
Rapporteur:

VIII. 19

AUTOMATIC SYSTOLIC ALGORITHM DESIGN II
(A Practical Approach)

P Ezhilchelvan
DComish

G M MEGSON

VIn . 20

.,

VIII. 21

AUTOMATING SYSTOLIC ALGORITHM DESIGN II:
(A Practical Approach)

1.0 Introduction:

G.M. Megson
Computing Laboratory

University of NewcastIe-Upon-Tyne
Claremont Tower, Claremont Rd,

Newcastle-Upon·Tyne
NE17RU

U.K.

In the past systolic"design has largely been conducted using the ·seat-of·the-pants'
method. Thi s method can be stated simply as follows ;- you sit down with a pen
and a piece of paper and sketch out some arrays and try various draft data flow s
until you eventually find a design that works or (which is more frequent) give up
and decide that perhaps a systolic design is not the best approach . Part I of these
tutorial presentations [1] has suggested a better design method which should be
used to direct a designers effort more effectively. Unfortunately the underlying
algorithms of the method involve substantial computational effort (e.g simplex
method for the timing schedule, givens rotations for projections, and n

dimensional convex hull for determining the directed half-spaces and extremal
rays of the domain) and is not well suited to manual application . Indeed the task
can be extremely tedious and error-prone even for a relatively straightforward
design.

The theme in this paper is concerned with the development of environments for
systolic algorithm design and the kind of computer aided design (CAD) tools which
are required to support the design process. In particular we shall consider the
DTAGS transformation kernal which forms part of a Systolic Algorithm Design
Environment (SADE) being developed at Newcastle [2]. Before proceeding
however, it is worthwhile devoting a few sentences to the general motivation for
CAD tools. An observation by David Hilbert [3] used in the preface of a book on
geometric modelling [4] seems quite appropriate here

On the one hand, the tendency toward abstraction seeks to crystallize
the logical relations inherent in the maze of material that is being
studied, and to correlate the material in a systematic and orderly
manner. On the other hand, the tendency toward intuitive
understanding fosters a more immediate grasp of objects one studies, a
live rapport with them, so to speak, which stresses the concrete
meaning of their relations.

The goal of systolic synthesis is to crystallize and unify the different ad-hoc
designs existing in the literature by a single mathematical framework . But at the
same time one cannot deny the natural affinity that humankind seem to possess

this work is supported by SERe grant GRIF 80494

VIII. 22

for a intuitive understanding of geometrical forms. Indeed my experiences with
DTAGS and in the wider context of systolic design have afforded deep and often
unexpected insights in to the nature of parallel algorithm design - this rapport is
something that is to be valued greatly . Hilbert's remark is particularly pertinent
when one considers the capabilities of modern day high performance workstations
for performing interactive vizualization and manipulation of complex data models.

It is also important to be clear about what we mean by design. Design is si mply
the process of creating, describing, and then selecting a form which must fulfil
some function. More precisely we are interested in engineering design - an
interactive process defined by brief periods of insight and creativity followed by
longer more tedious periods of refinement, selection, and modification until the
product meets a set of constraints (or objective functions). In systol ic design this
means producing a systolic array for a particular algorithm and selecting the best
array interms of number of cells, cell complexity, input-output connections, time
complexity and so on. The final design may not be the one that satisfies theoretical
models of optimality but rather one that interfaces readily with an existing system
or product range. For the more commercially orientated reader the over-riding
concern might be that the final product is the least expensive to manufacture, or is
the most robust, or fault tolerant design available.

2.0 Environments and CAD Tools:

Systolic design is about algorithmic engineering [5]. The raw materials for the
design process are sequential algorithms and the output is some description of a
systolic array for performing that sequential computation . To get from the raw
input to the final output requires the application of engineering design principles
to transform the algorithm in a way that exposes the inherent parallelism and
allows exploitation of current technology (such as VLSI techniques, programmable
parallel architectures etc). The core (or kernal) of any design environment must be
a set of routines that simplifies the computationally demanding parts of the design
process. In a broader sense the environment must also provide basic infrastructure
such as array generation, interactive features to allow manipulation of the design,
and database facilities to build up a repository of common design objects . The key
feature of the system is a single computational strategy which is independent of
any special features inherent in the design objects. In the current context the
control strategy is the synthesis procedure outlined in [6].

