
Rapporteurs:

Introduction

PROGIWI CORRECTNESS PROOFS

C.A.R. Hoare

Dr. T. Anderson
Mr. R.B. Gimson
Mr. R.M. Simpson

This short series of three connected lectures, on the topic of

parallel programming, tries to illustrate how a certain approa ch to the

problems of organising programs to run in a parallel environment can be

used to evade (rather than solve) most of the fascinating problems

involved. I also want to illustrate how this approach has had an

influence on my ability to organise non-parallel programs. As Dijkstra

has pointed out, when we know how to solve the problems of parallel

programming, perhaps we will be able to write sequential programs much

better.

So in fact, the history of the development of these ideas i s

exactly the reverse of . the order in which I will present them to you .

I sh."ll start with a treatment of sequential progr amming and proceed

in my last lecture to deal with parallel programm i ng. In fact it was

the parallel programming idea that I came to fi r st, and then gradually

worked backwards to apply the same concepts , perhaps even more fru it

fully, to sequential programs.

Lecture 1 Abstraction and Representation of Data Structures

My first talk is on the representation of data; and I would like

to pick up a remark made by Professor Hopcroft yesterday on how it is

possible to clarify one's thinking about complex programming problems

by separating out questions of the algorithm being used to solve the

problem from questions of how to represent the data involved . I'll

assume, for the time being, that we have used a top-down approach , and

that we know what sort of data we need in the abstract domain . Ou r

task now is to code the representation of the data on to our machine .

Our purpose will be to enable the programme r to separate the

algorithmic aspects of his program from those of data representation ,

and to develop and prove these aspects independently. The method that

we will adopt is to allow the programmer (conceptually or in practice)

to extend the range of types available in his programming language, by

coding representation of new types.

7

The idea of extending the range of types in a progr amming langus.f."d

is now a familiar one. It has been included in Algol 68 and i n Pa scal ,

for example, but neither of these languages have exactly t he r i ght

mechanism or structure for what I want. The reason why these languages

do not fully satisfy me is because they fail to r ecognise what i s, I

think, the essential aspect of a type. These languages recogni se a

type as denumerable or finite collection of values of that type, but

fail to associate a type with the set of primitive operations which

are defined over that type. In order to say what we mean by the BOOlean

type (to take the simplest example) it is not enough to say that it

just consists of the two values 'true' and 'false'. You should say

that it consists of these values together with (say) the operations 'and',

' or ' and 'not'. It is the association of the undifferentiated carriers

of values together with the structure imposed by a set of operations

that expresses the essence of a type. Those of you familiar with

algebra will immediately recognise this as being an abstract algebra.

The first language to recognise this essential aspect of a type

was SIMULA 67, which uses the word class for a programmer-defined type ,

to differentiate it from the built-in types ~ and integer of a

programming language.

Example: Sets of Integers

I shall work almost wholly by examples. Suppose we wish to re

present sets of integers, and that we have written some algorithm,

possibly some combinatorial algorithm, which operates on sets of

integers and uses certain operations to manipulate them. First we

need to be able to declare variables of this new type or class, so I

introduce the word 'integerset' to stand for this new type or class.

For variable declarations I have used the notation of Pascal, or indeed

mathematics:

sl, s2: integerset;

which declares variables of name sl and s2 to be of type integerset.

This sort of declaration will appear in the abstract program in the

8

=-

same way as declarations of real or integer variables will appear

in a concrete program. Now obviously we need,to initialise these

variables to some value, and a very common initial value for sets

is the empty set, so we initialise s1, s2 to empty:

s1, s2: = r };

These sets will start empty , but will gradually be filled up

by inserting numbers into these sets. This is done by forming the

union of the current value of s1 with the unit set of SOffie integer

i and assigning the result back to s1:

s1 := s1 U (i 1;

which in normal pro gramming parlance we would read as 'insert i

into s1 '. We also need an operation of removal, to remove i from

a set s1; i.e., take the set difference between s1 and the unitset

i, and assign tbe value back to s1 again.

s1:= s1 - fi};

Finally we need a function which tests whether an integer i is a

member of a set s1:

i E s1

One of the important things about practical programming,

particularly when operating on large values like arrays, sets and

multi-length integers, for example, is that it is more efficient to

use a two-address operation and update these values by partial

updating operations in situ, rather than to implement generalised

set union or difference as functions. Indeed to perform the

operation s1:= s2 IJ s3 is quite a major computational task and

involves considerable problems of storage allocation, among other

things. Provided we confine ourselves to updating in situ, we can

usually obtain a significant boost of efficiency, sometimes one or

even two orders of magnitude . For this reason I will sometimes use

an alternative notation for selective updating in which I put the

9

I
I

operator directly agai nst a colon to mean "apply this oper a t i on to

the left- hand si de, and t he r ight-hand side and assign t he r esult

back to th e left-hand side vari abl e" ; for example :

s 1 : 1:) (i}'; s2 :- f i };

Having written an abstract program , we of t e'n find that we don't

beed every operation on sets, but for thi s particular program we need

a subset of them. It i s part of the ski l l of t he pr ogrammer t o choose

representations which are going to be suitable and effi cient for

particular applications . Why do we need t o ask t he pr ogrammer to

program this particular type? Why didn't we bui l d t he concept of an

i ntegerset into the l anguage to begin with? The an swe r is purely a

matter of engineering feas ibi l i ty. There are so many di fferent ways

of represent ing sets that t here i s no one way that you could build

into a programming language that would be uniformly satis fac t~ry. Of

course, if the ranges of integers are "",all , say ranging be t ween 1 and

32 , we all know there is a good r epresentation of the s e se t s as bit .,

patterns , and a few languages like PASCAL have built-i n faci l ities

t o deal with sets of such small integers . But in general , and cert-

ainly in the problem we are going to dea l with , t he range of integer s

is a s large as the r ange of integers on the machine, whi ch is consid

erably lar ger than the n umber of bi t s you would be wi lling to allocate

to anyone of the sets .

So the choi ce be t ween differ ent representations of sets must, I

think, be le ft to the programmer , at least fo r the f oreseeable futur e ,

because he must choose a repre sentat i on wh ich depends on knowledge that

only he has.

Example: Flight Booking

I wil l make my exampl e even more spe ci fic and choose an example ,

not of a combinatorial problem, but a problem of aircraft fl ight

booking.

t
I

A flight booking program maintains for each flight the set of

ticket numbers of passengers booked on the.t flight. The capacity of

the planes places an upper limit C on the size of each set. Therefore

the sort of representation the.t we may be able to get away with i s

considerably simpler than the representation most general-purpose set

manipulation packages would offer us. We do not need a great deal of

sophisticated chaiDin~ because the capacity of the planes places a

rather strict upper limit on the size of each set that we are interested.

in. Taking advantage of this we will represent the set as an integer

array I

AI array [l •• C J of integer ;

together with a variable

size: integer;

indicating the current size of the set.

What do we do next? I have described to you in ordinary words

the representation I am going to use, and I think perhaps all of you

are saying "Ah yes, that is fairly simple. I can see what is going

on. He is now going to draw a picture so that we can see what it looks

like." Well I he. ve drawn a picture here (see Figure 1), be cause a

picture is what you would expect to see at this stage in the program

documentation, is it not?

size:

A:

size
1----....
I

• •
I

Figure 1

11

},. ..

if size = 0

then the set

is empty.

