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This short series of three connected lectures, on the topic of 

parallel programming, tries to illustrate how a certain approa ch to the 

problems of organising programs to run in a parallel environment can be 

used to evade (rather than solve) most of the fascinating problems 

involved. I also want to illustrate how this approach has had an 

influence on my ability to organise non-parallel programs. As Dijkstra 

has pointed out, when we know how to solve the problems of parallel 

programming, perhaps we will be able to write sequential programs much 

better. 

So in fact, the history of the development of these ideas i s 

exactly the reverse of . the order in which I will present them to you . 

I sh."ll start with a treatment of sequential progr amming and proceed 

in my last lecture to deal with parallel programm i ng. In fact it was 

the parallel programming idea that I came to fi r st, and then gradually 

worked backwards to apply the same concepts , perhaps even more fru it

fully, to sequential programs. 

Lecture 1 Abstraction and Representation of Data Structures 

My first talk is on the representation of data; and I would like 

to pick up a remark made by Professor Hopcroft yesterday on how it is 

possible to clarify one's thinking about complex programming problems 

by separating out questions of the algorithm being used to solve the 

problem from questions of how to represent the data involved . I'll 

assume, for the time being, that we have used a top-down approach , and 

that we know what sort of data we need in the abstract domain . Ou r 

task now is to code the representation of the data on to our machine . 

Our purpose will be to enable the programme r to separate the 

algorithmic aspects of his program from those of data representation , 

and to develop and prove these aspects independently. The method that 

we will adopt is to allow the programmer (conceptually or in practice) 

to extend the range of types available in his programming language, by 

coding representation of new types. 
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The idea of extending the range of types in a progr amming langus.f."d 

is now a familiar one. It has been included in Algol 68 and i n Pa scal , 

for example, but neither of these languages have exactly t he r i ght 

mechanism or structure for what I want. The reason why these languages 

do not fully satisfy me is because they fail to r ecognise what i s, I 

think, the essential aspect of a type. These languages recogni se a 

type as denumerable or finite collection of values of that type, but 

fail to associate a type with the set of primitive operations which 

are defined over that type. In order to say what we mean by the BOOlean 

type ( to take the simplest example) it is not enough to say that it 

just consists of the two values 'true' and 'false'. You should say 

that it consists of these values together with (say) the operations 'and', 

' or ' and 'not'. It is the association of the undifferentiated carriers 

of values together with the structure imposed by a set of operations 

that expresses the essence of a type. Those of you familiar with 

algebra will immediately recognise this as being an abstract algebra. 

The first language to recognise this essential aspect of a type 

was SIMULA 67, which uses the word class for a programmer-defined type , 

to differentiate it from the built-in types ~ and integer of a 

programming language. 

Example: Sets of Integers 

I shall work almost wholly by examples. Suppose we wish to re

present sets of integers, and that we have written some algorithm, 

possibly some combinatorial algorithm, which operates on sets of 

integers and uses certain operations to manipulate them. First we 

need to be able to declare variables of this new type or class, so I 

introduce the word 'integerset' to stand for this new type or class. 

For variable declarations I have used the notation of Pascal, or indeed 

mathematics: 

sl, s2: integerset; 

which declares variables of name sl and s2 to be of type integerset. 

This sort of declaration will appear in the abstract program in the 

8 

=-



same way as declarations of real or integer variables will appear 

in a concrete program. Now obviously we need,to initialise these 

variables to some value, and a very common initial value for sets 

is the empty set, so we initialise s1, s2 to empty: 

s1, s2: = r }; 

These sets will start empty , but will gradually be filled up 

by inserting numbers into these sets. This is done by forming the 

union of the current value of s1 with the unit set of SOffie integer 

i and assigning the result back to s1: 

s1 := s1 U (i 1; 

which in normal pro gramming parlance we would read as 'insert i 

into s1 '. We also need an operation of removal, to remove i from 

a set s1; i.e., take the set difference between s1 and the unitset 

i, and assign tbe value back to s1 again. 

s1:= s1 - fi}; 

Finally we need a function which tests whether an integer i is a 

member of a set s1: 

i E s1 

One of the important things about practical programming, 

particularly when operating on large values like arrays, sets and 

multi-length integers, for example, is that it is more efficient to 

use a two-address operation and update these values by partial 

updating operations in situ, rather than to implement generalised 

set union or difference as functions. Indeed to perform the 

operation s1:= s2 IJ s3 is quite a major computational task and 

involves considerable problems of storage allocation, among other 

things. Provided we confine ourselves to updating in situ, we can 

usually obtain a significant boost of efficiency, sometimes one or 

even two orders of magnitude . For this reason I will sometimes use 

an alternative notation for selective updating in which I put the 
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operator directly agai nst a colon to mean "apply this oper a t i on to 

the left- hand si de, and t he r ight-hand side and assign t he r esult 

back to th e left-hand side vari abl e" ; for example : 

s 1 : 1:) (i}'; s2 :- f i }; 

Having written an abstract program , we of t e'n find that we don't 

beed every operation on sets, but for thi s particular program we need 

a subset of them. It i s part of the ski l l of t he pr ogrammer t o choose 

representations which are going to be suitable and effi cient for 

particular applications . Why do we need t o ask t he pr ogrammer to 

program this particular type? Why didn't we bui l d t he concept of an 

i ntegerset into the l anguage to begin with? The an swe r is purely a 

matter of engineering feas ibi l i ty. There are so many di fferent ways 

of represent ing sets that t here i s no one way that you could build 

into a programming language that would be uniformly satis fac t~ry. Of 

course, if the ranges of integers are "",all , say ranging be t ween 1 and 

32 , we all know there is a good r epresentation of the s e se t s as bit ., 

patterns , and a few languages like PASCAL have built-i n faci l ities 

t o deal with sets of such small integers . But in general , and cert-

ainly in the problem we are going to dea l with , t he range of integer s 

is a s large as the r ange of integers on the machine, whi ch is consid

erably lar ger than the n umber of bi t s you would be wi lling to allocate 

to anyone of the sets . 

So the choi ce be t ween differ ent representations of sets must, I 

think, be le ft to the programmer , at least fo r the f oreseeable futur e , 

because he must choose a repre sentat i on wh ich depends on knowledge that 

only he has. 

Example: Flight Booking 

I wil l make my exampl e even more spe ci fic and choose an example , 

not of a combinatorial problem, but a problem of aircraft fl ight 

booking. 
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A flight booking program maintains for each flight the set of 

ticket numbers of passengers booked on the.t flight. The capacity of 

the planes places an upper limit C on the size of each set. Therefore 

the sort of representation the.t we may be able to get away with i s 

considerably simpler than the representation most general-purpose set 

manipulation packages would offer us. We do not need a great deal of 

sophisticated chaiDin~ because the capacity of the planes places a 

rather strict upper limit on the size of each set that we are interested. 

in. Taking advantage of this we will represent the set as an integer 

array I 

AI array [l •• C J of integer ; 

together with a variable 

size: integer; 

indicating the current size of the set. 

What do we do next? I have described to you in ordinary words 

the representation I am going to use, and I think perhaps all of you 

are saying "Ah yes, that is fairly simple. I can see what is going 

on. He is now going to draw a picture so that we can see what it looks 

like." Well I he. ve drawn a picture here (see Figure 1), be cause a 

picture is what you would expect to see at this stage in the program 

documentation, is it not? 

size: 

A: 

size 
1----.... 
I 

• • 
I 

Figure 1 
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We have drawn the array with subscript~ going between 1 and C, 

and 'size' points to the last used element of the array, the rest 

of the &rray being free. Then we realise the picture is not quite 

good enough so we add the note that if the size is zero then the 

set is empty. 

