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In the last decade the rapid development of VLSI computing techniques has had a 
significant impact on the development of novel computer architectures. One class 
of architectures, the so-called systolic arrays, have gained popularity because of 
their abilities to exploit massive parallelism and pipelining to produce high 
performance. Informally a systolic system can be envisaged as an array of 
synchronised processors (or cells) which process the data in parallel by passing it 
from cell to cell in a regular rhythmic pattern [1]. Systolic arrays have been 
designed for a wide variety of problems .of which table I is only a small selection. 
Initial designs were ad-hoc and relied substantially on the skill and intuition of 
the designer. In the systolic paradigm every algorithm requires a specialized 
systolic design in which the communication data streams, cell definitions, and 
input-output are customized. Consequently the terms array and algorithm are 
often synonymous. The early designs contributed significantly to the foundation of 
sys tolic synthesis as a design methodology and recently a great deal of research 
effort has been devoted to the problem of generating systolic arrays in a 
systematic manner. 

A number of very useful papers on synthesis can now be found in the literature 
(see [1](12][6]). This paper is intended to compliment existing work and present 
the basics of synthesis in a straightforward and intuitive way. One of the 
unfortunate features of the current literature is that relatively straightforward 
ideas and concepts are often expressed in an overly formal and stylized manner. 
While on the one hand these developments must be applauded, for adding much 
needed mathematical formulation and rigor to the subject and addressing the early 
criticism that systolic array design was a 'black-art', one must also criticize them 
for failing to make the inherent simplicity of the technique more explicit. Indeed 
in some cases the impression is that the formulation is more important than the 
actual method or its uses. Where the teaching of a subject and the 'pull-through' 
effect of transferring research to undergraduate and postgraduate courses is 
considered methods of presentation are of the utmost importance . 

This paper is the first of two short tutorials, it describes some of the history behind 
the development of current design techniques, introduces the basic principles of 
synthesis methods in a simple and intuitive way, places emphasis on clarifying 
points which are rather vague in the existing literature, and indicates where the 
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current research trends are likely to lead in the future. In particular we will take 
the opportunity to expose one or two mis-representations regarding systolic 
algorithm design which have affected the acceptance of the method as little more 
than another special-purpose technique restricted to VLSI and ASIC design. The 
second paper is more research orientated and describes DTAGS, a graphical and 
interactive tool for performing the synthesis process [21]. DTAGS is currently 
under development at Newcastle and is still at quite a primitive state. However, it 
has been used successfully to design several new systolic algorithms ([22 )) and can 
be employed effectively to teach the basics of synthesis methods. If nothing else it 
demonstrates practically the gulf that exists between current theory, so·called 
academic tools, and robust, safe, software for exploiting commercially available 
multi-processors. 

Area Application 
SIGNAL PROCESSING Signal processors for recursive filtering, 

implementation of Kalman filters, 
Discrete Fourier Transform (DFT), Convo-
lution (m ulti·dimensional) , Linear Alge-
bra machines 

NUMERICAL PROBLEMS Finite Element analysis, Singular Value 
Decomposition, Linear time so lution of 
Toeplitz systems, Orthogonal equivalence 
transformations , Least-Squares (adaptive 
beam forming), Eigenva lues and general-
ized inverses , Iterative a lgorithms 

SHAPES & PATTERNS Pattern Matching, Feature extraction , 
Pattern Classification, Stereo matching, 
Algorithms for recti-linear polygons, B-
Splines, Neural network simulations and 
training . 

WORDS & RELATIONS Largest common subsequence problem, 
Dictionary machines, Relational Database 
Operations, Connected Word recognition 

AUTOMATA Tree Acceptors, Trellis Automata , Binary 
Tree Automata, Design Rule Checking 

GENERAL Shortest Path problem , Algebraic pa th 
problem (including matrix inverse ), Fun-
damental sorting problems, Linear-time 
Greatest Common Divisor (GCD), Priority 
Queues, Stacks, Tab le generation, Sim-
plex a lgorithm, Assignment problem, 
Knapsack problem. 