I
I

We have drawn the array with subscript~ going between 1 and C,

and 'size' points to the last used element of the array, the rest

of the &rray being free. Then we realise the picture is not quite

good enough so we add the note that if the size is zero then the

set is empty.

Now I like pictures, especially nice ~imple ones like that, but

they have their limitations. I would like to suggest to you that we

ought to supplement our use of pictures by the rigorous logical

formulation of assertions, using logical and mathematical notations

to specify exactly the information that is intuitively conveyed by

that picture.

Having shown how you can supplement this picture by rigorous

assertions, I would like to persuade you to regard them as para

mount. It is the assertions which really specify what the repre

sentation is; and the picture is just a useful confirmation of our

understanding of the assertions, rather than the other way round .

Assertions

The first thing that we need in order to make precise the

decisions that we have taken about the representation is to specify

the relationship between the concrete values of 'A' and 'size' and the

abstract set of integers that we wish these values to stand for.

For a long time I thoug~that there should be a mapping which specified

for each abstract object what its concrete representation was. Then I

realised that it should be the other way around; we need a mapping from

the concrete representation to the abstract object. I will specify an

abstraction function from the concrete to the abstract in the form of

an ordinary expression, and give it the same name as that of the class

which I am defining. So for any possible pair of values of 'size' and

'A', I can find out what integerset is represented by computing the

formula:

integerset = [~3 j: 1 •• size, A [i]=i}

12

l

I

\

Of course, I wi ll never actually compute this func ti on i t, ~ \\,!l:

its arguments are concrete objects, which I can indeed co mpute on,

the result is an abstract object which never exists within the stor e

of the computer.

Notice that it is a many-one function. There are many di fferent

values of 'A' which mean the same integerset. The re is a great deal

of redundancy i n this representation . In particular , the values of

elements of 'A' whose subscripts are greater than 'size ' are totally

redundant; whatever their value, it does not change the set denoted

by the representation . Furthermore, the ordering of the elements

inside the array is not relevant, and any two elements in the subscript .,

r ange 1 •••• size could be swapped and it would sti 11 be the same set .

We also need to know certain facts about the concrete represent

ation which remain true throughout the lifetime of the object;

information which we need in order to preserve the validity of the

representation. Before carrying out any operations on the concrete

representation it must satisfy certain constraints , which I call

invariants. These invariants will be made true when the value of the

variable is initialised, and will remain true before and after every

operation on the variable. Every operation on the integerset may assume

the invariant is true beforehand, but in return must guarantee that it

is true afterwards; so it is invariant in the sense that it is true

between any two operations on this representation, but not necessarily

in the middle of an operation.

The invariant in this case has to state that the value of variable

'size' remains within the range 1 •• C, otherwise the abstraction function

becomes undefined. Also we must state that there are no repetitions

within the first part of the array, in other words that the same value

does not occur twice. So the invariant is defined as:

size = jF integerset & size ';; C.

13

..

I have used the "sign to stand for the size (cardinality) of

the set. I maintain that these two assertions contain all the

info rmation contained in the picture, and perhaps more.

Professor Randell "The invariant has to be true in order that the

abstraction function is defined, but in defining the invariant you

have used the abstraction function because you are talking about

cardinality. Isn't there a circularity there?"

Professor Hoare "In practice there is no need to be quite so precise

since the se things won't have to be evaluated."

Dr. Burstall "Isn't the second part of that invariant, 'size S. C' a

restriction on the domain of the abstraction function, and the first

part, 'size= *integerset', merely a property of the abstraction

function?"

Pr.ofessor Hoare "Yes, the second part II a restriction, but the first

part is not a property of the abstraction functi on."

Dr. Burstall "The way you have defined the set it must always be ·true."

Professor Dijkstra "You could have circumvented it by saying

OSsiz"!>.C ·and '(i,j:1 .. C(iij ". A[iJ#-[jJ)"

Professor Hoare "Yes, thaQk. you. In fact 'size = " integerset' can be

expressed:

'1i,j:1 .. C (A[i] = A[j]". bj).

There is no reason why you oa.n't quote the integerset inside the invariant

as far as I know. II

Coding the Representation

Now we have taken practically all the major decisions that need to be

taken. At this stage we have made our informal ideas about the reprent

ation precise. In the implemeri'tati on of the representation we need to

write pieces of code operating on the concrete variables 'A' and 'size',

which will have the desired effect on the value of the abstract integerset

variable. So corresponding to the operations 'is a member of', 'insert',

'delete' and 'initialise', we will need to specify code to carry out these

14

..

1-

operations. In fact we must write code to carry out on the concrete

variables 'A' and 'size' the "same" operation that the a bstract pr op'an

carries out on an abstract integerset variable. In other words to code

a concrete operation such that it maintains a form of commutivity with

the abstract function:

abstraction (concrete op (A, size»~ abstract op (abstraction (A, si ze»

Since concrete operations are usually not quite as powerful as

abstract operations, for such reasons as arithmetic overflow, the best

that we can achieve is a weakened form of equality,~. If both sides

of s;are defined they will indeed be equal, but in certain cirmcumstances

the concrete operation on the Ie ft may not be defined, whereas the abstract

operation is.

This commutivity can be shown in a diagram as in Figure 2, where

dashed names refer to the values of the items after the operation 'op'

has been carried out.

(A, size) concrete op (A' size')
O----------------~------~ O

(partial)

abstr ction abstra tion

abstract op
0----------------------.... 0

integerset integerset'

where 'op' stands for 'insert(i), , 'remove(i), etc.

Figure 2

Dr. Milner "It seems to me that one would wi sh to specify abstracting

those elements of the abstract domain on which the thing 'works', and than

say that given this condition the equivalence is strict."

Professor Hoare "That is perfectly true. The question of how often your

representation or program terminates is a very vital question which can

hardly be ignored at any stage of the design. However, if you will be

satisfied for the moment with partial correctness, we can postpone that

protlem until we find a case where the program doesn't work when we

want it to."

15

\

\

Dr. Milner "It could be that the way one deals with it later is that

one somehow proves that the program always terminates, but this

separates the proof of termination from the thing it arises from which

is the fact that the representation is not fully defined where it

should be. It might be nicer if the fully defined-ness of the

representation were made explicit at that point, rather than later."

Professor Hoare "I tend to say, without very much evidence to support

it, that it does pay to separate the two aspects of the proof. There

is a meaning of 'formal correctness' which says that at least if the

program terminates correctly it has given the right result.

Dr. P. Lauer "Can I give you some evidence against tlRt? If you prove

the correctness of division by subtraction, as Floyd does, where you

are using a loop for which you don't have to presuppose that the

divisor is greater than zero, because now it terminates unsuccessfully.

So the reduction of the correctness of that algorithm to a question of

termination is only possible if you have a program with the possibility

of indefinitely looping. If you haven't one with that possibility there

is a problem. 1I

I am sure you can imagine the coding of the representation written

in your favourite programming language, which I am sure isn't the same

as mine. Here I have my coding for the implementation of function

'has' :

function has (i:integer):boolean;

assert has = i E integerset;

begin has:= false;

end· --,

~ j:1 •• size while ~ has do
if A[jJ=i then has: = true

It is important when writing this function to annotate it, to say

what it really means. What it means is that its parameter is a memb&r

of the integerset . Now if you replace the 'integerset' by its definition

16

I·

(the abstraction function given earlier) you will get a very clear

statement of what must be true at the end of its loop, namely

has =3j:1 •• size, A[j]=i.