Now I like pictures, especially nice ~imple ones like that, but 

they have their limitations. I would like to suggest to you that we 

ought to supplement our use of pictures by the rigorous logical 

formulation of assertions, using logical and mathematical notations 

to specify exactly the information that is intuitively conveyed by 

that picture. 

Having shown how you can supplement this picture by rigorous 

assertions, I would like to persuade you to regard them as para

mount. It is the assertions which really specify what the repre

sentation is; and the picture is just a useful confirmation of our 

understanding of the assertions, rather than the other way round . 

Assertions 

The first thing that we need in order to make precise the 

decisions that we have taken about the representation is to specify 

the relationship between the concrete values of 'A' and 'size' and the 

abstract set of integers that we wish these values to stand for. 

For a long time I thoug~that there should be a mapping which specified 

for each abstract object what its concrete representation was. Then I 

realised that it should be the other way around; we need a mapping from 

the concrete representation to the abstract object. I will specify an 

abstraction function from the concrete to the abstract in the form of 

an ordinary expression, and give it the same name as that of the class 

which I am defining. So for any possible pair of values of 'size' and 

'A', I can find out what integerset is represented by computing the 

formula: 

integerset = [~3 j: 1 •• size, A [i]=i} 
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Of course, I wi ll never actually compute this func ti on i t, ~ \\,!l: 

its arguments are concrete objects, which I can indeed co mpute on, 

the result is an abstract object which never exists within the stor e 

of the computer. 

Notice that it is a many-one function. There are many di fferent 

values of 'A' which mean the same integerset. The re is a great deal 

of redundancy i n this representation . In particular , the values of 

elements of 'A' whose subscripts are greater than 'size ' are totally 

redundant; whatever their value, it does not change the set denoted 

by the representation . Furthermore, the ordering of the elements 

inside the array is not relevant, and any two elements in the subscript ., 

r ange 1 •••• size could be swapped and it would sti 11 be the same set . 

We also need to know certain facts about the concrete represent

ation which remain true throughout the lifetime of the object; 

information which we need in order to preserve the validity of the 

representation. Before carrying out any operations on the concrete 

representation it must satisfy certain constraints , which I call 

invariants. These invariants will be made true when the value of the 

variable is initialised, and will remain true before and after every 

operation on the variable. Every operation on the integerset may assume 

the invariant is true beforehand, but in return must guarantee that it 

is true afterwards; so it is invariant in the sense that it is true 

between any two operations on this representation, but not necessarily 

in the middle of an operation. 

The invariant in this case has to state that the value of variable 

'size' remains within the range 1 •• C, otherwise the abstraction function 

becomes undefined. Also we must state that there are no repetitions 

within the first part of the array, in other words that the same value 

does not occur twice. So the invariant is defined as: 

size = jF integerset & size ';; C. 
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I have used the "sign to stand for the size (cardinality) of 

the set. I maintain that these two assertions contain all the 

info rmation contained in the picture, and perhaps more. 

Professor Randell "The invariant has to be true in order that the 

abstraction function is defined, but in defining the invariant you 

have used the abstraction function because you are talking about 

cardinality. Isn't there a circularity there?" 

Professor Hoare "In practice there is no need to be quite so precise 

since the se things won't have to be evaluated." 

Dr. Burstall "Isn't the second part of that invariant, 'size S. C' a 

restriction on the domain of the abstraction function, and the first 

part, 'size= *integerset', merely a property of the abstraction 

function?" 

Pr.ofessor Hoare "Yes, the second part II a restriction, but the first 

part is not a property of the abstraction functi on." 

Dr. Burstall "The way you have defined the set it must always be ·true." 

Professor Dijkstra "You could have circumvented it by saying 

OSsiz"!>.C ·and '(i,j:1 .. C(iij ". A[iJ#-[jJ)" 

Professor Hoare "Yes, thaQk. you. In fact 'size = " integerset' can be 

expressed: 

'1i,j:1 .. C (A[i] = A[j]". bj). 

There is no reason why you oa.n't quote the integerset inside the invariant 

as far as I know. II 

Coding the Representation 

Now we have taken practically all the major decisions that need to be 

taken. At this stage we have made our informal ideas about the reprent

ation precise. In the implemeri'tati on of the representation we need to 

write pieces of code operating on the concrete variables 'A' and 'size', 

which will have the desired effect on the value of the abstract integerset 

variable. So corresponding to the operations 'is a member of', 'insert', 

'delete' and 'initialise', we will need to specify code to carry out these 
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operations. In fact we must write code to carry out on the concrete 

variables 'A' and 'size' the "same" operation that the a bstract pr op'an 

carries out on an abstract integerset variable. In other words to code 

a concrete operation such that it maintains a form of commutivity with 

the abstract function: 

abstraction (concrete op (A, size»~ abstract op (abstraction (A, si ze» 

Since concrete operations are usually not quite as powerful as 

abstract operations, for such reasons as arithmetic overflow, the best 

that we can achieve is a weakened form of equality,~. If both sides 

of s;are defined they will indeed be equal, but in certain cirmcumstances 

the concrete operation on the Ie ft may not be defined, whereas the abstract 

operation is. 

This commutivity can be shown in a diagram as in Figure 2, where 

dashed names refer to the values of the items after the operation 'op' 

has been carried out. 

(A, size) concrete op (A' size') 
O----------------~------~ .... O 

(partial) 

abstr ction abstra tion 

abstract op 
0----------------------.... 0 

integerset integerset' 

where 'op' stands for 'insert(i), , 'remove(i), etc. 

Figure 2 

Dr. Milner "It seems to me that one would wi sh to specify abstracting 

those elements of the abstract domain on which the thing 'works', and than 

say that given this condition the equivalence is strict." 

Professor Hoare "That is perfectly true. The question of how often your 

representation or program terminates is a very vital question which can 

hardly be ignored at any stage of the design. However, if you will be 

satisfied for the moment with partial correctness, we can postpone that 

protlem until we find a case where the program doesn't work when we 

want it to." 
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Dr. Milner "It could be that the way one deals with it later is that 

one somehow proves that the program always terminates, but this 

separates the proof of termination from the thing it arises from which 

is the fact that the representation is not fully defined where it 

should be. It might be nicer if the fully defined-ness of the 

representation were made explicit at that point, rather than later." 

Professor Hoare "I tend to say, without very much evidence to support 

it, that it does pay to separate the two aspects of the proof. There 

is a meaning of 'formal correctness' which says that at least if the 

program terminates correctly it has given the right result. 

Dr. P. Lauer "Can I give you some evidence against tlRt? If you prove 

the correctness of division by subtraction, as Floyd does, where you 

are using a loop for which you don't have to presuppose that the 

divisor is greater than zero, because now it terminates unsuccessfully. 

So the reduction of the correctness of that algorithm to a question of 

termination is only possible if you have a program with the possibility 

of indefinitely looping. If you haven't one with that possibility there 

is a problem. 1I 

I am sure you can imagine the coding of the representation written 

in your favourite programming language, which I am sure isn't the same 

as mine. Here I have my coding for the implementation of function 

'has' : 

function has (i:integer):boolean; 

assert has = i E integerset; 

begin has:= false; 

end· --, 

~ j:1 •• size while ~ has do 
if A[jJ=i then has: = true 

It is important when writing this function to annotate it, to say 

what it really means. What it means is that its parameter is a memb&r 

of the integerset . Now if you replace the 'integerset' by its definition 
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(the abstraction function given earlier) you will get a very clear 

statement of what must be true at the end of its loop, namely 

has =3j:1 •• size, A[j]=i. 