Table I : Some applications of systolic algoritbms 
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2.0 An Historical Perspective: 
Figure 1, illustrates an approximate time-line for the development of the systolic 
processing paradigm. There are two strands, the first which acknowledges the 
existence of simultaneous efforts in automatic extraction of parallelism using 
compiler extensions and based primarily on the notion of data dependence analysis 
to determine partial orders of instructions. Such techniques can largely be 
summarized by so-called loop restructuring mechanisms for source to source 
transformation of programs. This 'software' strand is not intended to be 
comprehensive but simply to establish the origins of nested-loop analysis using a 
recurrence formulation which is now the basis for many systolic synthesis 
methods. The second strand deals with the development of systolic arrays and can 
be broken down into four distinct phases. The first or 'pre-systolic' phase covers 
developments up to the first appearance of the term 'systolic' in the literature (circa 
1979). In particular it is important to acknowledge the existence of very similar 
pre-systolic paradigms such as cellular automata where cells define finite state 
machines (or automatons) which communicate with each other. These ideas and 
the development of Very Large Scale Integration (VLSl) manufacturing techniques 
made it feasible to build silicon chips with many simple cells and created a 
technological environment in which systolic processing could flouri sh. 

The second phase we shall term 'pure-systolic'. Roughly this phase covers the early 
period of systolic computation form 1978-1984. During this time the basic 'axioms' 
of systolic design such as regular arrays of simple cells with nearest neighbour 
communication, and recurrent synchronous movement of data were established. In 
particular the design philosophy was shown to work well for a wide range of 
compute-bound applications in signal and image processing (FFT's, digital filters, 
solution of linear systems, differential equations and so on) . Bit serial arrays using 
fixed-point arithmetic began to emerge for computationally intensive tasks such as 
convolution, and the solution of Topelitz systems which formed earlier proto-types 
for commercial chips such as the NCR GAPP [23]. It was soon clear that systolic 
principles could be used to develop algorithmically specialized arrays for 
performing computationally intensive tasks in real-time . The limitations of high 
input-output bandwidth and complexity of basic cells for practically important 
problems (e.g singular value decompositions) established design 'heuristics' based 
on limitation of technology and lead to the development of programmable systolic 
devices (such as the wavefront array[24], WARP [25], and specialized processor 
arrays for developing systolic systems such as MICMACS [26]). As more examples 
emerged and the utility of the approach was established a movement towards more 
systematic design methods began. Early methods such as re-timing [27], cuts (28) 
and signal flow graph notation concentrated on transformations of one array into 
another by re-distribution of the circuit delays. Primitive representations of 
algorithms in space-time were developed and established important links between 
dependency graphs and array geometry using projections. 

The third phase covers the period 1984-1990 and is characterized by a concerted 
movement towards the development of a theoretical framework based on 
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dependence manipulation and the association of geometry with a computation by 
mapping nested loop programs into Euclidean space. Sections 3-6 below outline 
the basic approach. These important developments have utilized concepts from 
source to source program transformation methods and the formulation of loop 
computations as uniform [2], Affine [13][15], and more recently Linear recurrence 
equations [11]. They have been shown to be effective for a range of important 
applications. In particular the systematic re-timing of data dependency graphs to 
remove non-local and broadcast connections using pipelining and routing 
techniques is of particular importance [8]. The theoretical framework for systolic 
design has allowed considerable progress to be made in extending the range of 
established designs. Much more complicated 'hybrid' designs which rely on more 
sophisticated cells than envisaged for 'pure' arrays are now possible. The idea of 
'soft' systolic arrays which describe an abstract model of the computation to be 
mapped on to existing parallel architectures are also beginning to attract interest 
[3][9]. 