I think most of you could correctly form a loop to do this. I

suspect that even an automatic programming system (and you can't get

much lower than that) might be able to construct this piece of program.

However, 'insert' is a different matter and requires real

ingenuity! We wish to state that insertion of i is contained in

the operation of assigning to the integerset the value obtained by

taking its union with the unitset containing i. Again, the code is not

very difficult for a human being to construct:

procedure insert (i:integer);

assert ~ integerset: U [i 1;

if ,has (i) ~

if size = C ~ goto overflow

~ begin size:=size+1; A[sizeJ:=i end;

If i is not in the set, we must be careful of Dr. Milner's problem.

If size=C we must be careful to fail to terminate, since we cannot complete

the operation due to overflow. Failure to terminate is a very ugly

phenomenon and I have woed a .very ugly programming language construct

to deal with it. Professor Dijkstra may substitute a decent abortion

clausel

I have also got to program 'remove; which I haven't done at the moment

because that requires some real ingenuity, which incidentally in the

published version of this talk I didn't exercise . It suggests to me

that questions of efficiency are equally important as questions of

termination. These are more closely related to each other, I think,

than questions of formal or conditional correctness are. I would

rather deal with efficiency and termination together, rather than

treating termination together with formal correctness; but I have no

very good reason for this.

17

Proof Method

How do we prove the correctness of the representation? We have

got to prove that the effect of executing a bit of concrete .code is

the same as a certain abstract assignment. The effect of 'insert (i)'

has got to be the same as the assignment:

integerset:= integerset U {i}.

We have got to prove an equivalence, or at least a containment (if

you are willing to he satisfied with a containment) between the

concrete body of the procedure 'insert' and the corresponding oper

ation in the abstract program. Here we come up against two problems

which baffled me for many years. Pirstly, how can I use the assert

ional method, which associates assertions with certain points in the

program, in order to prove an equivalence, or rather a containment?

Secondly, 'integerset', which is the target of the assignment in

the abstract program, isn't a variable at all, it is an expression;

and we all know, from our knowledge even of Algol, that you C&~'t

assign a new value to an expression. Well, I can't explain why, but

these problems do 8eem to go away.

First some "notation; since I am using (} for sets, I "have used

thicker brackets as follows:

p{Q)R

means - if P is true before execution of Q then R will be true when

Q terminates; if Q does not terminate, this is vacuously valid.

In order to prove the equivalence, introduce a fresh variable io

to stand for the value of 'integerset' before the operation. I shall

prove that

invariant & integerset=io {body of insert} invariant & integerset

do U fi}

18

Now this is a way of translating a n equivalence (or rather a

containment relationship) into the corresponding asse rtional

problem. The equivalence problem is to prove that

body~ integerset: U [i 1 .

I have translated the problem in equivalence theory into the

corresponding problem of assertional theory, neglecting the fact

that the integerset is an expression and not a variable. Now

just replace the invariant and integerset by the definitions that

we gave to them when we designed this representation. Integerset

Md the invariant will now both be expressions. Then we prove the

result using the same methods as have been used for proving algo

rithms, which I won't go into now. The problem of assigning to

something which is an expression just seems to go away.

The validity of the translation of the proof problem in

equivalence theory to the proof problem in assertional theory

depends on certain restrictions:

(1) No variable other than 'A' and 'size' may be accessed

by a procedure of the representation.

(2) No program except these procedures may access 'A' or

'size'.

If we really wish to modularise our programs and separate

questions of representation from questions of algorithm, these seem

to me to be very reasonable restriction~. It is important in such

cases that we should not have to go through an elaborate proof

procedure to show that the restrictions have been observed. Instead

we should be able to rely on syntactic definitions, in other words

compile-time checks of the scope of these variable s, in order to

enforce these restrictions.

The Simula Class

The implications of the above for language design are clear.

What we need in order to be able to declare and program our own

repres entations of new data types or classes is som9thing very

19

I
I

I

similar to the Simula Class concept. This is a piece of program

introduced by the word class, which otherwise has exactly the same

form as an Algol procedure declaration. It starts with begin and

finishe~ with end and inside it may contain declarations of data

and procedures. It also contains code which is executed when the

class is invoked, in other words when a new variable of this class

is declared, in order to initialise its value. For classes it is

extremely important that you should give the variables a good

initial value which satisfies the invariant.

In Figure 3 I have written the representation of integerset

as a Simula class, but have put in the various assertions which I

feel should be a standard practice in the use of classes which

declare new data types. I have put the assertions, the mapping

and the invariant, and then in each procedure body is the

assertion which describes its intended effect, followed by dots

to show where the implementer will actually have to write some

code.

class

begin

integerset;

A: array [1 •• C] of integer;

size: integer;

assert integerset = l i ! 3 j : 1 •• size, A[j] = i}

8: size = 'ifo integers et 8: 0 ,;;size$(;;

procedure has (i:integer):boolean;

assert _ i E integerset;

procedure insert (i:integer) assert Ii:. integerset: U(i); ,

procedure remove (i : integer); assert ~ integerset:-li};

size:= 0; assert integerset = {};

end integerset;

Figure 3

20

Implementation

The implementation of Simula class is likely to use closed sub

routines, but I would like to explain it by a process of textual sub

stitution, 'which is the same method used in Algol 60 to explain procedure

calls. I hope this is a good way of convincing you that it means some

thing, and that what it means is not too complicated, and is not going to

require any run-time administration apart from that with which you are

already familiar, the run-time stack.

When this class is used, as I have explained, it allows the declar

ation of variables of the new type 'integerset'. Figure 4 is an example

of a block whose body i s Q (which may contain other declarations of

variables or' type 'integerset'). In order to implement the declaration of

s we make a new copy of this block, with the declaration replaced by a

declaration of variables 'A' and 'size' which are going to be used to

represent the particular instance' s ' of an integerset. In order to make

sure they get unique names, I will call these ' s.A' and 's.size' using

the dot notation to construct new identifiers which are guaranteed to be

fresh. So corresponding to each variable of type 'integerset', in the

real executed program we set up a different array ' A' and a different

variable 'size'. Then we also declare different instances of the func

tions 'has', 'insert' and 'remove' and call them 's.has', ' s.insert' and

's.remove'. Inside the body of 's.has' etc. we will refer to 's.A' and

's.size' rather than 'A' and 'size' . Then we have the initialisation and

finally execute the body of the block as before. The body Q will contain

calls of 's.has' etc., this time with the dot actually in place, so that

Q may actually operate on's' by means of these procedures which are now

local to this instance of ' s ' .

begin s:integerset; Q end

is implemented 8:8

end---'

begin s.A: array (1 •• CJ of integer;

s. size: integer;

function s.has (i:integer):boolean;

s.size:;:;:O;

begin Q ~

Figure 4

21

=

Lecture 2 Monitors

In this Ie cture I will show how one can implement the .represent

ation of an abstract variable in a manner which makes it possible to

share that variable between two or more parallel processes. I will

show how the additional problems that ari se in parallel processing

can be tackled in a systematic and structured way by the class

mechanism.