I think most of you could correctly form a loop to do this. I 

suspect that even an automatic programming system (and you can't get 

much lower than that) might be able to construct this piece of program. 

However, 'insert' is a different matter and requires real 

ingenuity! We wish to state that insertion of i is contained in 

the operation of assigning to the integerset the value obtained by 

taking its union with the unitset containing i. Again, the code is not 

very difficult for a human being to construct: 

procedure insert (i:integer); 

assert ~ integerset: U [i 1; 

if ,has (i) ~ 

if size = C ~ goto overflow 

~ begin size:=size+1; A[sizeJ:=i end; 

If i is not in the set, we must be careful of Dr. Milner's problem. 

If size=C we must be careful to fail to terminate, since we cannot complete 

the operation due to overflow. Failure to terminate is a very ugly 

phenomenon and I have woed a .very ugly programming language construct 

to deal with it. Professor Dijkstra may substitute a decent abortion 

clausel 

I have also got to program 'remove; which I haven't done at the moment 

because that requires some real ingenuity, which incidentally in the 

published version of this talk I didn't exercise . It suggests to me 

that questions of efficiency are equally important as questions of 

termination. These are more closely related to each other, I think, 

than questions of formal or conditional correctness are. I would 

rather deal with efficiency and termination together, rather than 

treating termination together with formal correctness; but I have no 

very good reason for this. 
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Proof Method 

How do we prove the correctness of the representation? We have 

got to prove that the effect of executing a bit of concrete .code is 

the same as a certain abstract assignment. The effect of 'insert (i)' 

has got to be the same as the assignment: 

integerset:= integerset U {i}. 

We have got to prove an equivalence, or at least a containment (if 

you are willing to he satisfied with a containment) between the 

concrete body of the procedure 'insert' and the corresponding oper

ation in the abstract program. Here we come up against two problems 

which baffled me for many years. Pirstly, how can I use the assert

ional method, which associates assertions with certain points in the 

program, in order to prove an equivalence, or rather a containment? 

Secondly, 'integerset', which is the target of the assignment in 

the abstract program, isn't a variable at all, it is an expression; 

and we all know, from our knowledge even of Algol, that you C&~'t 

assign a new value to an expression. Well, I can't explain why, but 

these problems do 8eem to go away. 

First some "notation; since I am using (} for sets, I "have used 

thicker brackets as follows: 

p{Q)R 

means - if P is true before execution of Q then R will be true when 

Q terminates; if Q does not terminate, this is vacuously valid. 

In order to prove the equivalence, introduce a fresh variable io 

to stand for the value of 'integerset' before the operation. I shall 

prove that 

invariant & integerset=io {body of insert} invariant & integerset 

do U fi} 
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Now this is a way of translating a n equivalence (or rather a 

containment relationship) into the corresponding asse rtional 

problem. The equivalence problem is to prove that 

body~ integerset: U [i 1 . 

I have translated the problem in equivalence theory into the 

corresponding problem of assertional theory, neglecting the fact 

that the integerset is an expression and not a variable. Now 

just replace the invariant and integerset by the definitions that 

we gave to them when we designed this representation. Integerset 

Md the invariant will now both be expressions. Then we prove the 

result using the same methods as have been used for proving algo

rithms, which I won't go into now. The problem of assigning to 

something which is an expression just seems to go away. 

The validity of the translation of the proof problem in 

equivalence theory to the proof problem in assertional theory 

depends on certain restrictions: 

(1) No variable other than 'A' and 'size' may be accessed 

by a procedure of the representation. 

(2) No program except these procedures may access 'A' or 

'size'. 

If we really wish to modularise our programs and separate 

questions of representation from questions of algorithm, these seem 

to me to be very reasonable restriction~. It is important in such 

cases that we should not have to go through an elaborate proof 

procedure to show that the restrictions have been observed. Instead 

we should be able to rely on syntactic definitions, in other words 

compile-time checks of the scope of these variable s, in order to 

enforce these restrictions. 

The Simula Class 

The implications of the above for language design are clear. 

What we need in order to be able to declare and program our own 

repres entations of new data types or classes is som9thing very 
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similar to the Simula Class concept. This is a piece of program 

introduced by the word class, which otherwise has exactly the same 

form as an Algol procedure declaration. It starts with begin and 

finishe~ with end and inside it may contain declarations of data 

and procedures. It also contains code which is executed when the 

class is invoked, in other words when a new variable of this class 

is declared, in order to initialise its value. For classes it is 

extremely important that you should give the variables a good 

initial value which satisfies the invariant. 

In Figure 3 I have written the representation of integerset 

as a Simula class, but have put in the various assertions which I 

feel should be a standard practice in the use of classes which 

declare new data types. I have put the assertions, the mapping 

and the invariant, and then in each procedure body is the 

assertion which describes its intended effect, followed by dots 

to show where the implementer will actually have to write some 

code. 

class 

begin 

integerset; 

A: array [1 •• C] of integer; 

size: integer; 

assert integerset = l i ! 3 j : 1 •• size, A[j] = i} 

8: size = 'ifo integers et 8: 0 ,;;size$(;; 

procedure has (i:integer):boolean; 

assert _ i E integerset; 

procedure insert (i:integer) assert Ii:. integerset: U(i); , 

procedure remove (i : integer); assert ~ integerset:-li}; 

size:= 0; assert integerset = {}; 

end integerset; 

Figure 3 
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Implementation 

The implementation of Simula class is likely to use closed sub

routines, but I would like to explain it by a process of textual sub

stitution, 'which is the same method used in Algol 60 to explain procedure 

calls. I hope this is a good way of convincing you that it means some

thing, and that what it means is not too complicated, and is not going to 

require any run-time administration apart from that with which you are 

already familiar, the run-time stack. 

When this class is used, as I have explained, it allows the declar

ation of variables of the new type 'integerset'. Figure 4 is an example 

of a block whose body i s Q (which may contain other declarations of 

variables or' type 'integerset'). In order to implement the declaration of 

s we make a new copy of this block, with the declaration replaced by a 

declaration of variables 'A' and 'size' which are going to be used to 

represent the particular instance' s ' of an integerset. In order to make 

sure they get unique names, I will call these ' s.A' and 's.size' using 

the dot notation to construct new identifiers which are guaranteed to be 

fresh. So corresponding to each variable of type 'integerset', in the 

real executed program we set up a different array ' A' and a different 

variable 'size'. Then we also declare different instances of the func

tions 'has', 'insert' and 'remove' and call them 's.has', ' s.insert' and 

's.remove'. Inside the body of 's.has' etc. we will refer to 's.A' and 

's.size' rather than 'A' and 'size' . Then we have the initialisation and 

finally execute the body of the block as before. The body Q will contain 

calls of 's.has' etc., this time with the dot actually in place, so that 

Q may actually operate on's' by means of these procedures which are now 

local to this instance of ' s ' . 

begin s:integerset; Q end 

is implemented 8:8 

end---' 

begin s.A: array (1 •• CJ of integer; 

s. size: integer; 

function s.has (i:integer):boolean; 

s.size:;:;:O; 

begin Q ~ 

Figure 4 
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Lecture 2 Monitors 

In this Ie cture I will show how one can implement the .represent

ation of an abstract variable in a manner which makes it possible to 

share that variable between two or more parallel processes. I will 

show how the additional problems that ari se in parallel processing 

can be tackled in a systematic and structured way by the class 

mechanism. 

