
VIII

AUTOMATIC SYSTOLIC KALGOAITHM DESIGN I
(Basic Synthesis Techniques)

Aa p p 0 rteu r: P Ezhilchelvan
D Cornish

G M MEGSON

VIn .l

AUTOMATING SYSTOLIC ALGORITHM DESIGN I:
(Basic Synthesis Techniques)

1.0 Introduction:

G.M. Megson
Computing Laboratory

University of Newcastle-Upon-Tyne
Claremont Tower, Claremont Rd,

Newcastle-Upon-Tyne
NE17RU

U.K.

In the last decade the rapid development of VLSI computing techniques has had a
significant impact on the development of novel computer architectures. One class
of architectures, the so-called systolic arrays, have gained popularity because of
their abilities to exploit massive parallelism and pipelining to produce high
performance. Informally a systolic system can be envisaged as an array of
synchronised processors (or cells) which process the data in parallel by passing it
from cell to cell in a regular rhythmic pattern [1]. Systolic arrays have been
designed for a wide variety of problems .of which table I is only a small selection.
Initial designs were ad-hoc and relied substantially on the skill and intuition of
the designer. In the systolic paradigm every algorithm requires a specialized
systolic design in which the communication data streams, cell definitions, and
input-output are customized. Consequently the terms array and algorithm are
often synonymous. The early designs contributed significantly to the foundation of
sys tolic synthesis as a design methodology and recently a great deal of research
effort has been devoted to the problem of generating systolic arrays in a
systematic manner.

A number of very useful papers on synthesis can now be found in the literature
(see [1](12][6]). This paper is intended to compliment existing work and present
the basics of synthesis in a straightforward and intuitive way. One of the
unfortunate features of the current literature is that relatively straightforward
ideas and concepts are often expressed in an overly formal and stylized manner.
While on the one hand these developments must be applauded, for adding much
needed mathematical formulation and rigor to the subject and addressing the early
criticism that systolic array design was a 'black-art', one must also criticize them
for failing to make the inherent simplicity of the technique more explicit. Indeed
in some cases the impression is that the formulation is more important than the
actual method or its uses. Where the teaching of a subject and the 'pull-through'
effect of transferring research to undergraduate and postgraduate courses is
considered methods of presentation are of the utmost importance .

This paper is the first of two short tutorials, it describes some of the history behind
the development of current design techniques, introduces the basic principles of
synthesis methods in a simple and intuitive way, places emphasis on clarifying
points which are rather vague in the existing literature, and indicates where the

VIII . 2

current research trends are likely to lead in the future. In particular we will take
the opportunity to expose one or two mis-representations regarding systolic
algorithm design which have affected the acceptance of the method as little more
than another special-purpose technique restricted to VLSI and ASIC design. The
second paper is more research orientated and describes DTAGS, a graphical and
interactive tool for performing the synthesis process [21]. DTAGS is currently
under development at Newcastle and is still at quite a primitive state. However, it
has been used successfully to design several new systolic algorithms ([22)) and can
be employed effectively to teach the basics of synthesis methods. If nothing else it
demonstrates practically the gulf that exists between current theory, so·called
academic tools, and robust, safe, software for exploiting commercially available
multi-processors.

Area Application
SIGNAL PROCESSING Signal processors for recursive filtering,

implementation of Kalman filters,
Discrete Fourier Transform (DFT), Convo-
lution (m ulti·dimensional) , Linear Alge-
bra machines

NUMERICAL PROBLEMS Finite Element analysis, Singular Value
Decomposition, Linear time so lution of
Toeplitz systems, Orthogonal equivalence
transformations , Least-Squares (adaptive
beam forming), Eigenva lues and general-
ized inverses , Iterative a lgorithms

SHAPES & PATTERNS Pattern Matching, Feature extraction ,
Pattern Classification, Stereo matching,
Algorithms for recti-linear polygons, B-
Splines, Neural network simulations and
training .

WORDS & RELATIONS Largest common subsequence problem,
Dictionary machines, Relational Database
Operations, Connected Word recognition

AUTOMATA Tree Acceptors, Trellis Automata , Binary
Tree Automata, Design Rule Checking

GENERAL Shortest Path problem , Algebraic pa th
problem (including matrix inverse), Fun-
damental sorting problems, Linear-time
Greatest Common Divisor (GCD), Priority
Queues, Stacks, Tab le generation, Sim-
plex a lgorithm, Assignment problem,
Knapsack problem.