What kind of operations do users want in a systolic modelling system? Table I
surveys a number of existing software tools that have made some attempt to
provide CAD facilities, the list is not exhaustive and continues to grow. However
it must be emphasized that many of the tools now appearing have features in
common. For simplicity the middle column of the table identifies a few
distinguishing features for each package. The right column lists a single feature
that can be considered essential for a design environment.

VIII . 23

NAME CHARACTERISTICS FEATURE
DIASTOL Data Dependence Map- Linear Schedules,
(Quinton et al 1986) pmg, Optimization

Uniformization,
Tupling,
Parametrization

ADVIS Partitioning, Restricted Topology
(Moldovan 1987) Fixed Sized Arrays,

Defined Connections
SDEF Directed Acyclic Graphs, Code Generation
(cappello 1987) File Definition,

Code generators
VACS Systema tic searching Constraint Matching
(kung et al 1990) of projection/timing

functions
DECOMP Sequential programs, Full Mapping
(vehilies 1990) Internal cell organisa-

tion,
Signal processing

HIFI Graphics Interface, Graphics
(De Lange 1991) Tiling,

VLSI layout

Table I : Selection of CAD tools for systolic design

In a complete system the user requires facilities which allow for rapid modelling
and prototyping of designs. The term modelling is used because although synthesis
is used as a formal model of the design process more heuristic methods that rely
on the designers intuition are required, this is especially true when the synthesis
method breaks down (for example on non-constant data dependencies and
unbounded domains). We are emphasizing engineering design so formulating
constraints and systematic searches of the timing and projection functions are
desirable . Unfortunately the search space can be quite large even for small designs
so it is often necessary for the designer to prune the search manually - this is best
achieved with the aid of some graphical display of the algorithm geometry.
Ideally, a full environment should produce a full mapping, that is input as
sequential code and output as a description of an array. If the array is
programmable we will want to produce a parallel program suitable for an
available (and restricted) topology. For a 'pure' systolic algorithm (represented at
the bit level) we will want to produce a suitable circuit description such as VHDL
which can form the input to a silicon compiler.

Figure 1 gives an global view of a prototype Systolic Algorithm Design
Environment (SADE) which incorporates the ideas outlined above. In addition it
adds a few novel features which are particularly useful for supporting on-going

ARRAY
DBA

LIBRARY
SE
............ _,

ARRAY S

Timing F ns

Alloc F ns

Partitio
&

Tiles

ns

·
· · ·
· ·

· ·

--

.