My example is concerned with adding and subtracting items to 

and from a sequence of integers, and includes the abstract operations: 

(i) s:integersequence; 

(ii ) 

(iii) 

(i v) 

s:= < >; 

s: = s""<~; 

{y: = fir st (s) s:= r est (s) ); 

where statement (i) declares a single variable, s, to be of type 

integersequence, and (ii) initialises s to be the empty sequence, 

denoted by<>. Statement (iii) indicates output to the end of the 

sequence, which I equate with concatenating the existing sequence 

to the sequence of one item, <x>, and assigning the result back 

to s. Using the abbreviation introduced in the previous lecture, 

I could write s:"eX>. Statement (iv) is the operation of inputting 

an element from the sequence to the variable y and removing this 

element from the sequence. It is this pair of assignments, taking 

place as a single unit of action, that we will model in our concrete 

representation. 

A practical example of this algorithm in a non-parallel 

processing environment might be of a problem which we solve by 

division into sub-problems. Whenever we reach a sub-problem which 

we cannot solve immediately, we store an integer representation of 

it in the sequence. Then each time we finish all the processing 

necessary, we pick a sub-problem off the front of the sequence and 
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class 

begin 

assert 

integersequence; 

buffer: array [0 •• N-1] £i integer; 

firstpointer, count : integer ; 

o ~ firstpointer ~ N-1 

o ~ count ~ N 

integersequence = 

if count = 0 then empty 

e lse <buffer [firstpointer] , 

buffer rfirstpointer 

buffer [firstpointer 

note Gl means addition modulo N' , 

procedure output ( x : integer); 

assert t= sequence := sequence~<p; 

begin if count 2! N then goto error; 

buffer [firstpointer Gl countl :=X; 

count : = count + 1 

~ output; 

procedure input (result x : integer); 

Gl 

Gl 

1 J, ... 
(count-1) 

assert ;;x:=first(sequence); sequence := rest (sequence) ; 

be gin if count = 0 then goto error; 

end input; 

count := 0; firstpointer : =0; 

end integersequence; 

assert _ sequence := <> 

Figure 5 
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start to process it. Further sub-problems are appended to the end of 

the sequence. In that way we proceed sequentially to th e solution of 

the full problem, processing sub-probl ems in the order in which they 

occur. In our example, we assume that we know t hat the number of items 

in the sequence will neve r be gr eater than N, and so a cyclic buffe r 

is an appropriate representation for the sequence. 

Now we will program this problem us ing th e Ie ssons learnt in the 

previous l ecture (Figure 5). The class is called integersequence . It 

consists of a.n N- el em~Ht array of integers called 'buffe r ' which 

repres ent s t he sequence; an intege r, firstpointer, to point to the array 

element ~l ich is t he next to be input from the buffer; an integer, 

count, indicating the number of i tems in the array and thus the length 

of the abstract sequence; some assertions on these variables; the 

procedures input and output; and some initiali sation code . 

Le t us l ook at the a sserti ons on the varialles since these will 

define their purpos e (and we start with the invariants this time). I 

make it a pract ice to write out as many facts a bout the variahles I 

can think of. Clearly, fir stpointer must remain within the range of 

t he buffer. (O •• N-1), there can never be le ss than zero or greater 

than N items i " the buffer , but there are no constraints upon the 

values of the intege rs which may be stor ed in the buffer. Turning 

to the ahstract ion function integersequence, we will define it in terms 

of count. When count is ze r o t he sequence must be empty, but when 

count is not ze ro the sequence consists of the displayed sequence of 

items, the first item i s always pointed to by firstpointer. The 

next item is obtained by adding one to firstpointe r and looking at 

that position in the buffer, provided the arithmetic is always done 

modul o N. This is t he essenc e of t he cyclic nature of the buffer. 

The design of th i s representation has al r eady involved a numbe r 

of important decisions. For instance, the "ad ministrat ive " variab le s 

are chosen as firstpointer and cOl'nt, whereas I might have cho sen 

firstpointer and l astpointer. However, using firstpointer and last

pointer, it i s impossib l e to tell whether a sequence i s empty or full. 
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Because I started with the invariants and abstracti on fUllcti '-., I '''_ 

able to see and avoid this kind of probl em before actually wi it.ir.; 

any code at all. Thus I beli~ve that formula t ion of as~e rti o",s gives 

~ preliminarily test of the adequacy a nd desirabi l i ty of a c~osen 

representation. But to be quite honest, the real reason why I -Lo ok the 

right decisions was from bitter experienc e of writing thi s pr ogram 

many times before. 

In the previous l ecture I made some unkind remarks about pictures. 

Thos e remarks notwithstanding, I ho p' Figure 6 wi 11 confirm what you 

have understood from the assertions. 

buffer : 
0 ..--________ -, 

fir stpo inter -----I~~ 

N-1 

Figure 6 

, , 
I 

free 

count 

Referring again to Figure 5 , in the procedures output and input 

I have stated precisely what ·ach is to do by their equival enc e to 

s tatements in the abstr ac t algorithm. Al s o , I am very careful to check 

that I am ab l e to pe r fo rm an operation before I actually perform it. The 

go to i s intended to make it clear that if I cannot perform an ope r ati on, 

then control will never return to the point f ollmdng the jump to the 

l a be l " error". A jump is intended t o be sui c ida l. We have put this 
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test on the length of sequences in here because the concrete 

representation I have chosen is only partial: it will only deal with 

a subset of possible sequences. We could have removed this t est and 

made it a pre-condition of a user of the class that he doe s not generate 

sequences which are too long. And, indeed, by including tilis test, if 

the user over-extends the sequence, his program will die suddenly in an 

unexpected place. How repsonsible the user should be for his own actions, 

is one of the decisions that the designer of the representation must 

make. Similarly, for input there is a termination clause if the 

sequence is empty. It is interesting to compare the respective tests. 

In output, failure is caused by a breakdown in the representation 

because the representation was not strong enough to support the program 

that had been written on top of it - a similar failure to arithmetic 

overflow. In input, however, an empty sequence is legal and valid in 

both the abstract and concrete representations. But to input from an 

empty sequence would be disastrously wrong but the representation has 

not failed. - it is the abstract program that is responsible. 

What has gone before was familiar and str~ghtforward because we 

were in a sequential proc~ssing environment. Suppose now that this 

representation was being used in a situation where one process has 

the task of completing unfinished sub-problems and another parallel 

process is detecting and generating the sub-problems. Using Dijkstra's 

terminology the outputting process is called the producer and the inpu

tting process the consumer. What additional problems arise when we 

have to represent a variable which is to be shared in this environment? 

We are fortunate because the proof of validity of the chosen repres

entation is independant of the order the procedures are invoked, either 

in a sequential or a parallel environment. What cannot be tolerated is 

that the bodies of the procedures be invoked in parallel or in an 

interleaved fashion. This would cause chaotic results and proofs 

about the program would not apply. 

The programmer of the producer and consumer procedures cannot be 

expected to solve this exclusion pro blen, and so we must assume that 

there are facilities in our language, and in an underlying run-time 

mechanism, which prevent it ever happening. That is, once one procedure 

operating on a given variable is in execution there is no way any 
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other may begin execution until the first has fi ni shed . The OC ~le s 

of such procedures are known as critical regions. Meanwhile, t he r e 

is a second problem. How do we prevent input from an empty buffe r or 

output to a full buffer? This I call the synchronisati on problem. 

