a) (5% + a) p=3

m/d = 4 a/s =5
- b L. & -
6. Xot:1 = %X + a/X) + m p=4 m/d=2
sm=1 o/s =2
P power of convergence
number of divisions/iteration
m number of multiplications/iteration
m/d number of multiplications and divisions/iteration
sm number of scalar multiplications/iteration
a/s number of additions or subtractions/iteration

Algorithms for extracting the square root of a number

68

If one of these methods is applied say three times and the
resulting formula used to extract the square root, the number of
multiplications will have increased threefold and the power of
convergence will have risen by the power three. In any comparison
of these methods, one would want to treat the first and last examplec
as being the same because they are both applications of the same
algorithm., The measure used to compare methods of extracting the

square root of a number is

logz (power of convergence)

number of multiplications and divisions/iteration

Ideally, one would like to use an algorithm which makes vy as
large as possible; a combination of & large power of convergence and
% small number of multiplications o¥ divisions/iteration. Unfortun-
ately, the following result by Patt;rson indicates that there is an

upper limit on v.

Theorem 12 For every iterative method for finding the square root of

a number, vys1.
Newton's method, for which y=1, achieves this bound.

This illustration of one area of analytic complexity attempts to
give a flavour of the questions which are being asked. A similar
example is that of general iterative methodsy one is given a function
f and is required to find its root. Table 2 gives three examples of

such methods.

The first method has a power of convergence 1.618 and possesses
the useful property that it requires no knowledge of the derivative
of the function in question. So, this algorithm is applicable in
cases where it is difficult to calculate the derivative of a function.
Newton's method is the second example, which has a power of convergence
of two and uses the first derivative. In general, if one studies the
literature one finds that there are iterative methods with arbitrary
high powers of convergence, but they require higher and higher
derivatives. This observation leads one to ask if there is some

kind of relation between the power of convergence and the number

69

Table 2

1. X = {K-1 2(X) - X% £(Xu-1)}/(a = Xa-1)

power of convergence = (1 + /5)/241.618; uses no derivatives.

2, X1 =% - £(X)/2'(X)

power of convergence = 2; uses first derivative.

3. Jam =% - FRRL (14 2R))/ ()P

power of convergence = 3; uses second derivative.

70

of derivatives that have to be found. The following theorem gives
a bound on the power of convergence in terms of the highest derivative

used.

Theorem 13 Every iterative method using derivatives up to order d has y

a power of convergence of at most d + 2.

It is immediate from this theorem that, if no derivatives are
used, the largest attainable power of convergence is two. In practice,
the bound d + 2 can be approached, since for every ¢ > 0 +there exists

an iterative method whose power of convergence exceeds d + 2 - €.

Thus general iterative methods provide another example where one
is trying to compare how much computation has to be performed in order
to achieve a certain accuracy. A final example concerns the problem
of parallelism., Assuming one has k processors working in parallel
what is the resulting gain in speed in execution of an algorithm that
can be expected over the single processor case? Here we disregard
problems of synchronisation, availability of information etc., and

assume such problems can be solved.

If one considers an iterative method, but this time with k
processors, it is possible to compute the k next approximations, from
which one can choose the most satisfactory. These k approximations are
evaluated in parallel but do not cause any conflict. The power of
convergence increases from d + 2 to k(d + 1) + 1, an increase of almost
k-fold., This appears to be a useful improvement but consider what is
meant by the power of convergence. Assume that the initial approx-—
imation has error &, and that one wants to continue to iterate until
an approximation to the solution is obtained within e of the solution
(hopefully e<<6), then the number of iterations which has to be

performed is given by

n ~ logp 1081/8 (1/¢)

where p is the power of convergence.

If (d+2)and then k(d+1)+1 are substituted for p, the reduction in
the number of iterations, which is the gain in speed of the parallel
case over the single processor case, is only logarithmic in the number

of processors rather than being linear. Thus if 100 processors were

used in parallel the number of iterations necessary would be reduced

71

fold not by 100-fold.