... r-
FILTER S

~CAM \
J

~

--
~

VIII. 24

S d AI ee 'h ont m , ~
PARSER

\ I

PIPE LINING
ROUTING

, ,
DTAGS
(Kernal) , ~

SEMANTIC
~,- ,~

, 'J

PARTITIONING

\ I

CODE
liillN , ,

~--------------------------,

--
-. -

Colours, Dependency,
vertices

U RE's, Halfspaces,
Rays etc

Projections

I
I
I

i
I
I

I
I
I

i
I

I
Shapes & Data sequences __ J
Virtual Array

R estricted Topology Description

Reduced Array

Hi gh Level Description

Figure 1 : A Systolic Algorithm Design Environment

VII I. 25

research activities. The core of the system is the Dependency Timing Allocation
Graphical Snapshots (DTAGS) kernal which performs transformations derived
from synthesis or specified manually by the designer. DTAGS provides all the data
structures necessary for manipulating URE's, timing, allocation, and data
dependency structures (a more detailed description is given in section 3). Input can
be made directly to DTAGS but it is more useful to have extra facilities which
simplify the construction of a canonical form. For example a cut-down pascal
parser is used to derive data dependency and domain vertex information from
simple for-loop programs. Data movement is captured by the assignment of
'colours' to program variables, similarly operations at the dependence graph nodes
are given a 'shape'. Non-linear dependencies can also be detected at this stage and
the system is fully indexed. Given the dependencies and vertices the syste m can
be re-written by applying pipe lining and routing to yield a system of uniform
recurrence equations. A large choice of pipe lining vectors exist and so the designer
can take the default assignment produced by the package or select their own
(which are checked for consistency). The router also derives the half spaces for the
domain by computing the n-dimensional convex hull of the vertex points. At this
stage it is possible to generate sub-domains for each 'shape' in the design. The
rays associated with the domain faces can also be easily evaluated.

The output of DTAGS is a graphical description of the array together with a
schedule of the shapes allocated to each cell. This description can be used as an
intermediate form to generate code for different underlying machine structures. In
a full environment a set of software filters (e.g Occam - transputers, LINDA -
Encore Multimax, STRICT, VHDL - silicon compilers) are envisaged. The DTAGS
output is problem size dependent consequently any code generated (unless it maps
onto the available architecture naturally) will not produce efficient code.
Consequently the intermediate form has to be manipulated to produce an
alternative reduced array which maps directly onto a restricted topology. Finally,
an array database is used to store lists of possible designs, timing and allocation
functions, and partitioning rules . The user can build up a working set of designs
and orientate the library towards their own particular application area and hence
reduce design time.

3.0 DTAGS:

The main purpose of this paper is to illustrate how DTAGS can be used for design.
Figure 2 shows a screen dump of the kernal system (at this stage not much effort
has been devoted to the interface). The top window identifies the environment
module and summarizes the state of the package - at the moment we have three
designs in the system and are working on the third one . For this design there are
four timing functions and we are using the first . Similarly there are three
allocations available (at the moment) and we are using the second one. The last
item indicates that three graphs have been generated (possibly one data
dependency and two allocations) and we are using the third .

The second window displays the DTAGS options. The design option allows the

+----------+ +--------------------------------+ + GRAPH •
+Curr.nt w1ndOw etatu. + + genprate +
+ + + add snap +
.wlndow 1 on + • oyopos •
+wlndow 2 on + + tran'forM++--------------------+
+1III1ndOtll 3 on + ++ DISPLAY +
.wlndow .. off + + store ++ vipw •
.... lndow ~ off + + •• lect ++ up •
+ + + read "dow> •
+[ntpr nu.o.r of window 0 + + qua ++ l.ft. •
+ • +----------++ rJ8ht •
+ + + ~duc. •
+ • + IUgn1fy •
+ + + axes off +
+ + + PEs on •
+ + + arl"'OWS on • +-------------------------------. + colours off •

•
" ' + reset. •

+ QUit •
+--------------------+

% - backw.rda. x - •• Ipet. c - fOrM.rd.

Figure 2 : DTAGS (Kerna!)

.--.

I': "'1-: "'1-: "<;1.; "'1-: "'1-: "'1
~:'~:+~:'~:'~:''?
o -' ;.O -'~ :;e .' ;,O :~:;.O

9'"'/'"'1
9- "'1 - "'/-"'1 . . , ,

9-~-~-~-'"
9-"'1 -"'1 - 00

0--0- <0('1

110, ~.)#..)#..

9.:' A::.:9.:' ;Ji,"~.
9.: ' :~ , ;i.: -;i.: , :i, .. '.¥..
0'- o · · ·o · · · ~·· 0'- .; o

<:
H
H
H

N
0'

..