The fourth phase brings us to the present where considerable effort is now being 
expended in the direction of CAD tools ([2][10][17][18][19]) and systolic compilers 
([4][5]). The basic synthesis method serves as a back-bone for developing an 
integrated set of CAD tools .but many .questions remain unanswered. Section 7.0 
discusses some of these extensions and suggests directions for future research. For 
example mapping arrays dependent on the problem size onto fixed sized 
architectures with restricted topologies. Automatically generating code for parallel 
machines or producing designs for direct silicon implementation. The extension of 
the basic synthesis method to allow development of complex and composite designs 
involving a number of systolic designs pipelining together is also an interesting 
avenue of research. 

3.0 Space-Time and Euclidean Spaces: 
In systolic design an algorithm is formulated as a nested-loop program with the 
form 

For II := Ll to Ul do 
For 12 : = L2 to U2 do 

For 13:= L3 to U3 do 

• • • 
For In := Ln to Un do 

Begin 

• , , 
Statement; 

• • • 
End; 
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the Ij are loop variables or indices, and Lj, Uj are the upper and lower bounds of 
loop j. A statement is simply an assignment with the form 

(3.1) 

where p is an n component vector of the form (11,12 , ... ,In ), m > 0 and the q, can be 
defined as 

q,=Ap+b (3.2) 

with A an nXn matrix and ban nX1 vector. For example the statement 

(3.3) 

has p= (i j ), ql= (ij- l) and q2= (i-lj ) (n=2). The function g is addition and the {, 
functions simply index the variables a and b respectively ( m = 2). Equation (3.3) is 
an example of a recurrence equation. In general a single index recurrence can be 
written as 

(3.4) 

which is linear when the d, are constant and non-linear otherwise . It should be 
clear that the left hand side of (3.4) :depends strictly (i.e only on) preceding values 
of x which can be assumed to have been .calculated previously. The extension to n­

index recurrences follows trivially by adding extra subscripts to the variables. 

A geometric interpretation of the nested-loop program is obtained by unrolling the 
computation into Euclidean space . For n loops we require an n dimensional space 
and an n component vector describes a unique point in the space. The 
computations associated with the assignments in the loop-body are mapped to the 
points described by p. For example if i j = 1(1)2 in (3.3), point (1,1) computes 
al.o+bo.lo point (2,2) a2.1+bl.2, point (1,2) a l. l+bo.2 and so on. Observe that each point 
requires values computed at other points. Connecting the points that require data 
from (or depend) on each other produces a data dependency graph (DG) 
representation of the computation. The set of values that the recurrence indices 
can take defines the number and position of points (or domain) of the computation. 
Normally one assumes that loop bounds L 1 and U1 are constants and that Lj , Uj 
for l <jSn are expressions involving constants or Ik values where lsk<j, this 
ensures that the domain is finite. If a point requires a value that belongs to a 
point outside the domain we define the value as an input. Similarly results of 
computations that are sent to points outside the domain become outputs. Finally, 
a Uniform Recurrence Equation (URE) is defined when 

q, =p ±w, (3.5) 

so that A =1 (or in general a diagonal matrix) and b = ±w, in (3.2) and w, is a 
constant n component vector (where the sign can be chosen to indicate the 
direction of the data flow). It should be clear that w, represents a constant data 
dependency which is assumed to be independent of the problem instance. 

URE's play an important role in systolic synthesis, this is because it is exactly 
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these kind of recurrences that allow a direct mapping of computations onto locally 
connected architectures. In addition, it is also useful to consider a number of 
further restrictions. Firstly, confine m in (3.2) to a small constant so that nodes of 
the DG have a limited number of input-outputs (this translates to the practical 
problem of building cells with potentially unbounded fan-in and fan-out). 
Secondly the elements of the dependence vectors are kept small so that each node 
in the DG can communicate with nodes within a small neighbourhood of bounded 
radius (this prevents long connections and clock-skew problems). Finally, we 
assume that the functions at each of the nodes in the DG are the same (this is not 
necessary but simplifies the discussion). 