My example is concerned with adding and subtracting items to

and from a sequence of integers, and includes the abstract operations:

(i) s:integersequence;

(ii)

(iii)

(i v)

s:= < >;

s: = s""<~;

{y: = fir st (s) s:= r est (s));

where statement (i) declares a single variable, s, to be of type

integersequence, and (ii) initialises s to be the empty sequence,

denoted by<>. Statement (iii) indicates output to the end of the

sequence, which I equate with concatenating the existing sequence

to the sequence of one item, <x>, and assigning the result back

to s. Using the abbreviation introduced in the previous lecture,

I could write s:"eX>. Statement (iv) is the operation of inputting

an element from the sequence to the variable y and removing this

element from the sequence. It is this pair of assignments, taking

place as a single unit of action, that we will model in our concrete

representation.

A practical example of this algorithm in a non-parallel

processing environment might be of a problem which we solve by

division into sub-problems. Whenever we reach a sub-problem which

we cannot solve immediately, we store an integer representation of

it in the sequence. Then each time we finish all the processing

necessary, we pick a sub-problem off the front of the sequence and

22

class

begin

assert

integersequence;

buffer: array [0 •• N-1] £i integer;

firstpointer, count : integer ;

o ~ firstpointer ~ N-1

o ~ count ~ N

integersequence =

if count = 0 then empty

e lse <buffer [firstpointer] ,

buffer rfirstpointer

buffer [firstpointer

note Gl means addition modulo N' ,

procedure output (x : integer);

assert t= sequence := sequence~<p;

begin if count 2! N then goto error;

buffer [firstpointer Gl countl :=X;

count : = count + 1

~ output;

procedure input (result x : integer);

Gl

Gl

1 J, ...
(count-1)

assert ;;x:=first(sequence); sequence := rest (sequence) ;

be gin if count = 0 then goto error;

end input;

count := 0; firstpointer : =0;

end integersequence;

assert _ sequence := <>

Figure 5

23

J>;

I

start to process it. Further sub-problems are appended to the end of

the sequence. In that way we proceed sequentially to th e solution of

the full problem, processing sub-probl ems in the order in which they

occur. In our example, we assume that we know t hat the number of items

in the sequence will neve r be gr eater than N, and so a cyclic buffe r

is an appropriate representation for the sequence.

Now we will program this problem us ing th e Ie ssons learnt in the

previous l ecture (Figure 5). The class is called integersequence . It

consists of a.n N- el em~Ht array of integers called 'buffe r ' which

repres ent s t he sequence; an intege r, firstpointer, to point to the array

element ~l ich is t he next to be input from the buffer; an integer,

count, indicating the number of i tems in the array and thus the length

of the abstract sequence; some assertions on these variables; the

procedures input and output; and some initiali sation code .

Le t us l ook at the a sserti ons on the varialles since these will

define their purpos e (and we start with the invariants this time). I

make it a pract ice to write out as many facts a bout the variahles I

can think of. Clearly, fir stpointer must remain within the range of

t he buffer. (O •• N-1), there can never be le ss than zero or greater

than N items i " the buffer , but there are no constraints upon the

values of the intege rs which may be stor ed in the buffer. Turning

to the ahstract ion function integersequence, we will define it in terms

of count. When count is ze r o t he sequence must be empty, but when

count is not ze ro the sequence consists of the displayed sequence of

items, the first item i s always pointed to by firstpointer. The

next item is obtained by adding one to firstpointe r and looking at

that position in the buffer, provided the arithmetic is always done

modul o N. This is t he essenc e of t he cyclic nature of the buffer.

The design of th i s representation has al r eady involved a numbe r

of important decisions. For instance, the "ad ministrat ive " variab le s

are chosen as firstpointer and cOl'nt, whereas I might have cho sen

firstpointer and l astpointer. However, using firstpointer and last

pointer, it i s impossib l e to tell whether a sequence i s empty or full.

24

,.

I

Because I started with the invariants and abstracti on fUllcti '-., I '''_

able to see and avoid this kind of probl em before actually wi it.ir.;

any code at all. Thus I beli~ve that formula t ion of as~e rti o",s gives

~ preliminarily test of the adequacy a nd desirabi l i ty of a c~osen

representation. But to be quite honest, the real reason why I -Lo ok the

right decisions was from bitter experienc e of writing thi s pr ogram

many times before.

In the previous l ecture I made some unkind remarks about pictures.

Thos e remarks notwithstanding, I ho p' Figure 6 wi 11 confirm what you

have understood from the assertions.

buffer :
0 ..--________ -,

fir stpo inter -----I~~

N-1

Figure 6

, ,
I

free

count

Referring again to Figure 5 , in the procedures output and input

I have stated precisely what ·ach is to do by their equival enc e to

s tatements in the abstr ac t algorithm. Al s o , I am very careful to check

that I am ab l e to pe r fo rm an operation before I actually perform it. The

go to i s intended to make it clear that if I cannot perform an ope r ati on,

then control will never return to the point f ollmdng the jump to the

l a be l " error". A jump is intended t o be sui c ida l. We have put this

25

\

\ .

test on the length of sequences in here because the concrete

representation I have chosen is only partial: it will only deal with

a subset of possible sequences. We could have removed this t est and

made it a pre-condition of a user of the class that he doe s not generate

sequences which are too long. And, indeed, by including tilis test, if

the user over-extends the sequence, his program will die suddenly in an

unexpected place. How repsonsible the user should be for his own actions,

is one of the decisions that the designer of the representation must

make. Similarly, for input there is a termination clause if the

sequence is empty. It is interesting to compare the respective tests.

In output, failure is caused by a breakdown in the representation

because the representation was not strong enough to support the program

that had been written on top of it - a similar failure to arithmetic

overflow. In input, however, an empty sequence is legal and valid in

both the abstract and concrete representations. But to input from an

empty sequence would be disastrously wrong but the representation has

not failed. - it is the abstract program that is responsible.

What has gone before was familiar and str~ghtforward because we

were in a sequential proc~ssing environment. Suppose now that this

representation was being used in a situation where one process has

the task of completing unfinished sub-problems and another parallel

process is detecting and generating the sub-problems. Using Dijkstra's

terminology the outputting process is called the producer and the inpu

tting process the consumer. What additional problems arise when we

have to represent a variable which is to be shared in this environment?

We are fortunate because the proof of validity of the chosen repres

entation is independant of the order the procedures are invoked, either

in a sequential or a parallel environment. What cannot be tolerated is

that the bodies of the procedures be invoked in parallel or in an

interleaved fashion. This would cause chaotic results and proofs

about the program would not apply.

The programmer of the producer and consumer procedures cannot be

expected to solve this exclusion pro blen, and so we must assume that

there are facilities in our language, and in an underlying run-time

mechanism, which prevent it ever happening. That is, once one procedure

operating on a given variable is in execution there is no way any

26

I .

other may begin execution until the first has fi ni shed . The OC ~le s

of such procedures are known as critical regions. Meanwhile, t he r e

is a second problem. How do we prevent input from an empty buffe r or

output to a full buffer? This I call the synchronisati on problem.