Table I : Some applications of systolic algoritbms

VIII. 3

2.0 An Historical Perspective:
Figure 1, illustrates an approximate time-line for the development of the systolic
processing paradigm. There are two strands, the first which acknowledges the
existence of simultaneous efforts in automatic extraction of parallelism using
compiler extensions and based primarily on the notion of data dependence analysis
to determine partial orders of instructions. Such techniques can largely be
summarized by so-called loop restructuring mechanisms for source to source
transformation of programs. This 'software' strand is not intended to be
comprehensive but simply to establish the origins of nested-loop analysis using a
recurrence formulation which is now the basis for many systolic synthesis
methods. The second strand deals with the development of systolic arrays and can
be broken down into four distinct phases. The first or 'pre-systolic' phase covers
developments up to the first appearance of the term 'systolic' in the literature (circa
1979). In particular it is important to acknowledge the existence of very similar
pre-systolic paradigms such as cellular automata where cells define finite state
machines (or automatons) which communicate with each other. These ideas and
the development of Very Large Scale Integration (VLSl) manufacturing techniques
made it feasible to build silicon chips with many simple cells and created a
technological environment in which systolic processing could flouri sh.

The second phase we shall term 'pure-systolic'. Roughly this phase covers the early
period of systolic computation form 1978-1984. During this time the basic 'axioms'
of systolic design such as regular arrays of simple cells with nearest neighbour
communication, and recurrent synchronous movement of data were established. In
particular the design philosophy was shown to work well for a wide range of
compute-bound applications in signal and image processing (FFT's, digital filters,
solution of linear systems, differential equations and so on) . Bit serial arrays using
fixed-point arithmetic began to emerge for computationally intensive tasks such as
convolution, and the solution of Topelitz systems which formed earlier proto-types
for commercial chips such as the NCR GAPP [23]. It was soon clear that systolic
principles could be used to develop algorithmically specialized arrays for
performing computationally intensive tasks in real-time . The limitations of high
input-output bandwidth and complexity of basic cells for practically important
problems (e.g singular value decompositions) established design 'heuristics' based
on limitation of technology and lead to the development of programmable systolic
devices (such as the wavefront array[24], WARP [25], and specialized processor
arrays for developing systolic systems such as MICMACS [26]). As more examples
emerged and the utility of the approach was established a movement towards more
systematic design methods began. Early methods such as re-timing [27], cuts (28)
and signal flow graph notation concentrated on transformations of one array into
another by re-distribution of the circuit delays. Primitive representations of
algorithms in space-time were developed and established important links between
dependency graphs and array geometry using projections.

The third phase covers the period 1984-1990 and is characterized by a concerted
movement towards the development of a theoretical framework based on

,
(1967)

K.~lIler.Wlnogr.d

~
Cellular Automata

~
Untform Recurrence equations _,

(1970)

VLSI Technology

t
(1974)

Umpor1

hrallol Do-loops

~
KuclltlA!

hrallol FORTRAN Compl"'s

~
(1980)

Kuhn

0p11m11 Connocllon S1ruclures
I
I
I

!
(1979)

Kung & LeISef$On

SystOliC AlrlYs

+
(1981)

Wel.er , DI~s1 Copello & Slogll"

W.vefront, & OSP .pplk:ltlons

t
(1982)

Moldovan
VLSI Syn1hosl.

t
(1984)

IIlrllliler & Wlnk"'lOulnlonllloidoVin & Fortes

(SplCt-T1me, Synthesis UREs, plpellning & Routing)

L._ t
(1985)

RIo, Wlh' U. S. Y. Xung, Chen
(reg "erll'" AlgI, Optimal ArrIys, Slgn.1 Flow Graphs

Syn1hlSb.

(1986)
Dettoml , Ipttn. "oldo"" & Fort ..