4.0 Scheduling and Allocation: 
Given a DG for a particular problem we can derive systolic arrays for performing 
the computation by determining a pair (t(p ),a(p )) where t (p ) and a lp ) are timing and 
allocation functions which determine the time and place that the computation 
associated with point p must be evaluated. It is known that if a URE is 
computable a linear timing function exists, consequently we can write 

t (p )= Alp+a (4.1 ) 

and 

a(p l = Mp (4.2) 

where AI is an n component vector, a is a scalar, and M is an (n-l ) Xn matrix. 
Equation (4.1) implies that t (p ) is a hyperplane of the n dimensional space and a 
family of parallel planes exist for t = 1,2, ... . All the points lying on a particular 
hyper-plane can be computed in parallel. It follows that the normal (i.e. A ) to the 
set of planes represents the direction of a time axis. Hence the Euclidean space 
can be interpreted as a space-time system with 1 time dimension and n - 1 space 
dimensions. 

4.1 Timing: 
To derive a timing schedule A and a must be determined , this is achieved by 
embedding the domain of the computation inside a convex polytope (or cone) and 
deriving a suitable linear programming (LP) problem. A convex cone (S) is defined 
as a subset of n-dimensional space if and only if for two points p and q in S a point 
ap+/1q also in S is produced when a20, /120 , A ray is defined as q = a p for a 2 0 and 
any point p in the n dimensional space. Provided the loops of the program satisfy 
our assumptions above the domain of computation can be defined by a set of linear 
inequalities (half-spaces, or directed hyper-planes) and forms a finite convex 
polyhedron. The corners of the polyhedron correspond to the 2" possible 
combinations of the lower and upper loop bounds and are termed vertices. Now it is 
known that a finite set of half-spaces can be used to define a convex polyhedron. It 
follows that any convex domain can be embedded into a cone of suitable size and 
that a timing schedule can be determined by solving an LP constructed from the 
rays, vertices, and data dependencies in the cone . For simplicity we will choose a 
cone with an apex at the origin and define rays so that they all pass through the 
origin. In general it is better to use the so-called extremal rays determined by the 
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vectors lying on the faces of the domain defined by the half-spaces (because the 
number of rays is smaller and limits the size of the LP). 

Now, if we define unit time to be the cost of evaluating the most complex 
computation of any of the nodes in the domain then 

t(p)«t(qJ+ 1 (4.3) 

as point p depends on the results of point q. Now put q=p-w and substitute in 
(4.1) to produce 

A'p +a> = A'(p -w )+a+ l-A'w «I (4.4) 

which yields a single equation in A and a for each dependency . Similarly, we can 
write 

A'V +a«O (4.5) 

for each vertex u which asserts that all computation must occur at times t «0. 
Finally, for two points p and q on the same ray r we can write 

p={Jr, q=yr, {J>O ,y>O ,{J >y 

and by (4.3) t (p » t (q ) hence 

so that 

A' r>O (4.6) 

otherwise we can find a case when t(q » t(p) which is not permitted . A schedule t (p ) 

can now be found by solving the LP problem defined as 

minimize A'g + a = t(g) (4.7) 

subject to (4.4), (4 .5), (4.6) for all rays, vertices, and dependencies . The point g 

(normally) being chosen as the point that is to be computed last. It is important to 
note that there are generally less vertices, rays, and dependencies than actual 
points in the domain so the LP is independent of the problem size. 