The boundaries between this problem and the exclusion problem are not 

absolute but within any given data representation we are ab l e to 

distinguish between them. It is no use for the producer to check to 

see if the variable count is equal to N before actually entering the 

output procedure, be cause some o the r producer may get in be tween t he 

test and the entry and make the variable equal to N; in which case 

the entry is invalid. So the synchronisation aspect which prevents 

this happening has got to be programmed as part of the data 

representation itself, and these tests on the full or empty states 

of the buffer have got to be part of the indivisiable actions which 

the program is try ing to invoke. When we attempt to invoke an action 

which is undefined we must delay the attempt until some other process 

has bro~ght the data into a condition in which the action is defined. 

Thus we introduce the idea of a process waiting in situations where in 

the sequential environment i1 would just fail. The important thing 

is to be able to specify the conditions on which a process must wait. 

Condi tions in programming languages are specified by Boolean 

expressions and he r e we use the notati on 

when B do Q; 

which means intuitively, wait until B is true; if i t is true already 

then proceed and execute Q; if B is not true then wait until it 

becomes true. In a parallel program it makes sense to wait for some

thing because there should a l ways be some other process operating 

which can proceed and may eventually "awaken" the waiting process. 

If this is not the case, and moreover, every process goes into a.wait 

state then deadlock has occured. Deadlock is a special case of non

termination, and again I shall ignore it. 

Figure 7 shows the output procedure. It s ~,aning and action are 

exactly the same a s before but I have replaced the error jump, which 
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causes what I like to call a det ectable non-termination of the 

procedure, by a command which causes the process to go to sleep 

until some other process acts upon the representation in such a 

way that count does go below N; and then the waiting proces s will 

automatically resume. 

procedure out put (x : integer); 

assert = sequence ,_ sequence"<x>; 

when count < N do 

begin buffer [firstpointer @ count] .- x; 

count . - count + 1 

Figure 7 

The proof rules for this synchronisation condition are very simple: 

we take the proof rule s we used for a sequential program and add 

another clause to the pre-condition whi ch states that if you pas s 

the do symbol you May be ce rtain the condition after the when is 

true, e.g. that count >s l ess than N. No more effort is required. 

Two important restriction s mentioned in the first lecture apply 

here. First, the proc edure s of a representation may not ac cess or 

change any variable other than a variable of the representation . 

Second, that the only way of changing the value of a representation 

variable is by executing one of the procedures of the representation. 

While a process waits on a when, the exc lusion on the procedure 

bodies must be released so that other processes can invoke these 

procedures to change the values of variables. Only by this means 

can the wait condition of a s leeping process ever become true. 

Howeve r, when the condition does become true, the successful test 

must be part of the same critical region as the action which follows. 

Thus at mo st one process (at a time) will be resumed. 
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The mutual exclusion can be implemented by asso~ ; 

each represented variable an extra component variable of type s".la phoi' e . 

This extra variable is called mutex, for mutual exclusi on , s.nd is 

initialised to one: 

mutex: semaphore; mutex::1; 

We protect critical regions by surrounding each calIon a procedure by 

the pair of operations: 

P(mutex) 

V(mutex) 

which prevents more than one process executing the procedure at a time . 

Synchronisation requires a more elaborate operation. For this we 

introduce a second semaphore with each variable of the class . This 

semaphore I shall call sync. It is ini tiali8ed to zero and, indeed, 

will remain zero throughout its lifetime, s i nce the only reason it 

exists is for waiting and the only time we can be sure we are going 

to wait on a semaphore is when its value is zero. 

sync: semaphore; sync:=O; 

Thus sync is a semaphore wl.ich "holds" a queue of processes waiting 

for their conditions to become true. Now at the end of each operation 

on a representation variable it is necessary to test whether any of the 

conditions of the waiting processes have become true. It is only at 

the end of such operations that the values of these variables will have 

been changed. We replace the simple V(mutex) at the end of each 

operation by 

while anyone-is-waiting-on-sync do V(sync); 

V(mutex) ; 

, . 
The while-loop releases a ll the processes w~iting on sync. When we 

execute the V(m~tex) operation just one of these processes, all of 
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which have P(mutex) as th ei r first ope ration, is able to pl·o cced. The 

process which proceeds must first re-evaluate its wa iL-condition, B. 

If it finds it true then it continues, and all the other pro cesses 

remai n waiting on the mutex semaphore. If it finds it fa l se t h e n i t 

will hang up on the synchronisation semaphore again, having released 

mutex to allow one of t he other processes to test its wait-condition. 

Thi s continues until a process is able to execute its desired operation. 

In t hi s way, all waiting processes are able to r etest th eir wait-cond

itions whenever another process leave s a critical region. 

We will impl ement when B do .•• by 

while oB do begin 

V(mutex) ; 

P(sync); 

P(mutex) 

end' --' 

That i s, if B is true we wish to just proceed. But if B is fals e then 

we releas e the exc lusion to allow the other processes to enter (which 

may make our condition true), then we delay ourselves on the synchron

isation semaphore. Wh en we are released from sync by the action of 

another process we immediately try and sieze the exclusi on again. 

Wh en we eventually succeed , we come back and retest the wait-condition. 

If the condition i s now true we proceed with our operation without 

releasing the exclus ion again, but if it is still false we must 

repeat t he process. 

The construction I have described is called a critical conditional 

region. The use of these conditions to guard regions of code has been 

elegantly generali sed by Dijkstra, and applied to the solution of 

problems in sequential programs. This is yet another example where 

discoveries necessary to organise parallel programs have been found 

useful when applied to sequential programs. 
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There are, however, some serious disadvantages with this 

implementation. If waiting is a relatively rare event then this 

does not matter very much. But if waiting is fairly common, and 

the queue of waiting processes becomes long, then there is a 

great deal of retesting to do. Another difficulty, particularly 

for operating systems, is that we have no control ove r the order in 

which the waiting processes are resumed when more than one has a 

condition satisfied. Further, some processes may wait for ever 

even though their condition is satisfied, because every time it is 

satisfied the condition of some other process is a lso satisfied, 

and that one always gets control first. Ways around this drawback 

ca~ sometimes be programmed expl icitly . 

There are tWl' approaches to solving these problems. O,' e can 

look for a more subtle implementation. For example, if one associates 

mfferent synchronisation semaphores with different conditions (and 

the condition does not depend upon parameters of the procedure) then 

it is possible first to retest the condition only once on behalf of 

the process at the head of the queue. If it is false, then everybody 

e l se will be true. Wh en the condition depends upon parameters 

transmitted by the process into the representation then there is 

less alternative to retesting. It may be rather inefficient, but it 

is a general method and the code is extremely short. An al terna ti ve 

approach i s to introduce a more primitive synchronisation tool wLich 

allows you to program the waiting loop yourself. This may give yo~ 

the abi lity to program more efficient so lutions when you have to. 
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Lecture 3 Parallel Programming : An Exploration 

I want to take you briefly through a chain of r eas oning by which 

one might develop a theory and approach to the problems of parallel 

programming; or perhaps better, an approach away from t he probl ems, 

since I always prefer to avoid problems rather than solve them . y 

obj ect ive is to discover cases in which parallel programs are no mor e 

difficult to design correctly than sequential ones, and I will take 

as a thesis that difficulty is correlated with the difficulty of 

proving the correctness of the program. 

Notation: 

Q1 II Q2 Q1 and Q2 are to be executed in parallel, 

terminating only when both Q1 and Q2 terminate . If 

either fails to terminate, then the whole construction 

fails to terminate. 

Q1 !:;'Q2 (procedural containment) Whenever Q1 terminates, 

it has exact ly the same value and exactly t he same 

effect on all variables as Q2 . 

Professor Dijkstra "Doe s this only apply to determ inistic programs?" 