VIII. 27

creation of a design manually (by typing the dependencies, and half-spaces etc), or
the reading of a file (possibly generated by the pre-processing elements of the
environment). The timing option allows the reading of a library file containing
default timing functions, the manual entry of a timing function, or construction of
the timing function by solving a linear programming (LP) problem. The LP
problem is generated and solved automatically (if no vertices or rays have been
specified they are generated - assuming a hypercube domain, and rays that pass
through the origin). The user can control the LP by selecting just the optimal or a
list of feasible timing functions. Alternatively, the designer can structure the
timing function by restricting the scope of the coefficients (to non-negative, zero, or
free variables). The allocate option builds a list of possible allocation matrices.
The designer has limited control and can specify an arbitrary direction, or choose
from a default list of allocations, or ask for a direction orthogonal to the timing
function. The files option gives a current list of the files being used to store the
design, similarly the info option gives a brief summary of the current design (data
dependencies, timing functions, etc).

In the Figure the option selected is graph, this section allows manipulation of data
dependency and projected graphs and provides a wide range of options. The most
important options are generate and add snap, the first produces a data dependency
graph from the description, the second simulates the array operation. For three or
less dimensions both options produce graphical output which can be recovered
using the display option - for higher dimensions a file dump describing the array
or it's operation is possible. The key insight into a complex design occurs when
the dependency graph is manipulated in some way. The transform and eyepos
menu options provide these facili ties. In the former various geometric
manipulations such as scale, rotate, shear etc can be applied either before (pre) or
after (post) projection. One use of this feature is to orientate two separate domains
so that they can be pipelined together. In the latter the designer can specify the
position from which they want to view the graph. The resulting transformation is
used as an allocation (and on request is automatically inserted into the allocation
list). The remaining options allow storage and retrieval of lists describing designs
and are available in all the other menu options.

Finally let us briefly consider the display section. As we would expect all the
facilities for manipulating the graphs on screen are available. In addition options
are also provided for clarifying complex designs. For example, the processing
elements and arrows can be switched off (in practice they often make the displayed
graph look overly complicated). Alternatively individual colours can be selected or
masked so that the designer can concentrate on choosing projections to make the
data flow of individual variables stationary or non-stationary. Different designs
can be given a separate window for the display so that the user can switch easily
from one design to another. For example in Figure 1 three windows are open. The
first is a Data dependency graph for the convolution problem. The second is a
projection of the banded matrix product problem (and so is a possible systolic
array) and the third is a Data dependency graph for Aitkens method which we
discuss shortly. A straightforward window dump can be used to produce good

. -

VIII. 28

quality output for inclusion in papers, reports, or class exercises. Notice that each
of the windows is for a different algorithm, associated with each of these
algorithms are corresponding lists of timing and allocation functions. We conclude
that DTAGS is a flexible system for interactive algorithm design.

4.0 Aitkens Method (an example) :

One of the most frustrating features of current literature on systolic synthesis is
the tendency to concentrate on only one or two simple examples (e.g matrix
product, convolution, matrix triangularisation). Indeed these designs are so
simple that algorithm designers can easily produce the arrays by ad-hoc methods.
Indeed that is how the first arrays were developed before the emergence of basic
synthesis techniques. Clearly the test of any real and useful design tool is its
ability to cope with complex designs which are at the limits of an experienced
designers ability - it is at this level that a tool provides real insight into algorithm
design and becomes useful. To illustrate some of the capabilities of DTAGS we
will derive some systolic algorithms for Aitken's method an algorithm for
determining the roots of transcendental equations.

More formally we want to compute the roots of K2:1 polynomials of the form

(4.1)

for k =l(l)K . Aitken's method solves a single equation of (4.1) by computing a
doubly infinite table of so-called Hankel determinants using the recurrence

Hi j -1,kHlj+ l ,k =Ht+1J,k H i -l j,k - H?J,k

it is known that H"o ,.= l and H i,I"=C,,, where

h,(z) =g.(z)lf, (z)= 1+cI ,. +c2z2 + ...

g, (z)=1+b l ,kZ + b 2,k Z 2+ , ..