(TI .. ConIS, FIlIcI Sind ArrIYS)

+

~
(1988)

Cappello & Yoccoby

Affine Recurrences

~
(1989)

Quinton & V,n Dongen/ Rajopadhye & Fujimoto
lIneir RtcuntnC8,

Control Signal Synthesis

+
(1990)

CADTools

FIGURE 1 : Development of Systolic Synthesis

<:
H
H
H

.0-

VIn.5

dependence manipulation and the association of geometry with a computation by
mapping nested loop programs into Euclidean space. Sections 3-6 below outline
the basic approach. These important developments have utilized concepts from
source to source program transformation methods and the formulation of loop
computations as uniform [2], Affine [13][15], and more recently Linear recurrence
equations [11]. They have been shown to be effective for a range of important
applications. In particular the systematic re-timing of data dependency graphs to
remove non-local and broadcast connections using pipelining and routing
techniques is of particular importance [8]. The theoretical framework for systolic
design has allowed considerable progress to be made in extending the range of
established designs. Much more complicated 'hybrid' designs which rely on more
sophisticated cells than envisaged for 'pure' arrays are now possible. The idea of
'soft' systolic arrays which describe an abstract model of the computation to be
mapped on to existing parallel architectures are also beginning to attract interest
[3][9].

The fourth phase brings us to the present where considerable effort is now being
expended in the direction of CAD tools ([2][10][17][18][19]) and systolic compilers
([4][5]). The basic synthesis method serves as a back-bone for developing an
integrated set of CAD tools .but many .questions remain unanswered. Section 7.0
discusses some of these extensions and suggests directions for future research. For
example mapping arrays dependent on the problem size onto fixed sized
architectures with restricted topologies. Automatically generating code for parallel
machines or producing designs for direct silicon implementation. The extension of
the basic synthesis method to allow development of complex and composite designs
involving a number of systolic designs pipelining together is also an interesting
avenue of research.

3.0 Space-Time and Euclidean Spaces:
In systolic design an algorithm is formulated as a nested-loop program with the
form

For II := Ll to Ul do
For 12 : = L2 to U2 do

For 13:= L3 to U3 do

• • •
For In := Ln to Un do

Begin

• , ,
Statement;

• • •
End;

VIn . 6

the Ij are loop variables or indices, and Lj, Uj are the upper and lower bounds of
loop j. A statement is simply an assignment with the form

(3.1)

where p is an n component vector of the form (11,12 , ... ,In), m > 0 and the q, can be
defined as

q,=Ap+b (3.2)

with A an nXn matrix and ban nX1 vector. For example the statement

(3.3)

has p= (i j), ql= (ij- l) and q2= (i-lj) (n=2). The function g is addition and the {,
functions simply index the variables a and b respectively (m = 2). Equation (3.3) is
an example of a recurrence equation. In general a single index recurrence can be
written as

(3.4)

which is linear when the d, are constant and non-linear otherwise . It should be
clear that the left hand side of (3.4) :depends strictly (i.e only on) preceding values
of x which can be assumed to have been .calculated previously. The extension to n­

index recurrences follows trivially by adding extra subscripts to the variables.

A geometric interpretation of the nested-loop program is obtained by unrolling the
computation into Euclidean space . For n loops we require an n dimensional space
and an n component vector describes a unique point in the space. The
computations associated with the assignments in the loop-body are mapped to the
points described by p. For example if i j = 1(1)2 in (3.3), point (1,1) computes
al.o+bo.lo point (2,2) a2.1+bl.2, point (1,2) a l. l+bo.2 and so on. Observe that each point
requires values computed at other points. Connecting the points that require data
from (or depend) on each other produces a data dependency graph (DG)
representation of the computation. The set of values that the recurrence indices
can take defines the number and position of points (or domain) of the computation.
Normally one assumes that loop bounds L 1 and U1 are constants and that Lj , Uj
for l <jSn are expressions involving constants or Ik values where lsk<j, this
ensures that the domain is finite. If a point requires a value that belongs to a
point outside the domain we define the value as an input. Similarly results of
computations that are sent to points outside the domain become outputs. Finally,
a Uniform Recurrence Equation (URE) is defined when

q, =p ±w, (3.5)

so that A =1 (or in general a diagonal matrix) and b = ±w, in (3.2) and w, is a
constant n component vector (where the sign can be chosen to indicate the
direction of the data flow). It should be clear that w, represents a constant data
dependency which is assumed to be independent of the problem instance.