Professor Hoare "Yes, I will only apply it to deterministic pro grams. " 

Dr. P .E . Laue r "This containment does not take account of a program 

becoming undefined because of an erro r rather than an infinite loop." 

Professor Hoare "I like to treat a ll errors in the same way, as 

equivalent to coming up against a time imposed by the implementation. 

So I'll regard division by zero a s equivalent to non-term ination." 

Q1 ; Q2 (procedural equivalence) Mutual containment, 

that is, both Q1 f;.Q2 and Q2EQ1 

P (Q} R (conditional correctness) If Q terminates, and P 

was true before it started, then R will be true on 

termination of Q. If Q never terminates, then this is 

vacuously true. 

Informal conventions: 

"process" a part of a program which proceeds in parallel 

wi th other parts of the program. 
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"parall e l program" a program which contains, at some stagf o r 

another in its execution, two or more processes. 

I can't and won't define what I mean by a process . 

The following theorem is a direct consequence of the definitons : 

01 E 02 , P [Q2} R 
P rQ1 } R 

Disjoint Programs 

I wish to pose the question: Under what conditons can we be s ure 

that a parallel program has an identical effect to a sequential one, 

that i s, that 

(Q1 / / Q2) = (Q1 Q2 ) ? 

There are many conditions under which this will be true, but we would 

like to have conditions which are very easy to establish. We would 

like to ha ve a very si mple condition which can be che cked by syntacti c 

criteria, and not by having to consider the semantics of the program, 

or the behaviour of the program when it is executing (because reason

ing about that is difficult ). We would like to have a program to 

check whether the construction of any program satisfies the rul es 

which make the above equ ival ence trivial . We would be able to guarantee 

equivalence, not by a proof but by compile time checks. 

My answer is contained in the title of this section - when Q1 a nd 

Q2 are disjoint (in the sense that no variable which is possibly up

dated by one of them is mentioned in the other) the equivalence will 

certainly hold. In a ca refully designed language it is possible to 

tel l which variables can be assigned to, and in such a language it is 

possib l e to check whether two processes are disjoint. 

This may seem to be evading the problem, but I suspect that quite 

a lot of the practical us es to which programm€TS want t o put a parallel 

programming facility can be constructed to conform to this re s triction. 

Here is a simple program whict. overlaps input/output opera ii ons . 
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begin lastone, thisone, next one item; 

input (lastone); 

r process(lastone) II input(thi sone) J ; 
while notempty(input. ) do 

begin [ input(nextone) II process(thisono) II output(lastone) 1 

lastone := thi s one ; th is one :=nextone 

end' --' 
[ process(thisone ) II output(lastone) J 
output (thisone) 

end 

The main part of the loop overlaps input of the next item to be 

processed, proceseing of this item, and output of the last item. These 

three things can be done in parallel because we allocate three disjoint 

locations of store on which the three processes are to operate. When all 

t h ree have finished, this item and the next item are copied across to set 

up conditions fo r tl>= loop to proceed in parallel agai n. The outside of 

the loop deals with situations where the buffers only contain one or two 

items and the amount of parallelism is consequently limited. 

In implementation, the paralle l split in the innermost loop could 

be an expensive operation, so that this program is not a very good one 

unless the overlapped operations take rather a long time. 

We proceed with our investigation by asking why the condition of 

dis j ointness might be fo und to be too restrictive in tl>= construction 

of parallel programs. It may be possible to relax the restriction a little, 

and so increase the class of parallel programs which can be written and 

proven without any more difficulty than sequential programs. 

Competing Prog~ams 

One reason why two parallel processes might have to interact is that, 

for exampl e, both processes wish to use a singl e l ine-printer (or some 

other resource which is in short supply). Each of them, fortunately, 

wishes to use the line-printer only for relatively short periods during 

its execution, and is quite prepared to relinquish the line-printer 

after each period of use. We could define a resource as any part of a 
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computer system which can, and must, be allocated to only one process 

at a timA. EXA.mples are a line printer, a computer operator or even a 

single word of main store. 

We know that an Algol-like language allocates and de-allocates 

main storage in a dynamic fashion, and the implementation ensures that 

no individual word of main store is allocated to two purposes simul

taneously. This gives a clue as to how we might extend the range of 

parallel processing possibilities, while retaining the essential 

feature of a compile time check, together with a proof method which 

is no more difficult than for the sequential case. Algol-60 insists 

that before you use a word of main store, it must be declared and given 

a name; and ensures automatically that after you finish using the main 

storage it must be returned for reallocation. These restrictions are 

inherent in the leA~eographic structure of the language itself and are 

not enforced by any run time checking. 

The question arises: Under what conditions can We be sure that the 

claiming, use, and release of a resource by a process has an identical 

effect to the declaration and use of a variable in a block? 

The answer is inherent in the above discussion. Design a language 

to use the same notation for claiming and locally using a resource as 

for all other declarations (which also claim a resource 

Here is an example. 

listing lineprinter 

listing.output(line); 

s. output (x) 

end 

s integersequence 

.. ain sto re) . 

Within this block a parallel process wishes to use the line

printer, so it declares a variable of type 'lineprinter', which is 

perhaps a built-in type of an implementation. Inside the block it 

can operate on that line-printer by calling the built-in facilities 

of the line-printer class, as provided by the implementation, in 

exactly the SMle way as operations on variables of other classes like 
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'integersequence' . 

The normal scope rules of Algol-60 ensures that no one can us e a 

resource without c l a i ming it; it is logically impossible to s end a 

line to the l ine-printer except within the scope in which the line

printer has been declared. The declaration is intimately connected 

with the acquisition of the resource, and exit from that scope is 

intimately connected with the release of the resource. At least for 

terminating programs, the rules also ensure that no one forgets to 

release a resource. Furthermore, wherever and whenever multiple use 

of t he same resource is available (for example two line-printers ) an 

i mplementation may satisfy several claims simultaneously. The same 

parallel program will run with a shorter elapsed time on such a 

machine. 

Processes which have to interact because they require use of the 

same resources, I call competing processes. The cases of di sjoint 

processes and competing processes include, I believe, fairly large 

c l asses of useful programs. 

Commutivity 

Now I would like to return to disjoint pro cesse s and ask a rather 

important ~uestion : Why do we believe that the effect of executing 

disjo i nt processes in parall e l is the same as executing them sequent

ially? I don't know whether it is possible to give a completely 

rigourous proof of this, since any proof must depend on some definit

ion of atomic units of action evoked by the execution of a program 

(a l i ne which has been explored by Dr. Bekic). 

Here is a very informal proof. Let U(Q) be the set of 'atomic ' 

units of action evoked by the execution of Q (for any definition of 

' atomic ' ). U(Q1 ) is said to commute with U(Q2) if (q1 ; q2) ;; (q2 ; q1 ) 

for any q1 € U(Q 1 ) and any q2 € U(Q2). Actions from disjoint programs 

obvi ous l y commute, as shown by the example: 

x . _ y+Zj VI ._ v+z w ._ v+z; x . _ y+z 
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Unde r this condition, an arbitrary interleaving of units of acti on f1 r.J 

Q1 and Q2 ha s the same effect as any other, and in particular the 

interleaving with all units from Q1 proceeding all those from Q2 -

which i s of course the sequential case . 

Thus, Q1 II Q2 - Q1 Q2 

and indeed Q1 II Q2 - Q2 Q1 

Equivalent programs obviously can be proved by the same proof rule . 

Co-operating Processe s 

Can we extend the principle of commutivity and apply it to co

operating processes which work. on some common task to the solution 

of which they both contribute? Consider an example. Suppose we are 

given a set variable 5, and an operation 

• s.remove (n} 

~lich has the effect of r emoving the integer n from the set s (i. e. s : = s - f n)}. 