(4.2)

(4.3)

so that the first two columns of the table are given for each k. Similarly it can be
shown that H OJ,' contains only one non-vanishing term. Infact for any column j > 0
the ratio H iJ"IH, +lj,' has a limit that satisfies

(4.4)

where the rj,k are the zeroes of f,(z). Furthermore if f. (z) has any other zeroes they
are strictly greater in modulus. Consequently, if we know two adjacent columns j
and j + 1 of table k we can determine rj + I ,' using a simple ratio.

Now, infinite dimensions produce unbounded domains which compromise the
design method by a) preventing the formulation and solution of the associated
timing function LP and b) producing arrays with infinite dimensions. If just one
dimension is finite then a feasible array can be produced by projecting in this
direction. Fortunately we can bound the table by computing block wise (see [7]) .
For example suppose we define the block r,S of table k as B" s," Further suppose
that the block is a trapezoid containing the elements

J

~i

b) DQDl~in .

Figure 3

, ,

, ,
, ,
, ,

--

Vlll .29

, , ,

"

, • ,

--

. --.'

:
, ,

, , , ,

~ ~. , , , ,

-,

--

, ,

--

, - ,
.:"·,1

D •••
od

•
O

<1 .od Do""'O' fo' A""'O" ",.th

Od

VIII. 30

H m (r -l)+I,n (s - 1) + j,k

wherej=l(1)n, i=l(l)m+n-j, and k=1 (11K, and m ,n> O. The blocks can be evaluated
in the order defined by the non-linear timing schedule

T (B, .,) =s+ (r+s-2)(r+s-1)/2 (4.5)

and the individual blocks can be treated as finite problems with three-dimensional
domains (i.e. i , j, k) of bounded size.

Ideally, we would like the construction of the table associated with problem k + 1 to
be pipelined behind problem k as soon as possible (i.e we want to pipeline (4.2) in
the k direction) . This may be achieved by applying a shear to skew the domain in
the k direction and to transform (4.2) into the form

(4.6)

The resulting data dependency graph is shown in Figure 3a and the convex-hull of
the domain is given in Figure 3b. Solving the associated LP problem derives an
optimal timing function as

t(ij,k)=j+ k -1 (4.7a)

which corresponds to evaluating a single column of table k at each time step,
alternatively the following function

t(ij,k)=i+2j +k-l (4.7b)

is also feasible and describes a wavefront method (it can be entered manually). In
the former, any projections with a direction vector of the form (± 1,0,0) are
perpendicular to the time axis and are not allowed. Similarly direction vectors of
the form (±1 , - + 2,±1) cannot be used for (4.7b).

Figure 4 shows some projections of the domain in Figure 3 along with their
direction vectors. Figures 8 (b,c,!) show that K problems can be solved
simultaneously by using K independent copies of a 1-0 array that evaluates a
single table. Fig (8c) is to be preferred because it requires only uni-directional data
flow and cells proportional to n . Figures 8 (d,e,!) show hybrid projections which
produce pipe lined designs with the number of cells dependent on the problem size.
Figure 8d requires m + n -1 rows and n +k -1 columns of cells. Figure 8e requires
(m+2n-2) rows and k+ (n-l) columns, and Figure 8g n rows and m+n+k-2 cells.
In contrast Figure 8a employs completely non-stationary data flow and requires
n(m + n -1) cells (i.e O(n 2) when m = n), which is independent of K , and all input
occurs at the boundary of the design. The other designs require some preloading
and . unloading of data at the start and end of computation which demands
additional control mechanisms that complicate the basic cell implementation so
Figure 8a is to be preferred as a pipelined architecture. We will not discuss the
fine details of array operation here because the emphasis is on the use of OTAGS
to explore systolic design options (the interested reader is referred to [7] where the
designs are fully discussed, alternatively the more enthusiastic reader is
encouraged to construct the projections by hand !!).

VIII. 31

:

o '. ,' .
. '

:

, ,

o '0
, , , .
o

VIn , 32

....

....
I

2
C

.... -

. '; ,O;P
;:~ __ _f

~ ~,~~'t~&.#'t.
, ,~~

... _,';~ t ~{>. '" .. <\
(j~~~ _, J. -'-

"'~~~ [j.: ' J. 'J.