URE's play an important role in systolic synthesis, this is because it is exactly

VIII. 7

these kind of recurrences that allow a direct mapping of computations onto locally
connected architectures. In addition, it is also useful to consider a number of
further restrictions. Firstly, confine m in (3.2) to a small constant so that nodes of
the DG have a limited number of input-outputs (this translates to the practical
problem of building cells with potentially unbounded fan-in and fan-out).
Secondly the elements of the dependence vectors are kept small so that each node
in the DG can communicate with nodes within a small neighbourhood of bounded
radius (this prevents long connections and clock-skew problems). Finally, we
assume that the functions at each of the nodes in the DG are the same (this is not
necessary but simplifies the discussion).

4.0 Scheduling and Allocation:
Given a DG for a particular problem we can derive systolic arrays for performing
the computation by determining a pair (t(p),a(p)) where t (p) and a lp) are timing and
allocation functions which determine the time and place that the computation
associated with point p must be evaluated. It is known that if a URE is
computable a linear timing function exists, consequently we can write

t (p)= Alp+a (4.1)

and

a(p l = Mp (4.2)

where AI is an n component vector, a is a scalar, and M is an (n-l) Xn matrix.
Equation (4.1) implies that t (p) is a hyperplane of the n dimensional space and a
family of parallel planes exist for t = 1,2, All the points lying on a particular
hyper-plane can be computed in parallel. It follows that the normal (i.e. A) to the
set of planes represents the direction of a time axis. Hence the Euclidean space
can be interpreted as a space-time system with 1 time dimension and n - 1 space
dimensions.

4.1 Timing:
To derive a timing schedule A and a must be determined , this is achieved by
embedding the domain of the computation inside a convex polytope (or cone) and
deriving a suitable linear programming (LP) problem. A convex cone (S) is defined
as a subset of n-dimensional space if and only if for two points p and q in S a point
ap+/1q also in S is produced when a20, /120 , A ray is defined as q = a p for a 2 0 and
any point p in the n dimensional space. Provided the loops of the program satisfy
our assumptions above the domain of computation can be defined by a set of linear
inequalities (half-spaces, or directed hyper-planes) and forms a finite convex
polyhedron. The corners of the polyhedron correspond to the 2" possible
combinations of the lower and upper loop bounds and are termed vertices. Now it is
known that a finite set of half-spaces can be used to define a convex polyhedron. It
follows that any convex domain can be embedded into a cone of suitable size and
that a timing schedule can be determined by solving an LP constructed from the
rays, vertices, and data dependencies in the cone . For simplicity we will choose a
cone with an apex at the origin and define rays so that they all pass through the
origin. In general it is better to use the so-called extremal rays determined by the

VIII. 8

vectors lying on the faces of the domain defined by the half-spaces (because the
number of rays is smaller and limits the size of the LP).

Now, if we define unit time to be the cost of evaluating the most complex
computation of any of the nodes in the domain then

t(p)«t(qJ+ 1 (4.3)

as point p depends on the results of point q. Now put q=p-w and substitute in
(4.1) to produce

A'p +a> = A'(p -w)+a+ l-A'w «I (4.4)

which yields a single equation in A and a for each dependency . Similarly, we can
write

A'V +a«O (4.5)

for each vertex u which asserts that all computation must occur at times t «0.
Finally, for two points p and q on the same ray r we can write

p={Jr, q=yr, {J>O ,y>O ,{J >y

and by (4.3) t (p » t (q) hence

so that

A' r>O (4.6)

otherwise we can find a case when t(q » t(p) which is not permitted . A schedule t (p)

can now be found by solving the LP problem defined as

minimize A'g + a = t(g) (4.7)

subject to (4.4), (4 .5), (4.6) for all rays, vertices, and dependencies . The point g

(normally) being chosen as the point that is to be computed last. It is important to
note that there are generally less vertices, rays, and dependencies than actual
points in the domain so the LP is independent of the problem size.