I am not going to describe how the set s is represented, and will 

provide only an abstract program . Let us a l so suppose that the 

remove operation is atomic. I f two parallel processes attempt to 

remove something at the same time the effect is the same as if one had 

been completed before the other begins . The remove operation commutes, 

having the rather nice property that for all m and n it doesn't matter 

in which order they are removed from the set . 

s := s-[ni; s := s-[m) " s := s-rm); s := s-[ni for all m,n. 

Removal is of course defined so that if the integer is not a member 

of the set, then nothing happens. 

Provided we can be sure t hat whatever inter l eaving occurs, the 

effect is the same as the sequential case, then we also know t.hat the 

actua l order of the operations is immat.erial. Be low is a simple 

example using this knowledge in a program. 
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begin sieve set of integers; 

procedure remove multiples of (n 

begin i : intege r; 

integer) ; 

for i : ~n~ step n until N do sieve.remove(i) 

end' --' 
sieve : ~ r~ 2 S i ~ N } 

P 1 : ~ 2; p2 : ~ 3; 

while p12 S N do 

begin [remove multiples of(p1 ) II remove multiples of(p2) 1; 
p1 : ~ min [i I i > p2 & i e sieve ); 

if p12 < N then p2 := min [i r i > p1 & i e sieve } 

end 

end 

The basic principle of the sieve of Eratosthenes is that within 

the innermost loop all multiples of a given prime are removed from 

the s ieve. This particular program is organised so t hat multiples 

of the two primes, p1 and p2, are removed in parallel. No difficulty 

arises becau se the body of the procedure ' remove multiples of (n)' 

operate s on the SIeve only by a commutative operation, 'remove'. 

Communicating Proce sses 

Provided co-operating processes co-operate via commutative operations, 

we can treat them without very much more difficulty than we treat sequ

ential processes. But the re is a serious, and absolutely vi tal, 

restriction on the forms this co-operation can take, because the rule 

of commutivity obviously prohibits communication between two processes. 

It is impossible to communicate any information between processes wh i ch 

operate on shared variables only by commutative operators. The simplest 

proof of this is that with commutative operators, Q111Q2 is equivalent 

to both Q1 ;Q2 and Q2;Q1. Both of these are valid implemenations of the 

II operator. It is impossible to communicate from Q1 to Q2, since if 

it were possible to communicate, it woul d be imposslble to execute them 

in order Q2;Q1. Similar l y for the impossibi l ity of communication from 

Q2 to Q1 . 

38 

.... 

I 

I 

! 

I 

I 
I 

I 



Professor Michaelson "That doesn ' t sound correct. Both Q1 and Q2 c ill _, 

before terminating, check whether their task was completed, and if n , t, 

perform the remainder of t he task. They would commute externally , but 

wo uld perform different actions depending on the order in whi ch they 

were executed. " 

Professor Hoare "Thi s i s the case where Q1 and Q2 co-operate by means 

of memo functions. Q1 calls a computation whi ch stores its result, 

and t h en Q2 P" dorms a n operation which if the result ha s already be en 

stored just use s it, but otherwise first computes and stores t h e r esul t. 

However, the progress of Q2 cannot d epend on an yth ing Q1 might or might 

not have done; Q2 cannot re l y on Q1 having ach ieved a half-way objective". 

Professor Michaelson "The c ompletion of Ql may not depend on what Q2 

has done, but the actua l things Ql does may so depend. Are you 

defining 'communication' in a way t hat would only permit one process 

to coml' l ete if the other ha s set a signal- a rather restrictive form 

of defini tion?" 

Professor Hoare " No. I think that it is impossible for Ql to call a 

function which deli vers a result til at i s dependent on the progress of 

Q2, ahd t herefore the only technique for passing resul ts from Q2 to 

Ql i s the memo function. But perhaps some furt he r thought is required . 

My argument is, of course, entire l y informal, and is based on the view 

t ha t resu l ts cann ot be communicated from something that happens later 

to som~thing that happens earli er. ,t 

I introdu ce a new definition. U( Ql) is said to semicommute with 

u (Q2) if (q2;ql)!;; (ql; q 2) for a ny ql e U(Ql) and any q2 e U( Q2 ) . 

When th is is t he case . we can sort al l the interleaved actions of Ql and 

Q2 in suc h a way t hat a ll the actions of Ql move to the If· ft, and all 

t h ose of Q2 move to the ri ght . Every time we make an interchange, 

mov ing an act.i all 0 f Ql to the I e ft of an acti on of Q2, we make the 

program more defilled. Eventually, all the actions of Ql will be to 

the lE ft 01' those o f Q2 . The program is t h e n sequ e ntial , and is at 

i t s mo~t de finpd. Thus. 

Ql //Q2 C Ql ;Q2 . 
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So i n this situation we can prove the correctness of the sequential program 

Q1 ;Q2, and be confident that the same proof applies to the program 

Q1 //Q2, which may terminate l ess ofte~. 

How can we be s ure that thi s program terminates at all? Well, we 

can' t be s lrre, because the weak condi tional ~orrectness methods allow 

an implementation to reject the computation of any program whatsoeve r, 

at any stage . The engineering quality of an implementation can be 

judged by the frequency with whi ch it rejects programs, and implement

ati ons can be co mpared on this bas is, but i n the last resort, the 

impl ementat i on which r e j ects a ll programs is perfectly valid and just 

a bit wor se than all other implementations. 

So, we make it 'the responsibili ty of an impl ement ati on to ensure that 

if Q2 attempts an operation q2 at a time when this i s undefined, the 

operation will be mere l y delayed until (hopefully ) Q1 pe rforms suc h 

operations as will make q2 defined. The delaying of operations was 

considered ear li er under the term ' sync hroni sation', where I provided 

a method for thinking acout synchroni sation problems, and a notation 

for specifying how to determine whether an operation need be delayed. 

Thus llsjng classes and conditional critical regions, we can ourse lves 

program a representation of t he variabl e shared between parallel pro cesses . 

Obvi ous l y, the example I' m working towards is the c l assical case of 

producers and consumers. 

Given that a l anguage or programmer has implemented the concept of 

a sequence, and provides as atomic operatiofis: 

s.output(x) 

s.input( y ) 

-

-

s 

y 

then these two operati ons semiconunute: 

'- S A <x 

, - first(s); s . _ rest(s» 

s.input( y ) ; s,output (x )!;; s . output( x ) s .input( y ) , 

The ineyuality is strict, ' since in the case that s is empty , input from 

s i s not defined whereas output to s is de fined. A proce ss which only 

outputs to s is known as a I producer on s I , and a process which only 

inputs from 5 i s known as a I consumer of s I. Notice t hat the rule 

of semic ommutivity only permits forward communi cation , and in this 
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particular case, only one producer and one consumer, be cause with two 

pr odu ce r s the output operations do not commute . To allow multiple 

producer s and consumers the shared abstract ob ject can be a multi se t 

or a bag - on which both the input and the output operations do commute. 

Ve r y oft en the ability to define success ful communication and co

operation depends on the ability to abstract the oper ati ons ne eded . 

The paralleli sm I have offered seems entirely deterministic since it 

a lways gives the same results as a deterministic sequential program. 

Howeve r , it may well be the case that the concrete values (of the 

representations) of the shared variables do depend on the sequence 

i n which the operations have been invoked. At the level of the imple

mentation on a computer, the process may be higbly non-deterministic. 

Only after applying the abstr action functi on do the operations commute. 