' ... ~~~ tV J. J.

' ... ~~~ 0-/ J. J.

dat~~ .. t ... t ... '(

,:,· ··ti"l.i"~ [j'-t.. -!. -!. ' .. ., ' .. '(...., .. """. 4., , ' .. ' '~"Y? ' t1-~- -~_ I
' .. 1 ' .. ~ •

.. ..,.. """. \ I cr' '~'.~ -~_ -!r.
' .. '" ' ";" .. , ,

(f '~ , ·t .f .'
?j:;:~
" ~, ,
0/ , , ..
0

....
II
".
II

e..
'" II ...
"' " 'u = " ." = " 0.

'" Q

Q
M
"-
0

"' = 0
'z
u

" '0' ...
0.

e
0
.;:

."

" >
';::
'" ;:; ."

I "' ct
;.,

'"
<

~ Q
c:.

'" t.l
c:t::
:J

"

VIII. 33

Using DTAGS the designer needs to know very little about the design process. For
direct input to the kernal a user has to be competent in basic synthesis techniques
as described in part I of these tutorials so that dependencies and domain half
spaces can be produced. Alternatively this stage can be performed automatically
using the parser and router tools. In the latter case all that is required is the
formulation of a block computation using a three-loop sequential program. The
domain and data dependency graph is produced automatically as can the optimal
time function, and default allocations associated with the axes of the space. Thus
the role of the designer is reduced to trying novel allocations and timing functions
(which can be motivated by experiments using the default values or a more
intuitive approach) and assessing the designs produced interms of the data flow
and cell count. For example it is interesting to note that Figure 8c which is the
most amenable to fault tolerant manufacture cannot use the optimal timing
function. If the designer really wants to use this array the alternative timing
function must be used. Another interesting fact is that the best pipelined design
(Figure 8a) is infact the data dependency graph for the evaluation of a single block
of the hankel table (i .e. K= 1), so that I-D arrays can be found by suitable
projections.

5.0 Summary:

To conclude, systolic designs for a relatively complex problem were generated in a
straightforward manner with the aid of DTAGS and the SADE environment. To
use the system one needs only to know how to formulate a for-loop program for the
problem and the have an intuitive understanding of the design process. In our
example the 3-D data dependency graph and domain are non-trivial so that
manual application of the design methodology would be extremely tedious. Indeed
it is not at all obvious what types of arrays are possible. By a systematic search of
projections we found a un i-directional design suited to fault-tolerant
implementation, and a 2-D design for solving K problems on an architecture
dependent only on the block size of the table partitioning (which is arbitrary). In
addition we also determined a case when the optimal timing function could not be
employed. All this work took approximately two hours. In comparison an ad-hoc
(and practised) designer would require at least a week to enumerate all the
possibili ties by hand.

Although the DTAGS kernal is usable and fairly complete significant work still
remains on the basic infra-structure of the the environment. The SADE we have
proposed has been designed in a modular way so that extensions and upgrades to
the synthesis techniques can be easily incorporated. For example, a systematic
search of all possible timing and allocation pairs is perfectly feasible - it simply
requires the traversal of lists built by DTAGS. Unfortunately, generating the
number of possible pairs is a time-consuming combinatorial problem so at the
moment the task is left to the user. Other metrics such as number of cells, number
of inputs-outputs to cells, or generating arrays with stationary data flow for
specific 'colours' are all practical and easy to implement. Perhaps more interesting
and certainly more challenging is the automatic generation of code for

...

VIn. 34

commercially available parallel machines. The current version of SA DE is
implemented in C with system dependent features such as the use of X windows
and GKS graphics confined to well defined areas of the software. Development
work so far has been carried out mainly on a SUN-4 workstation. Our intention is
to at eventually port the software to IBM PC's.