4.2 Allocation :
Geometrically an allocation is a projection of points in n dimensions into a space
with n-l dimensions. For example, when n=2

p = l~ ~I Q=I~ ~I (4 .8)

are projections. Applying (4.2) shows that P removes the j axis , and Q removes the
i axis consequently P is a projection along the i-axis while Q projects along the j­
axis. A projection in an arbitrary direction described by the vector d =(iJ) is
produced by applying a rotation to move point (iJ) in space onto one of the axes
and then projecting in a direction parallel to the axis and towards the origin,
hence

VIn.9

M=QRd

projects an arbitrary point (iJ) when R is defined as

R= k[~j ~I
for n = 2. In general M is an (n -1) X n matrix and R is constructed from a sequence
of n-1, 2x2 Givens rotations embedded into nXn matrices so that

R =R, ... R n

where R i annihilates the i th component of d. A projection P in the Rd direction
maps d to the origin and consequently a projection of the computation is found by
applying M=PR to all the nodes in the DG.

5.0 Non-Uniformity:
So far we have considered only uniform recurrences , when A is not diagonal a
non-uniform recurrence results. The practical implications of non-uniformity are
that data is broadcast simultaneously to a number of cells possibly over long
distances. Fortunately it is possible to remove non-uniformity from recurrences by
systematically . applying two .methods pipelining and routing.

5.1 Pipelining :
Suppose we are a given a non-uniform recurrence with the form of (3. 2). Further
suppose that we can find a non-null vector u such that A u =0 (that is u belongs to
the kernal of A). It follows that

Ap +b =Ap -Au +b =A (p - ul+b

For example, consider the recurrence

we can write the dependencies as

(5. 1)

(5.2)

from which it is clear that ql and q, are uniform and q3 is non-uniform. Thus
according to (5.1)

(5.3)

where u = (y,O) for y = 1.2,···. Consequently the XOj variable can be pipelined in the
i direction to reach (ij) from (OJ) and (5.2) can be re-written as

..

'b3

"02

"01

I) before plpellnlng

"03

"02

"03

b) Ifter plpellnlng

FIGURE 2 : Plpennlng

4

3

2

1

1

,
,~

" , , '
,'(" J

2 3 4

1=2 1=2 ~1=2 I+H=4

FIGURE 3 : Dafa Routing

-<
H
H
H

~

o

"

VI II .11

(5.4a)

(5.4b)

which is a system of uniform recurrence equations, the XO J being an input to the
domain. Both X ij and Y'j are computed at point (i j) in space-time , with X 'j

performed before Y'j because the latter depends on the former. A visual
interpretation of the transformation is shown in Figure 2. More formally we can
rewrite the equation

f (p)=g('" f, (A q + b) " ') (5.5)

by the equivalent system

f (p)=g(. . . F,(p) . . .) (5.6a)

{
F,(P - u +b) fo r (p - u + b) in th e d om ain

F ,(p) = f , (Aq + b) fo r A q + b not in the do main

5.2 Routing:
When no non-null vector u , which satisfie s A u = 0 exists , pipelining cannot be
applied and routing must be used instead. For instance suppose we have the
recurrence

(5.7)

where x is non-uniform and u = 0 is the only vector satisfying A u = o. The x

dependency shows that point (i j) depends on data at (i -l j + i -1) hence a
connection defined by the vector (1 , - i + 1) is required between the two points. Now
any n dimensional point can be written as the linear combination of n linearly
independent vectors that form a basis spanning the space. Thus a general point
(i j) can be written as

(5.8)

similarly we can write

(5.9)

so that data is routed between the two original points using only nearest
neighbour connections incorporating i steps in the (0, -1) direction followed by one
step in the (1,1) direction. Figure 3 illustrates the principle graphically.
Unfortunately re-writing the recurrences is non-trivial because additional control
must be added to existing nodes to route the data . On contrast pipe lining only
involves a single direction and is to be preferred whenever possible because of it's
simplici ty.

VII I. 12

6.0 Design Methodology:
We are now in a position to state a simple methodology for designing systolic
algorithms, for simplicity this procedure may be stated simply as follows

Step 0 : Fully Index the problem by adding zeroes to the variables of
the loop statements so that every variable has n indexes.

Step 1 : Separate the equations into three groups called input, com·
putation and output equations respectively. (the resulting system is
often called a canonical or normal form).

Step 2 : Remove the non-uniformities from the problem to produce a
system of URE's - tuple the system into a single URE.