This s uggests that abstraction is an absolutely nec essary key to t he 

organisation of parallel processing. 

Take the example of sharing a line-printer - why do we believe 

t hat a l ine-pr~ nter can be shared between two processes (provided that 

use of the line- printer is an a t omic action, to prevent arbitrary 

interleaving of lines)? This is al lowab l e when we do not mind in 

which order the f iles of output appear. That is, in just t he case 

when the listings are burst before we re ceive them, and therefore 

can ' t tell wbat the order was on output. So here is anothe r exampl e 

of a very important abstraction function - t he ruler used by the 

operator to separate sheets of line-printer pa.per. Without thi s 

abstraction the system would not have the freedom to change the 

ordel' in whi ch it executes jobs. 

I would like to admit that there is a serious, perhaps uns olv

able, w&akness of this technique, which effecti ve ly prevents it from 

being used for two-way communi cation. I discussed p l acing an obli

gation, or at l east an objective, upon an implementation,to terminate 

a program whenever this is possib l e. Certainly, any implementation 
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must be prohibited from terminating ( successfully ) a program which 

contains an infinite loop or an undefined operation. But otherwise, 

if the implementation can find a way of terminating a program success

fully, it should do so. Now suppose we have a situation in which some 

interleavings of the actions on shared variables l ead to deadlock, 

and s ome do not. Then, I think that all non-deadlocked computations 

will produce the same result, even though such computations may be 

in the minority. Apparently, our implementation is obliged, by means 

of horrendous backtracking, to find a terminating interleaving when

ever one exists. Terrible! Of course an implementation which does 

not ba cktrack is permissible. The pro blem is to decide which implem

entation is preferable, and why. My only soluti on is to ask the 

programmer how much he is prepared to pay, in wh i ch case he will 

prefer the non-backtracking implementation. But fortunately, with 

one-way communi cation, deadlock is impossible, and the problem does 

not arise. 

Professor Scott "Doe s Schwarz's language SETL have anything to do 

with your use of the class concept?" 

Professor Hoare "I've often asked myself that question. As far as 

I can make out, t here are two fundamental flaws in that language. 

One is that it does not bind variables and expressions to a given type, 

which I regard as an essential prop to my weak intellect." 

Professor Scott "Is it not your implementation which 'is weak?" 

Professor Hoare "Well, both I think. In this respect the computer 

needs the prop as much as I do. I den't think of typing as a sordid 

matter which the computer should not need to impose on a human being, 

but rather as an aid to constructive thinking, as do you, and Dr. Bekic. 

He introduces types, not because of any execution requirement, but 

because he needs them to check the sensibleness of what he is writing 

down. The second flaw (in the SETL project) is that too much emphasis 

is placed on ski lfull optimisation. I don't belive in that level of 
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optimisation. Obviously I agree that you should describe what your 

program is trying to do before you try to do it. The idea that the 

representation is a lower leve l of decision which should be kept 

separate is a good one, but to delegate it to the computer leads to 

diffi culty. The best that I can do is to give the programmer a way 

of thinking about his designs and how to translate them into an 

implementation. After t hat I wouldn't want to deprive him of the fun 

of actually doing it ." 

Dr. Burstall "I s it the case that if Ql = Ql' then for all 
, 

Q2, Ql//Q2 = Ql//Q2? Is it true when parallelism is restricted to 

semicommutati vt. ope rations?" 

Professor Hoare 111 can't, unfortunately, give compile time checks 

for semicommutativity . If you're willing to bear with me on t hat 

difficulty, I think that my form of parallelism is best treated by 

relating it di rectly to the equivalent sequential program. In the 

case of semicommuta-Livity this is fine; only the second process can 

wait for the rirst one. With communication in both directions then 

(a) the proof is very complex and (b ) the problems of deadlock are 

~ven worse. For semi commutative operations, the parallel operator 

can be thought of as permission to the implementatioIl ':,0 execute 

thi ngs in a different order if it so chooses. However, to perform 

Ql followed by Q2 woul d tit ill be val id. So, in answer to your 

question, if the answer is yes for sequential programs then it is 

yes for Illy retitricted form of parallel programs also ." 

Professor Dijkstra "Well, to my feeling, the restriction to one -way 

communication is as seri ous as to ask someone to walk with one leg. 

For instance, if you wi sh to exploit the possibility of tremend<ms 

paralleli sm in the super fast Fourier transform, then you just cannot 

wri te sequential programs. The interleaving of the separate activities 

i s an essential feature. Each of the processes is synchroni sed and 

goes through a cycl e in which it receives two results and produces 
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two results." 

Professor Hoare "I make no claim to have exhausted the possibilities 

of parallelism. Almost like programming, however you try to pin it 

down, someone will always think of a beautiful way of u s ing parallelism 

which you haven't covered." 

Professor Dijkstra 

ei ther?" 

"With one leg you can't walk, so you can ' t stumble 

Professor Hoare "Yes. It's a good rule fo r those who would otherwise 

have two left feet." 

Dr. Milner "Can we never find a definition of p1.rallelism sufficiently 

general that people don't find new ways of using parallelism? I ' m rather 

depressed to hear you give up like that." 

Professor Hoare "I've not given up. I'm going to see what I can do 

about Professor Dijkstra's algorithm." 

Dr. Milner "This is my criticism, Until we look at more difficult 

examples of parallelism, the problem will remain unsolved. The simpler 

examples should come out as a nice special case of ]he general results." 

Professor Hoare "Obvi ously we're all hoping to me et in the middle. 

You're starting from one end and I'm starting from the other. You can 

readily point out that I'm not yet half way. I do think the assertional 

method I use hasa fundamental weakness (which is also its strength - it 

is in many ways the reason why it is so s;mpl e ) and that i s that it 

throws away every a s pect connected with the passage of time. You 

cannot even say that a computation is finite, much less that it is 
2 0 

bounded by 22 Such problems cannot even be formulated in a pure 

assertional method." 
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Some Remarks on Teaching 

I've listened with fascination to the talks of the other speakers . 

They have filled me with a desire (not likely to be fulfilled in the 

immediate future) to teach their subjects in my department. I don't 

think that my own lectures fill me wjth the same desire at all. What 

I have had to say is more in the nature of on-going research than a 

compl eted di sc ipline sui table fa r teaching. If you find any of the se 

ideas attractive, then I would suggest you incorporate them in some 

existing course. There are three fairly strong reasons against a 

separate course on this material. 

1. No textbook. 

2. Many dcubts and open questions remain. 

3. No facilities for practical work (perhaps least important). 

I enjoy theoretical programming but some students don ' t. 

I wj 11 d, scri be hriefly bow thi s material fits in wi th courses at 

Belfast. Abstraction and representation of data is very much emphasised 

in a 2nd ,Ye ar adva.nced programming course. Since we do not have a. 

lan guage which i.mpl ements the class concept, the treatment i s fajrl y 

theoretical . Concept,s o f exclus i on and sy nc}-~r on. isation by meanS of 

monitors. logethet· with synchronisatio n and operating system 

algori thm s form a large part of the 3rd year opE'rating systems cour se . 

This wa y of l ucking at synchronisatj on and sc heduling problems is a 

great s impli.fication for the stude nt.. They can so lve problems which 

n. Ie,",' yea r s ago would have been re search article s (if semaphores had 

to be used). TI10re j s also a 3rd year course of 30 lectures 011 the 

The o ry of Progr[urming . of which 1.1"1' tas1 . thre(" p['PSl)nt - not very 

~llcc€"ssl'\d l,v .- the material I hav(') prf!sent ed hen:. . 
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