The boundaries between this problem and the exclusion problem are not

absolute but within any given data representation we are ab l e to

distinguish between them. It is no use for the producer to check to

see if the variable count is equal to N before actually entering the

output procedure, be cause some o the r producer may get in be tween t he

test and the entry and make the variable equal to N; in which case

the entry is invalid. So the synchronisation aspect which prevents

this happening has got to be programmed as part of the data

representation itself, and these tests on the full or empty states

of the buffer have got to be part of the indivisiable actions which

the program is try ing to invoke. When we attempt to invoke an action

which is undefined we must delay the attempt until some other process

has bro~ght the data into a condition in which the action is defined.

Thus we introduce the idea of a process waiting in situations where in

the sequential environment i1 would just fail. The important thing

is to be able to specify the conditions on which a process must wait.

Condi tions in programming languages are specified by Boolean

expressions and he r e we use the notati on

when B do Q;

which means intuitively, wait until B is true; if i t is true already

then proceed and execute Q; if B is not true then wait until it

becomes true. In a parallel program it makes sense to wait for some

thing because there should a l ways be some other process operating

which can proceed and may eventually "awaken" the waiting process.

If this is not the case, and moreover, every process goes into a.wait

state then deadlock has occured. Deadlock is a special case of non

termination, and again I shall ignore it.

Figure 7 shows the output procedure. It s ~,aning and action are

exactly the same a s before but I have replaced the error jump, which

27

I ,.

causes what I like to call a det ectable non-termination of the

procedure, by a command which causes the process to go to sleep

until some other process acts upon the representation in such a

way that count does go below N; and then the waiting proces s will

automatically resume.

procedure out put (x : integer);

assert = sequence ,_ sequence"<x>;

when count < N do

begin buffer [firstpointer @ count] .- x;

count . - count + 1

Figure 7

The proof rules for this synchronisation condition are very simple:

we take the proof rule s we used for a sequential program and add

another clause to the pre-condition whi ch states that if you pas s

the do symbol you May be ce rtain the condition after the when is

true, e.g. that count >s l ess than N. No more effort is required.

Two important restriction s mentioned in the first lecture apply

here. First, the proc edure s of a representation may not ac cess or

change any variable other than a variable of the representation .

Second, that the only way of changing the value of a representation

variable is by executing one of the procedures of the representation.

While a process waits on a when, the exc lusion on the procedure

bodies must be released so that other processes can invoke these

procedures to change the values of variables. Only by this means

can the wait condition of a s leeping process ever become true.

Howeve r, when the condition does become true, the successful test

must be part of the same critical region as the action which follows.

Thus at mo st one process (at a time) will be resumed.

28

The mutual exclusion can be implemented by asso~ ;

each represented variable an extra component variable of type s".la phoi' e .

This extra variable is called mutex, for mutual exclusi on , s.nd is

initialised to one:

mutex: semaphore; mutex::1;

We protect critical regions by surrounding each calIon a procedure by

the pair of operations:

P(mutex)

V(mutex)

which prevents more than one process executing the procedure at a time .

Synchronisation requires a more elaborate operation. For this we

introduce a second semaphore with each variable of the class . This

semaphore I shall call sync. It is ini tiali8ed to zero and, indeed,

will remain zero throughout its lifetime, s i nce the only reason it

exists is for waiting and the only time we can be sure we are going

to wait on a semaphore is when its value is zero.

sync: semaphore; sync:=O;

Thus sync is a semaphore wl.ich "holds" a queue of processes waiting

for their conditions to become true. Now at the end of each operation

on a representation variable it is necessary to test whether any of the

conditions of the waiting processes have become true. It is only at

the end of such operations that the values of these variables will have

been changed. We replace the simple V(mutex) at the end of each

operation by

while anyone-is-waiting-on-sync do V(sync);

V(mutex) ;

, .
The while-loop releases a ll the processes w~iting on sync. When we

execute the V(m~tex) operation just one of these processes, all of

29

which have P(mutex) as th ei r first ope ration, is able to pl·o cced. The

process which proceeds must first re-evaluate its wa iL-condition, B.

If it finds it true then it continues, and all the other pro cesses

remai n waiting on the mutex semaphore. If it finds it fa l se t h e n i t

will hang up on the synchronisation semaphore again, having released

mutex to allow one of t he other processes to test its wait-condition.

Thi s continues until a process is able to execute its desired operation.

In t hi s way, all waiting processes are able to r etest th eir wait-cond

itions whenever another process leave s a critical region.

We will impl ement when B do .•• by

while oB do begin

V(mutex) ;

P(sync);

P(mutex)

end' --'

That i s, if B is true we wish to just proceed. But if B is fals e then

we releas e the exc lusion to allow the other processes to enter (which

may make our condition true), then we delay ourselves on the synchron

isation semaphore. Wh en we are released from sync by the action of

another process we immediately try and sieze the exclusi on again.

Wh en we eventually succeed , we come back and retest the wait-condition.

If the condition i s now true we proceed with our operation without

releasing the exclus ion again, but if it is still false we must

repeat t he process.

The construction I have described is called a critical conditional

region. The use of these conditions to guard regions of code has been

elegantly generali sed by Dijkstra, and applied to the solution of

problems in sequential programs. This is yet another example where

discoveries necessary to organise parallel programs have been found

useful when applied to sequential programs.

30

...

I
I

r

There are, however, some serious disadvantages with this

implementation. If waiting is a relatively rare event then this

does not matter very much. But if waiting is fairly common, and

the queue of waiting processes becomes long, then there is a

great deal of retesting to do. Another difficulty, particularly

for operating systems, is that we have no control ove r the order in

which the waiting processes are resumed when more than one has a

condition satisfied. Further, some processes may wait for ever

even though their condition is satisfied, because every time it is

satisfied the condition of some other process is a lso satisfied,

and that one always gets control first. Ways around this drawback

ca~ sometimes be programmed expl icitly .

There are tWl' approaches to solving these problems. O,' e can

look for a more subtle implementation. For example, if one associates

mfferent synchronisation semaphores with different conditions (and

the condition does not depend upon parameters of the procedure) then

it is possible first to retest the condition only once on behalf of

the process at the head of the queue. If it is false, then everybody

e l se will be true. Wh en the condition depends upon parameters

transmitted by the process into the representation then there is

less alternative to retesting. It may be rather inefficient, but it

is a general method and the code is extremely short. An al terna ti ve

approach i s to introduce a more primitive synchronisation tool wLich

allows you to program the waiting loop yourself. This may give yo~

the abi lity to program more efficient so lutions when you have to.

31

Lecture 3 Parallel Programming : An Exploration

I want to take you briefly through a chain of r eas oning by which

one might develop a theory and approach to the problems of parallel

programming; or perhaps better, an approach away from t he probl ems,

since I always prefer to avoid problems rather than solve them . y

obj ect ive is to discover cases in which parallel programs are no mor e

difficult to design correctly than sequential ones, and I will take

as a thesis that difficulty is correlated with the difficulty of

proving the correctness of the program.

Notation:

Q1 II Q2 Q1 and Q2 are to be executed in parallel,

terminating only when both Q1 and Q2 terminate . If

either fails to terminate, then the whole construction

fails to terminate.

Q1 !:;'Q2 (procedural containment) Whenever Q1 terminates,

it has exact ly the same value and exactly t he same

effect on all variables as Q2 .

Professor Dijkstra "Doe s this only apply to determ inistic programs?"