Discussion

Professor Dijkstra pointed out that the fourth eiample in the
methods of extracting square roots w@s of a different nature to the
others. To obtein a certain precision with this method it is necessary

to maintain that precision from the start, whereas the other saigorithms

permit the first step to be computed in small precision. Dr. Winograd
explained thaf this method had been included to illustrate the wide
variety of possible methods. It does have the unfortunate property of
propagating any errors, whereas the other methods all include a in the
formule and this has & correcting effect., This lecture concentrated

on the relation between the amount of compﬁtation that has tc be done

o achieve a certain amount of accuracy; the properties of the
algorithms which are therefore of interest are the power of convergence,
which indicates how fast the error reduces, and the number.of arithmetic
operations per iteration. The six methods have very different

properties from the point of view of stability.

Professor Dijkstra also expressed concern that the amount of

computation required to evaluate a square root was measured in terms
of the number of multiplications or divisions required per iteration
of the algorithm, as though this was independent of the precision with
which the computation had to be perfofmed. This concern was shared

by Dr. Winograd who repeated the remark of Dr. Rabin that we prove
what we know how to prove., The study of analytic complexity has only
provided a partial answer to the question of the amount of computation

thet has to be performed to achieve a square root to a given accuracy

In connection with the general iterative methods, Professor Page

cuggested that o possible way to obtain a higher rate of convergence
would be te epply the formula twice. So if the original formule
involved X, and X,_.,, substitute for X,_; a formula involving X,—5.
Dr. Winogred explained that if f is known explicitly, for example
f(x) = ¥ - a, this can sometimes be done (as was done in the sixth
square root example to obtain a power of convergence of four) but in

general it is not possible. Consider Newton's method:

72

2]

£ (Xa=yg

X =y P! (Xa—-1)
_ _ EXK-p)
By Sty mipR ()

Substituting for Xan_1

o =hez - R2(%a-p) - £2(2)
£ (Xm2) 2'(7)

The problem arises in the substitution for X in £(X) and £' (X).
Since f is not known as a function of variables, nothing is gained by
making such a substitution. If f is known explicitly, it might be
possible to compute f£(X,) and £'(X,) in terms of Xo—

Professor Michaelson asked whether the last result, concerning

parallelism, included the potential increase in speed of a single
iteration by a factor of k, due to the use of k processors.

Dr. Winograd said that it did not and explained that if the gain in

speed for doing arithmetic operations is considered the situation is
quite different. Combining results from the two areas suggests that
if one has k processors and an iterative method which is to be
executed, the best way to employ the k processors is to leave the
overall method as a sequential one, but within each iteration do the
arithmetic in parallel. This corresponds roughly to doing k separate
jobs in parallel., On average there would be an improvement by a

factor of k even though no one job would have such an improvement.

Teaching Aspects

In summary, we ask whether any of the material which has been
presented in this series of lectures should be incorporated in a
University Computing Science course at some level. We believe that
there are four reasons why the Complexity of Computation has a place

in a Computer Science Curriculum.

(a) It raises some interesting mathematical questions.

(b) Although interest, like beauty, is in the eye of the
beholder, most Computer Scientists would agree that some

interesting Computer Science questions are raised.

73

(¢) During these lectures we have been introduced to new
concepts or new ways of thinking.

(d) These new concepts have given rise to new algorithms,
that is, the new ways of thinking about 2 problem ha
led to new ways of doing the problem.

Discussion

Professor Hoare made the comment that from what he had seen

in these lectures, it seemed that FORTRAN was the worst possible
tool available to people interested in numerical computation. On
being asked to explain further he said that it was quite clear from
whét Dr, Winograd had said that an understanding of recursion was
essential to the understanding of these techniques, and naturally,
programmers, and students in particular, who write in FORTRAN have

a very limited grasp of the principles.of recursion,

References

J, Todd, "Motivation for Working in Numerical Analysis'", Communi-

cations in Pure and Applied Mathematics (1955).

T.S. Motzkin, "Evaluation of Polynomials and Evaluation of Rational

Functions", Bulletin of the American Mathematical Society (1955).

J.D, Hoperoft and L.R., Kerr, "Some Techniques for Proving Certain
Simple Programs Optimum", (1969) Tenth Annual Symposium on
Switching and Automata Theory.

R.P, Brent, "Algorithms for Matrix Multiplication", Stanford Univer-
sity Report STAN-CS-70-157.

T4