Step 3 : Set up the LP problem from the rays, vertices, and dependen­
cies of the problem, and produce a set of feasible timing functions t (p).

Step 4 : derive a set of feasible allocations a(p) for each t (p) by select­
ing an appropriate projection direction.

Step 5 : Evaluate the design described by each (t(p), a(p ») pair using
and objecti ve function relevant to the application domain. If satisfied
Stop otherwise repeat steps 2-4 with different pipelining and routing
vectors.

The design algorithm is best illustrated by recourse to a suitable example - in this
case we will choose the well-known convolution problem which can be written in
for-loop notation as follows

For i : = 1 to n-k + 1 do
Begin

y[i] = 0;
For j : = 1 to k do

y[i] = y[i] + w[i]*x[i +j-l];
End;

The w values are called weights and k < <n is usual. Our objective is to define a
systolic array which computes the result with the smallest number of time steps
possible and with the least number of cells. In addition we might also want to
restrict the number of input and outputs to the array or make particular data
sequences stationary or non-stationary . For example, uni-directional arrays are
amenable to fault tolerant implementation techniques. A fully indexed recurrence
formulation of the computation has the form

(6.0)

from which it is clear that all the variables on the right hand side have non­
uniform indices.

VIII.13

For the y variables we can write

(6 .1)

Similarly for the w values

(6.2)

and for x we derive

(6.3)

hence we can re-write (6.0) as follows

(6.4a)

W .. ={W,_ lj i > 1
IJ WOj t=1

(6.4b)

_{X' -l j +1 i>l
X'j- , 1

x O,I + j - L t=
(6.4c)

where Y"o=o. A geometric representation of the domain and DG for k=3 and n=4
is shown in Figure 4. Now using (4.7) the LP problem can be written as

1 3 1 0

1 1 1 0

4 3 1 0

4 1 1 0

0 1 0 0

1 1 0 0

1 0 0 0

1 -1 0 0

1 3 0 Al 0

1 2 0 A2 2: 0 (6.5)

1 1 o a 0

2 1 0 0

2 3 0 0

3 1 0 0

3 2 0 0

3 3 0 0

4 1 0 0

4 2 0 0

4 3 0 0

and

VII I.14

~ I
l , , , , , , ,

:' , ,
'2: , , , , , , , , ,

(·1 .0)

!
(0,·1)

1'20

FIGURE 4 : Convolution Problem

VIII. IS

(6.6)

with the first four rows derived from the vertices, the next three from
dependencies, and the rest from rays. A solution to this equation gives the
optimal timing function as ,l.'l = 1, 1\, = 2, a = - 2 so that

t (p) = i + 2j - 2 (6.7)

so that t((1,I)) =I, t((2 ,1)=2, t ((1,2)) =3 etc etc. For n-k+l values of y each with k

weight terms the domain contains (n -k +1)Xk points hence substitution of
(n-k+l,k) into (6.7) gives a total time of T= (n-k+ll+2k-2=n+k-l steps. A step
of course is the cost of performing the scalar inner product associated with the loop
body.

Figure 4 also shows the arrays resulting from simple projections along the two co­
ordinate axes associated with the program loops. It should be clear that a
projection parallel to the i-axis produces an array with k cells while a projection
along the j-axis requires n cells. In the former the w values remain stationary
while in the latter the y values do not move. The k cell array also has the
advantage of un i-directional data flow compared with the n cell array requires bi­
directional data movement. Both arrays ' require the same 'computing time as
governed by (6.7) consequently we should choose the array with the least number
of cells.

6.1 Design Principles:
At each stage in the design process we make decisions which reduces the number
of possible designs. In the design process outlined above design decisions
correspond to reductions in degrees of freedom. For example when we fully index
the system zeroes can be placed in any position to pad up variables with less than
n indices. However, it is normal practice to associate each loop index with a given
dimension and then place zeroes in a way that allocates corresponding variable
subscripts to the same dimension wherever possible. One reason for adopting this
procedure is to limit the amount of non-uniformity introduced as a result of full
indexing. Once a system has been fully indexed there usually exists a large
number of possible pipe lining (or routing) vectors each of which controls the
direction of data movement and hence data flow in the final design. Similarly, the
LP problem by definition will produce a timing function within a constant bound
of being optimal for a single URE. For a system of URE's an equivalent URE is
produced by a process called tupling (which basically amounts to treating the
statements in a loop-body as a single compound statement). However standard
simplex-type procedures work on the principle that the feasible solutions of the LP
form a convex polytope. The feasible solutions of the timing function correspond to
the vertices of this polytope and so a systematic procedure can be used to generate
a number of different but feasible solutions. Any of these alternative functions can
be used and are often useful when one wants to pipeline designs together (so that
mutually compatible timing functions can be produced). For each timing function
we can apply a large range of possible projection functions. For example,
interpreting the direction vector of each point in the space as direction of