Professor Hoare "Yes, I will only apply it to deterministic pro grams. "

Dr. P .E . Laue r "This containment does not take account of a program

becoming undefined because of an erro r rather than an infinite loop."

Professor Hoare "I like to treat a ll errors in the same way, as

equivalent to coming up against a time imposed by the implementation.

So I'll regard division by zero a s equivalent to non-term ination."

Q1 ; Q2 (procedural equivalence) Mutual containment,

that is, both Q1 f;.Q2 and Q2EQ1

P (Q} R (conditional correctness) If Q terminates, and P

was true before it started, then R will be true on

termination of Q. If Q never terminates, then this is

vacuously true.

Informal conventions:

"process" a part of a program which proceeds in parallel

wi th other parts of the program.

32

'.

,.

"parall e l program" a program which contains, at some stagf o r

another in its execution, two or more processes.

I can't and won't define what I mean by a process .

The following theorem is a direct consequence of the definitons :

01 E 02 , P [Q2} R
P rQ1 } R

Disjoint Programs

I wish to pose the question: Under what conditons can we be s ure

that a parallel program has an identical effect to a sequential one,

that i s, that

(Q1 / / Q2) = (Q1 Q2) ?

There are many conditions under which this will be true, but we would

like to have conditions which are very easy to establish. We would

like to ha ve a very si mple condition which can be che cked by syntacti c

criteria, and not by having to consider the semantics of the program,

or the behaviour of the program when it is executing (because reason

ing about that is difficult). We would like to have a program to

check whether the construction of any program satisfies the rul es

which make the above equ ival ence trivial . We would be able to guarantee

equivalence, not by a proof but by compile time checks.

My answer is contained in the title of this section - when Q1 a nd

Q2 are disjoint (in the sense that no variable which is possibly up

dated by one of them is mentioned in the other) the equivalence will

certainly hold. In a ca refully designed language it is possible to

tel l which variables can be assigned to, and in such a language it is

possib l e to check whether two processes are disjoint.

This may seem to be evading the problem, but I suspect that quite

a lot of the practical us es to which programm€TS want t o put a parallel

programming facility can be constructed to conform to this re s triction.

Here is a simple program whict. overlaps input/output opera ii ons .

33

t . ,.

l
j"
•

begin lastone, thisone, next one item;

input (lastone);

r process(lastone) II input(thi sone) J ;
while notempty(input.) do

begin [input(nextone) II process(thisono) II output(lastone) 1

lastone := thi s one ; th is one :=nextone

end' --'
[process(thisone) II output(lastone) J
output (thisone)

end

The main part of the loop overlaps input of the next item to be

processed, proceseing of this item, and output of the last item. These

three things can be done in parallel because we allocate three disjoint

locations of store on which the three processes are to operate. When all

t h ree have finished, this item and the next item are copied across to set

up conditions fo r tl>= loop to proceed in parallel agai n. The outside of

the loop deals with situations where the buffers only contain one or two

items and the amount of parallelism is consequently limited.

In implementation, the paralle l split in the innermost loop could

be an expensive operation, so that this program is not a very good one

unless the overlapped operations take rather a long time.

We proceed with our investigation by asking why the condition of

dis j ointness might be fo und to be too restrictive in tl>= construction

of parallel programs. It may be possible to relax the restriction a little,

and so increase the class of parallel programs which can be written and

proven without any more difficulty than sequential programs.

Competing Prog~ams

One reason why two parallel processes might have to interact is that,

for exampl e, both processes wish to use a singl e l ine-printer (or some

other resource which is in short supply). Each of them, fortunately,

wishes to use the line-printer only for relatively short periods during

its execution, and is quite prepared to relinquish the line-printer

after each period of use. We could define a resource as any part of a

34

,. ,.

I '

computer system which can, and must, be allocated to only one process

at a timA. EXA.mples are a line printer, a computer operator or even a

single word of main store.

We know that an Algol-like language allocates and de-allocates

main storage in a dynamic fashion, and the implementation ensures that

no individual word of main store is allocated to two purposes simul

taneously. This gives a clue as to how we might extend the range of

parallel processing possibilities, while retaining the essential

feature of a compile time check, together with a proof method which

is no more difficult than for the sequential case. Algol-60 insists

that before you use a word of main store, it must be declared and given

a name; and ensures automatically that after you finish using the main

storage it must be returned for reallocation. These restrictions are

inherent in the leA~eographic structure of the language itself and are

not enforced by any run time checking.

The question arises: Under what conditions can We be sure that the

claiming, use, and release of a resource by a process has an identical

effect to the declaration and use of a variable in a block?

The answer is inherent in the above discussion. Design a language

to use the same notation for claiming and locally using a resource as

for all other declarations (which also claim a resource

Here is an example.

listing lineprinter

listing.output(line);

s. output (x)

end

s integersequence

.. ain sto re) .

Within this block a parallel process wishes to use the line

printer, so it declares a variable of type 'lineprinter', which is

perhaps a built-in type of an implementation. Inside the block it

can operate on that line-printer by calling the built-in facilities

of the line-printer class, as provided by the implementation, in

exactly the SMle way as operations on variables of other classes like

35

I·

i'

i '

'integersequence' .

The normal scope rules of Algol-60 ensures that no one can us e a

resource without c l a i ming it; it is logically impossible to s end a

line to the l ine-printer except within the scope in which the line

printer has been declared. The declaration is intimately connected

with the acquisition of the resource, and exit from that scope is

intimately connected with the release of the resource. At least for

terminating programs, the rules also ensure that no one forgets to

release a resource. Furthermore, wherever and whenever multiple use

of t he same resource is available (for example two line-printers) an

i mplementation may satisfy several claims simultaneously. The same

parallel program will run with a shorter elapsed time on such a

machine.

Processes which have to interact because they require use of the

same resources, I call competing processes. The cases of di sjoint

processes and competing processes include, I believe, fairly large

c l asses of useful programs.

Commutivity

Now I would like to return to disjoint pro cesse s and ask a rather

important ~uestion : Why do we believe that the effect of executing

disjo i nt processes in parall e l is the same as executing them sequent

ially? I don't know whether it is possible to give a completely

rigourous proof of this, since any proof must depend on some definit

ion of atomic units of action evoked by the execution of a program

(a l i ne which has been explored by Dr. Bekic).

Here is a very informal proof. Let U(Q) be the set of 'atomic '

units of action evoked by the execution of Q (for any definition of

' atomic '). U(Q1) is said to commute with U(Q2) if (q1 ; q2) ;; (q2 ; q1)

for any q1 € U(Q 1) and any q2 € U(Q2). Actions from disjoint programs

obvi ous l y commute, as shown by the example:

x . _ y+Zj VI ._ v+z w ._ v+z; x . _ y+z

36

,.

I

Unde r this condition, an arbitrary interleaving of units of acti on f1 r.J

Q1 and Q2 ha s the same effect as any other, and in particular the

interleaving with all units from Q1 proceeding all those from Q2 -

which i s of course the sequential case .

Thus, Q1 II Q2 - Q1 Q2

and indeed Q1 II Q2 - Q2 Q1

Equivalent programs obviously can be proved by the same proof rule .

Co-operating Processe s

Can we extend the principle of commutivity and apply it to co

operating processes which work. on some common task to the solution

of which they both contribute? Consider an example. Suppose we are

given a set variable 5, and an operation

• s.remove (n}

~lich has the effect of r emoving the integer n from the set s (i. e. s : = s - f n)}.