4.2 Allocation : 
Geometrically an allocation is a projection of points in n dimensions into a space 
with n-l dimensions. For example, when n=2 

p = l~ ~I Q=I~ ~I (4 .8) 

are projections. Applying (4.2) shows that P removes the j axis , and Q removes the 
i axis consequently P is a projection along the i-axis while Q projects along the j­
axis. A projection in an arbitrary direction described by the vector d =(iJ) is 
produced by applying a rotation to move point (iJ ) in space onto one of the axes 
and then projecting in a direction parallel to the axis and towards the origin, 
hence 
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M=QRd 

projects an arbitrary point (iJ) when R is defined as 

R= k[~j ~I 
for n = 2. In general M is an (n -1) X n matrix and R is constructed from a sequence 
of n-1, 2x2 Givens rotations embedded into nXn matrices so that 

R =R, ... R n 

where R i annihilates the i th component of d. A projection P in the Rd direction 
maps d to the origin and consequently a projection of the computation is found by 
applying M=PR to all the nodes in the DG. 

5.0 Non-Uniformity: 
So far we have considered only uniform recurrences , when A is not diagonal a 
non-uniform recurrence results. The practical implications of non-uniformity are 
that data is broadcast simultaneously to a number of cells possibly over long 
distances. Fortunately it is possible to remove non-uniformity from recurrences by 
systematically . applying two .methods pipelining and routing. 

5.1 Pipelining : 
Suppose we are a given a non-uniform recurrence with the form of (3. 2). Further 
suppose that we can find a non-null vector u such that A u =0 (that is u belongs to 
the kernal of A). It follows that 

Ap +b =Ap -Au +b =A (p - ul+b 

For example, consider the recurrence 

we can write the dependencies as 

(5. 1) 

(5.2) 

from which it is clear that ql and q, are uniform and q3 is non-uniform. Thus 
according to (5.1) 

(5.3) 

where u = (y,O ) for y = 1.2,···. Consequently the XOj variable can be pipelined in the 
i direction to reach (ij ) from (OJ ) and (5.2) can be re-written as 
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(5.4a) 

(5.4b) 

which is a system of uniform recurrence equations, the XO J being an input to the 
domain. Both X ij and Y'j are computed at point ( i j ) in space-time , with X 'j 

performed before Y'j because the latter depends on the former. A visual 
interpretation of the transformation is shown in Figure 2. More formally we can 
rewrite the equation 

f (p )=g('" f, (A q + b ) " ') (5.5) 

by the equivalent system 

f (p )=g( . . . F,(p ) . . . ) (5.6a) 

{
F,(P - u +b ) fo r (p - u + b ) in th e d om ain 

F ,(p ) = f , (Aq + b ) fo r A q + b not in the do main 

5.2 Routing: 
When no non-null vector u , which satisfie s A u = 0 exists , pipelining cannot be 
applied and routing must be used instead. For instance suppose we have the 
recurrence 

(5.7) 

where x is non-uniform and u = 0 is the only vector satisfying A u = o. The x 

dependency shows that point (i j) depends on data at (i -l j + i -1 ) hence a 
connection defined by the vector (1 , - i + 1) is required between the two points. Now 
any n dimensional point can be written as the linear combination of n linearly 
independent vectors that form a basis spanning the space. Thus a general point 
(i j ) can be written as 

(5.8) 

similarly we can write 

(5.9) 

so that data is routed between the two original points using only nearest 
neighbour connections incorporating i steps in the (0, -1 ) direction followed by one 
step in the (1,1 ) direction. Figure 3 illustrates the principle graphically. 
Unfortunately re-writing the recurrences is non-trivial because additional control 
must be added to existing nodes to route the data . On contrast pipe lining only 
involves a single direction and is to be preferred whenever possible because of it's 
simplici ty. 
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6.0 Design Methodology: 
We are now in a position to state a simple methodology for designing systolic 
algorithms, for simplicity this procedure may be stated simply as follows 

Step 0 : Fully Index the problem by adding zeroes to the variables of 
the loop statements so that every variable has n indexes. 

Step 1 : Separate the equations into three groups called input, com· 
putation and output equations respectively. (the resulting system is 
often called a canonical or normal form). 

Step 2 : Remove the non-uniformities from the problem to produce a 
system of URE's - tuple the system into a single URE. 