VIII. 16

projection produces a possible design. In practice one often confines attention only
to the directions associated with the co-ordinate axes, or a linear combination of
the axes where the co-efficients of the combination are integer valued (this is
because most useful arrays result from these projections). Alternatively we can
choose a direction parallel to the normal vector of the timing hyperplane - this
projection has the virtue of exploiting as much parallelism as possible (but the
disadvantage of using the most processors and often complex dataflow). Some
possible projections are also invalid, for instance projecting in a direction
perpendicular to the time axis is not permitted otherwise a case when t (p) =t (q) and
a (p) =a (q) for two points on the same hyperplane occurs. That is two computations
must be performed simultaneously on the same processor which is impossible .

7.0 Extensions:
The above tutorial has given a very basic introduction to the techniques of systolic
synthesis, it shows that a potentially enormous number of designs which trade-off
cells, computation time , and data flow complexity exist and can be used to satisfy
practical engineering constraints. Many extensions which improve the power of
the technique or reduce the computational cost of the algorithms required to
generate various parts of the design exist. For example we can consider using
affine or .non-linear timing and projection functions. Where a number of arrays are
designed independently and then pipe lined together piece-wise linear timing are
also useful. Domains can be used as building blocks to produce composite
algorithms or to construct composite domains with different operations at the
nodes. Indeed in our simple examples above only one computation is possible at
each of the nodes. When the operations at different nodes are permitted projections
can generate architectures where the cells change function over time. Changing
from one function to another requires some control of the cells. Systematically
generating control flow is currently an active and interesting area of research .

The number of cells in a design are always related in some way to the loop-bounds
of the program. It follows that area efficient designs are most likely to result from
projections involving the axes describing the smallest faces of the convex
polyhedral domain. Provided the bounds are sufficiently small and the resulting
cells simple enough it may be possible to produce a dedicated array for evaluating
the problem. When all the loop sizes are all significantly large or unbounded (e.g
while, repeat loops) the practicality of building a dedicated array is reduced .
Instead one looks towards programmable arrays with fixed numbers of processors
and partitioning the DG so that it is projected onto the available connection
topology of the underlying architecture becomes important. These additional
topics are beyond the scope of this tutorial but work on all these areas is being
actively pursued. In conclusion, the days of ad-hoc design appear numbered.
Indeed it is disconcerting to find that a sizeable section of the research community
continue to use heuristics methods. One possible explanation for this fact is the
lack of software tools for the synthesis method. As such tools emerge and become
more widespread we can expect the situation to change for the better.

VIILI?