I am not going to describe how the set s is represented, and will

provide only an abstract program . Let us a l so suppose that the

remove operation is atomic. I f two parallel processes attempt to

remove something at the same time the effect is the same as if one had

been completed before the other begins . The remove operation commutes,

having the rather nice property that for all m and n it doesn't matter

in which order they are removed from the set .

s := s-[ni; s := s-[m) " s := s-rm); s := s-[ni for all m,n.

Removal is of course defined so that if the integer is not a member

of the set, then nothing happens.

Provided we can be sure t hat whatever inter l eaving occurs, the

effect is the same as the sequential case, then we also know t.hat the

actua l order of the operations is immat.erial. Be low is a simple

example using this knowledge in a program.

37

po

begin sieve set of integers;

procedure remove multiples of (n

begin i : intege r;

integer) ;

for i : ~n~ step n until N do sieve.remove(i)

end' --'
sieve : ~ r~ 2 S i ~ N }

P 1 : ~ 2; p2 : ~ 3;

while p12 S N do

begin [remove multiples of(p1) II remove multiples of(p2) 1;
p1 : ~ min [i I i > p2 & i e sieve);

if p12 < N then p2 := min [i r i > p1 & i e sieve }

end

end

The basic principle of the sieve of Eratosthenes is that within

the innermost loop all multiples of a given prime are removed from

the s ieve. This particular program is organised so t hat multiples

of the two primes, p1 and p2, are removed in parallel. No difficulty

arises becau se the body of the procedure ' remove multiples of (n)'

operate s on the SIeve only by a commutative operation, 'remove'.

Communicating Proce sses

Provided co-operating processes co-operate via commutative operations,

we can treat them without very much more difficulty than we treat sequ

ential processes. But the re is a serious, and absolutely vi tal,

restriction on the forms this co-operation can take, because the rule

of commutivity obviously prohibits communication between two processes.

It is impossible to communicate any information between processes wh i ch

operate on shared variables only by commutative operators. The simplest

proof of this is that with commutative operators, Q111Q2 is equivalent

to both Q1 ;Q2 and Q2;Q1. Both of these are valid implemenations of the

II operator. It is impossible to communicate from Q1 to Q2, since if

it were possible to communicate, it woul d be imposslble to execute them

in order Q2;Q1. Similar l y for the impossibi l ity of communication from

Q2 to Q1 .

38

....

I

I

!

I

I
I

I

Professor Michaelson "That doesn ' t sound correct. Both Q1 and Q2 c ill _,

before terminating, check whether their task was completed, and if n , t,

perform the remainder of t he task. They would commute externally , but

wo uld perform different actions depending on the order in whi ch they

were executed. "

Professor Hoare "Thi s i s the case where Q1 and Q2 co-operate by means

of memo functions. Q1 calls a computation whi ch stores its result,

and t h en Q2 P" dorms a n operation which if the result ha s already be en

stored just use s it, but otherwise first computes and stores t h e r esul t.

However, the progress of Q2 cannot d epend on an yth ing Q1 might or might

not have done; Q2 cannot re l y on Q1 having ach ieved a half-way objective".

Professor Michaelson "The c ompletion of Ql may not depend on what Q2

has done, but the actua l things Ql does may so depend. Are you

defining 'communication' in a way t hat would only permit one process

to coml' l ete if the other ha s set a signal- a rather restrictive form

of defini tion?"

Professor Hoare " No. I think that it is impossible for Ql to call a

function which deli vers a result til at i s dependent on the progress of

Q2, ahd t herefore the only technique for passing resul ts from Q2 to

Ql i s the memo function. But perhaps some furt he r thought is required .

My argument is, of course, entire l y informal, and is based on the view

t ha t resu l ts cann ot be communicated from something that happens later

to som~thing that happens earli er. ,t

I introdu ce a new definition. U(Ql) is said to semicommute with

u (Q2) if (q2;ql)!;; (ql; q 2) for a ny ql e U(Ql) and any q2 e U(Q2) .

When th is is t he case . we can sort al l the interleaved actions of Ql and

Q2 in suc h a way t hat a ll the actions of Ql move to the If· ft, and all

t h ose of Q2 move to the ri ght . Every time we make an interchange,

mov ing an act.i all 0 f Ql to the I e ft of an acti on of Q2, we make the

program more defilled. Eventually, all the actions of Ql will be to

the lE ft 01' those o f Q2 . The program is t h e n sequ e ntial , and is at

i t s mo~t de finpd. Thus.

Ql //Q2 C Ql ;Q2 .

39

So i n this situation we can prove the correctness of the sequential program

Q1 ;Q2, and be confident that the same proof applies to the program

Q1 //Q2, which may terminate l ess ofte~.

How can we be s ure that thi s program terminates at all? Well, we

can' t be s lrre, because the weak condi tional ~orrectness methods allow

an implementation to reject the computation of any program whatsoeve r,

at any stage . The engineering quality of an implementation can be

judged by the frequency with whi ch it rejects programs, and implement

ati ons can be co mpared on this bas is, but i n the last resort, the

impl ementat i on which r e j ects a ll programs is perfectly valid and just

a bit wor se than all other implementations.

So, we make it 'the responsibili ty of an impl ement ati on to ensure that

if Q2 attempts an operation q2 at a time when this i s undefined, the

operation will be mere l y delayed until (hopefully) Q1 pe rforms suc h

operations as will make q2 defined. The delaying of operations was

considered ear li er under the term ' sync hroni sation', where I provided

a method for thinking acout synchroni sation problems, and a notation

for specifying how to determine whether an operation need be delayed.

Thus llsjng classes and conditional critical regions, we can ourse lves

program a representation of t he variabl e shared between parallel pro cesses .

Obvi ous l y, the example I' m working towards is the c l assical case of

producers and consumers.

Given that a l anguage or programmer has implemented the concept of

a sequence, and provides as atomic operatiofis:

s.output(x)

s.input(y)

-

-

s

y

then these two operati ons semiconunute:

'- S A <x

, - first(s); s . _ rest(s»

s.input(y) ; s,output (x)!;; s . output(x) s .input(y) ,

The ineyuality is strict, ' since in the case that s is empty , input from

s i s not defined whereas output to s is de fined. A proce ss which only

outputs to s is known as a I producer on s I , and a process which only

inputs from 5 i s known as a I consumer of s I. Notice t hat the rule

of semic ommutivity only permits forward communi cation , and in this

40 , '

,.

particular case, only one producer and one consumer, be cause with two

pr odu ce r s the output operations do not commute . To allow multiple

producer s and consumers the shared abstract ob ject can be a multi se t

or a bag - on which both the input and the output operations do commute.

Ve r y oft en the ability to define success ful communication and co

operation depends on the ability to abstract the oper ati ons ne eded .

The paralleli sm I have offered seems entirely deterministic since it

a lways gives the same results as a deterministic sequential program.

Howeve r , it may well be the case that the concrete values (of the

representations) of the shared variables do depend on the sequence

i n which the operations have been invoked. At the level of the imple

mentation on a computer, the process may be higbly non-deterministic.

Only after applying the abstr action functi on do the operations commute.