Finally, a few remarks about the SADE philosophy. The SADE project places
emphasis on Systolic modelling, that is , representing computations as parallel
algorithms in the systolic paradigm. The back-bone of the design procedure is
systolic synthesis but synthesis is not the whole design system. For example we
can experiment freely with alternative designs where the current synthesis
techniques break-down. The SADE is flexible enough to allow the easy
incorporation of new synthesis techniques but also allows more heuristic and
intuitive design approaches which enable the designer to venture beyond existing
synthesis theory. Perhaps more significantly it is a software tool that is currently
being used practically to develop new algorithms.

References:

[1] Megson G.M., 1991, Automating systolic algorithm design I : (basic synthesis
techniques), this proceedings.
[2] Megson G.M., Cornish D., 1991 , "Systolic Algorithm Design Environments",
2nd International Seminar on the design and application of parallel digital
processors, lEE Pub 334, ppl00-l04.
[3] Hilbert D. , Cohn-Vossen S. , 1952, "Geometry and the Imagination", Chelsea,
New York.
[4] Mortenson M.E., 1985, "Geometric Modelling", John Wiley & Sons.
[5] McWhirter J.G., "Algorithmic Engineering in digital signal processing", 2nd
International Seminar on the design and application of parallel digital processors,
lEE Pub 334, ppll-18.
[6] Quinton P., Van Dongen V., 1989, "The mapping of Linear Recurrence
Equations on regular Arrays", J . VLSI Signal Processing, 1, pp95-113.
[7] Megson G.M., Brudaru 0., Cornish D., 1991, "Systolic designs for Aitken's root
finding method", to appear Parallel Computing .

VIII. 35

DISCUSSION

Rapporteurs: Paul Ezhilchelvan and David Comish

Lecture One

Professor P A Lee started the discussion by asking whether the designs
produced by the synthesis techniques could be mapped onto other types of
architectures as well as directly onto silicon. The speaker replied that there was
no reason why a systolic algorithm derived using the synthesis techniques
could not be mapped onto different parailiel architectures, such as a
multiprocessor. Indeed if the pipelining and routing stages of the techniques
were omitted during the design process, producing a semi -systolic design ,
possibly a better design for the target architecture could be derived.

Next Professor B Randell inquired whether these techniques had been used to
derive systolic designs to solve Digital Signal Processing problems. The
speaker responded that there existed many systolic algorithms relating to Digital
Signal Processing problems, such as the ones being used at RSRE (Royal
Signal and Radar Establishment) to perform Kalman filtering.

Professor 0 Swierstra asked whether any system of recurrence equations could
be mapped into a system of UREs (Uniform Recurrence Equations). The speaker
replied that not all recurrence equations could yet be mapped into UREs and
cited the Knapsack problem as an example of this.

Professor P A Lee concluded the discussion by inquiring whether any
algorithms which have not fitted into the technology , have then led to the
discovery of better algorithms after studying the derived systolic algorithms. The
reply was to confirm that this has indeed happened and cited the example of the
dynamic programming problem solved by P Quinton.

Lecture Two

Initially Professor J Gurd raised several issues. The first was whether the tool
gave any insights into the design of an array which were not immediately
apparent to the designer working by hand. The speaker responded that this was
indeed the case and added that when using the tool to design a systolic array to
realise Aitken's algorithm some of the resulting arrays were far from obvious.

Professor Gurd then added that presumably the design process should work
even if the original problem domain was in four dimensions. Also that if the
original problem was too complex for the design process to cope with , it could
be broken down into component parts which could be solved separately then
integrated after the design process. The speaker agreed with this but warned
that this led to problems with adding control logic to the different cells in the
systolic array.

Dr K Wright asked if an execution of the original algorithm involves an attempt to
divide by zero, would the corresponding systoliC algorithm still work. The reply
was that if the original algorithm did not work then the derived systolic algorithm
would not do either. Professor B Randell added that this could probably be

VIn . 36

overcome by representing the exception as a Boolean Algebra expression and
thus integrating it into the original algorithm.