References:
[1] Kung H.T, Leiserson C.E. 11980, Systolic arrays (or VLSI , Chapter 8,
Introduction to VLSI systems, Addison-Wesley, Reading Mass, 1980.
[2] Fortes J.A.B., Fu K.S., Wah B.W., 1988, "Systematic design approaches for
algorithmically specified arrays". In Computer Architecture concepts and systems,
eds Milutinovic, pp454-494. North Holland, Elseiver New York.
[3] Gachet P., Joinnault B., Quinton P., 1986, "Synthesizing systolic arrays using
DIASTOL". In Moore, McCabe, Uruquart, Int workshop on systolic arrays. Adam­
Hilger, pp25-36.
[4] Ibarra O.H., Sohn S.M., 1990, "On mapping systolic algorithms onto the
hypercube". IEEE parallel and distributed computing, vol 1, 1, pp48-64.
[5] Kung S.Y. , Jean S.N ., 1989, "Array Compiler Design for VLSIIWSI Sys tems".
Proc International Conference on Systolic Arrays, pp663-667.
[6] Lengauer C., 1988, "On the projection problem in Systolic Design". Report
CMU-CS-88-102, Carnegie-Mellon University, Pittsburgh.
[7] Li G.H. , Wah B.W., 1985, "The design of optimal systolic arrays". IEEE Trans
Computers, C-34, 1, pp66-77.
[8] Miranker W.L ., Winkler A., 1982), "Space-Time representations of
computational structures". IBM Research report RC9775, Computing, 32, pp93-
114, 1984.
[9] Moldovan D.L, 1983, "On the design of algorithms for VLSI systolic arrays".
Proc IEEE, Vol 71, no 1, ppI13-120.
[10] Moldovan D.L , Fortes J.A.B., 1986, "Partitioning and mapping algorithms
into fixed sized systolic arrays". IEEE Trans on Computing, Vol C-35, no 1, pp1-
12.
[11] Moldovan DJ., 1987, "AD VIS : A software package for the design of systolic
arrays". IEEE Transactions on computer aided design, CAD-6, 01 Jan, pp33-40 .
[12] Quinton P., Van Dongen V. , 1989, "The mapping of Linear Recurrence
Equations on Regular Arrays". J VLSI Signal processing, 1, pp95-1l3.
[13] Quinton P. , 1984 "Automatic Synthesis of Systolic Arrays from Uniform
Recurrent Equations". Proc 11th Symp on Computer Architecture, IEEE
Computer Society Press. New York pp208-214.
[14] Rajopadhye S.V., Fujimoto R.M., 1990, "Automating systolic array design".
Integration, the VLSI Journal, 9, pp225-242 .
[15] Rao S.K., 1985, "Regular Iterative Algorithms and their implementation of
processor arrays". PhD Thesis, Stanford University.
[16] Yaccoby Y., Cappello P.R. , 1988, "Scheduling a system of affine recurrence
equations on regular arrays". Inter Conf on Systolic Arrays, San Deigo, pp373-
381.
[17] Cappello P.R. , Steiglitz K., 1984, "Unifying VLSI array design with linear
transformations of space-time". Advances in computing research, Vol 2, pp23-65,
JAI·Press Inc.
[18] Engstrom B.R. , Cappello P.R. , 1987, "The SDEF Systolic programmlllg
system". Proc of the 1987 Int Conf on parallel processing, Aug 17-21 (1987),
Editors. pp645-652, Publishers.
[19] Lange A.A.J de, 1991, "Design and implementation of highly pipelined
parallel VLSI systems". Delft University of Technology, Jan 1991.

VIII.18

[20] Vehlies U., 1990, "DECOMP - A Program for Mapping DSP·Algori thms onto
Systolic Arrays". International Workshop on Algorit hms and Parallel VLSI
Architectures, Pont-a-Mousson, France.
[21] Megson G.M., Cornish D., 1991, "Systolic Algorithm Design Envi ronments".
2nd International Specialist Seminar on the design and applica tion of parallel
digital processors, lEE pub No 334, pp100-104.
[22] Megson G.M., Bruda ru 0 ., Cornish D. , 1991, "Systolic designs for Aitken's root
finding method", to appear Journal of Parallel Computing.
[23] NCR Commercial Note, 1984, GAPP: Geometric Arithmetic Parallel
Processor.
[24] Kung S.Y., 1984, "On Supercomputing with sys tolic/wavefront array
processors", Proc IEEE , 72, pp867 ·884.
[25] Deutch J ., Maulik P.C., Mosur R. , Printz H., Ribas H., Senko J ., Tseng P.S.,
Webb J .A. , Wu I.C. , 1987 , "Performance of WARP on the DARPA architecture
Benchmarks". Proc Int Conf and Exhibition Parallel processing for computer
vision and display, Leeds University.
[26] Charot F ., Frison P. , and Quinton P. , " Systolic architectures for speech
recognition", IEEE Trans ASSP, 34, pp765-779 , 1986.
[27] Leiserson C.E ., Saxe J.B ., 1983, "Optimizing synchronous circui ts", J . VLSI
and Computer Systems, 1, pp41-68.
[28] Kung H.T., Lam M.S., 1984, " Wafer-scale integration and two-level pipelined
implementations of systolic arrays", Journal of parallel and distributed computing,
1, pp32-63 .