This s uggests that abstraction is an absolutely nec essary key to t he

organisation of parallel processing.

Take the example of sharing a line-printer - why do we believe

t hat a l ine-pr~ nter can be shared between two processes (provided that

use of the line- printer is an a t omic action, to prevent arbitrary

interleaving of lines)? This is al lowab l e when we do not mind in

which order the f iles of output appear. That is, in just t he case

when the listings are burst before we re ceive them, and therefore

can ' t tell wbat the order was on output. So here is anothe r exampl e

of a very important abstraction function - t he ruler used by the

operator to separate sheets of line-printer pa.per. Without thi s

abstraction the system would not have the freedom to change the

ordel' in whi ch it executes jobs.

I would like to admit that there is a serious, perhaps uns olv

able, w&akness of this technique, which effecti ve ly prevents it from

being used for two-way communi cation. I discussed p l acing an obli

gation, or at l east an objective, upon an implementation,to terminate

a program whenever this is possib l e. Certainly, any implementation

41

,.

I
I

I.

must be prohibited from terminating (successfully) a program which

contains an infinite loop or an undefined operation. But otherwise,

if the implementation can find a way of terminating a program success

fully, it should do so. Now suppose we have a situation in which some

interleavings of the actions on shared variables l ead to deadlock,

and s ome do not. Then, I think that all non-deadlocked computations

will produce the same result, even though such computations may be

in the minority. Apparently, our implementation is obliged, by means

of horrendous backtracking, to find a terminating interleaving when

ever one exists. Terrible! Of course an implementation which does

not ba cktrack is permissible. The pro blem is to decide which implem

entation is preferable, and why. My only soluti on is to ask the

programmer how much he is prepared to pay, in wh i ch case he will

prefer the non-backtracking implementation. But fortunately, with

one-way communi cation, deadlock is impossible, and the problem does

not arise.

Professor Scott "Doe s Schwarz's language SETL have anything to do

with your use of the class concept?"

Professor Hoare "I've often asked myself that question. As far as

I can make out, t here are two fundamental flaws in that language.

One is that it does not bind variables and expressions to a given type,

which I regard as an essential prop to my weak intellect."

Professor Scott "Is it not your implementation which 'is weak?"

Professor Hoare "Well, both I think. In this respect the computer

needs the prop as much as I do. I den't think of typing as a sordid

matter which the computer should not need to impose on a human being,

but rather as an aid to constructive thinking, as do you, and Dr. Bekic.

He introduces types, not because of any execution requirement, but

because he needs them to check the sensibleness of what he is writing

down. The second flaw (in the SETL project) is that too much emphasis

is placed on ski lfull optimisation. I don't belive in that level of

42

,.

"

[.

,.

optimisation. Obviously I agree that you should describe what your

program is trying to do before you try to do it. The idea that the

representation is a lower leve l of decision which should be kept

separate is a good one, but to delegate it to the computer leads to

diffi culty. The best that I can do is to give the programmer a way

of thinking about his designs and how to translate them into an

implementation. After t hat I wouldn't want to deprive him of the fun

of actually doing it ."

Dr. Burstall "I s it the case that if Ql = Ql' then for all
,

Q2, Ql//Q2 = Ql//Q2? Is it true when parallelism is restricted to

semicommutati vt. ope rations?"

Professor Hoare 111 can't, unfortunately, give compile time checks

for semicommutativity . If you're willing to bear with me on t hat

difficulty, I think that my form of parallelism is best treated by

relating it di rectly to the equivalent sequential program. In the

case of semicommuta-Livity this is fine; only the second process can

wait for the rirst one. With communication in both directions then

(a) the proof is very complex and (b) the problems of deadlock are

~ven worse. For semi commutative operations, the parallel operator

can be thought of as permission to the implementatioIl ':,0 execute

thi ngs in a different order if it so chooses. However, to perform

Ql followed by Q2 woul d tit ill be val id. So, in answer to your

question, if the answer is yes for sequential programs then it is

yes for Illy retitricted form of parallel programs also ."

Professor Dijkstra "Well, to my feeling, the restriction to one -way

communication is as seri ous as to ask someone to walk with one leg.

For instance, if you wi sh to exploit the possibility of tremend<ms

paralleli sm in the super fast Fourier transform, then you just cannot

wri te sequential programs. The interleaving of the separate activities

i s an essential feature. Each of the processes is synchroni sed and

goes through a cycl e in which it receives two results and produces

43

two results."

Professor Hoare "I make no claim to have exhausted the possibilities

of parallelism. Almost like programming, however you try to pin it

down, someone will always think of a beautiful way of u s ing parallelism

which you haven't covered."

Professor Dijkstra

ei ther?"

"With one leg you can't walk, so you can ' t stumble

Professor Hoare "Yes. It's a good rule fo r those who would otherwise

have two left feet."

Dr. Milner "Can we never find a definition of p1.rallelism sufficiently

general that people don't find new ways of using parallelism? I ' m rather

depressed to hear you give up like that."

Professor Hoare "I've not given up. I'm going to see what I can do

about Professor Dijkstra's algorithm."

Dr. Milner "This is my criticism, Until we look at more difficult

examples of parallelism, the problem will remain unsolved. The simpler

examples should come out as a nice special case of]he general results."

Professor Hoare "Obvi ously we're all hoping to me et in the middle.

You're starting from one end and I'm starting from the other. You can

readily point out that I'm not yet half way. I do think the assertional

method I use hasa fundamental weakness (which is also its strength - it

is in many ways the reason why it is so s;mpl e) and that i s that it

throws away every a s pect connected with the passage of time. You

cannot even say that a computation is finite, much less that it is
2 0

bounded by 22 Such problems cannot even be formulated in a pure

assertional method."

44

,.

r

Some Remarks on Teaching

I've listened with fascination to the talks of the other speakers .

They have filled me with a desire (not likely to be fulfilled in the

immediate future) to teach their subjects in my department. I don't

think that my own lectures fill me wjth the same desire at all. What

I have had to say is more in the nature of on-going research than a

compl eted di sc ipline sui table fa r teaching. If you find any of the se

ideas attractive, then I would suggest you incorporate them in some

existing course. There are three fairly strong reasons against a

separate course on this material.

1. No textbook.

2. Many dcubts and open questions remain.

3. No facilities for practical work (perhaps least important).

I enjoy theoretical programming but some students don ' t.

I wj 11 d, scri be hriefly bow thi s material fits in wi th courses at

Belfast. Abstraction and representation of data is very much emphasised

in a 2nd ,Ye ar adva.nced programming course. Since we do not have a.

lan guage which i.mpl ements the class concept, the treatment i s fajrl y

theoretical . Concept,s o f exclus i on and sy nc}-~r on. isation by meanS of

monitors. logethet· with synchronisatio n and operating system

algori thm s form a large part of the 3rd year opE'rating systems cour se .

This wa y of l ucking at synchronisatj on and sc heduling problems is a

great s impli.fication for the stude nt.. They can so lve problems which

n. Ie,",' yea r s ago would have been re search article s (if semaphores had

to be used). TI10re j s also a 3rd year course of 30 lectures 011 the

The o ry of Progr[urming . of which 1.1"1' tas1 . thre(" p['PSl)nt - not very

~llcc€"ssl'\d l,v .- the material I hav(') prf!sent ed hen:. .

I:')

I

I

...