Step 3 : Set up the LP problem from the rays, vertices, and dependen­
cies of the problem, and produce a set of feasible timing functions t (p ). 

Step 4 : derive a set of feasible allocations a(p ) for each t (p ) by select­
ing an appropriate projection direction. 

Step 5 : Evaluate the design described by each (t(p ), a(p ») pair using 
and objecti ve function relevant to the application domain. If satisfied 
Stop otherwise repeat steps 2-4 with different pipelining and routing 
vectors. 

The design algorithm is best illustrated by recourse to a suitable example - in this 
case we will choose the well-known convolution problem which can be written in 
for-loop notation as follows 

For i : = 1 to n-k + 1 do 
Begin 

y[i] = 0; 
For j : = 1 to k do 

y[i] = y[i] + w[i]*x[i +j-l]; 
End; 

The w values are called weights and k < <n is usual. Our objective is to define a 
systolic array which computes the result with the smallest number of time steps 
possible and with the least number of cells. In addition we might also want to 
restrict the number of input and outputs to the array or make particular data 
sequences stationary or non-stationary . For example, uni-directional arrays are 
amenable to fault tolerant implementation techniques. A fully indexed recurrence 
formulation of the computation has the form 

(6.0) 

from which it is clear that all the variables on the right hand side have non­
uniform indices. 
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For the y variables we can write 

(6 .1) 

Similarly for the w values 

(6.2) 

and for x we derive 

(6.3) 

hence we can re-write (6.0) as follows 

(6.4a) 

W .. ={W,_ lj i > 1 
IJ WOj t=1 

(6.4b) 

_{X' -l j +1 i>l 
X'j- , 1 

x O,I + j - L t= 
(6.4c) 

where Y"o=o. A geometric representation of the domain and DG for k=3 and n=4 
is shown in Figure 4. Now using (4.7) the LP problem can be written as 

1 3 1 0 

1 1 1 0 

4 3 1 0 

4 1 1 0 

0 1 0 0 

1 1 0 0 

1 0 0 0 

1 -1 0 0 

1 3 0 Al 0 

1 2 0 A2 2: 0 (6.5) 
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(6.6) 

with the first four rows derived from the vertices, the next three from 
dependencies, and the rest from rays. A solution to this equation gives the 
optimal timing function as ,l.'l = 1, 1\, = 2, a = - 2 so that 

t (p ) = i + 2j - 2 (6.7) 

so that t((1,I )) =I, t((2 ,1)=2, t (( 1,2)) =3 etc etc. For n-k+l values of y each with k 

weight terms the domain contains (n -k +1 )Xk points hence substitution of 
(n-k+l,k ) into (6.7) gives a total time of T= (n-k+ll+2k-2=n+k-l steps. A step 
of course is the cost of performing the scalar inner product associated with the loop 
body. 

Figure 4 also shows the arrays resulting from simple projections along the two co­
ordinate axes associated with the program loops. It should be clear that a 
projection parallel to the i-axis produces an array with k cells while a projection 
along the j-axis requires n cells. In the former the w values remain stationary 
while in the latter the y values do not move. The k cell array also has the 
advantage of un i-directional data flow compared with the n cell array requires bi­
directional data movement. Both arrays ' require the same 'computing time as 
governed by (6.7) consequently we should choose the array with the least number 
of cells. 

6.1 Design Principles: 
At each stage in the design process we make decisions which reduces the number 
of possible designs. In the design process outlined above design decisions 
correspond to reductions in degrees of freedom. For example when we fully index 
the system zeroes can be placed in any position to pad up variables with less than 
n indices. However, it is normal practice to associate each loop index with a given 
dimension and then place zeroes in a way that allocates corresponding variable 
subscripts to the same dimension wherever possible. One reason for adopting this 
procedure is to limit the amount of non-uniformity introduced as a result of full 
indexing. Once a system has been fully indexed there usually exists a large 
number of possible pipe lining (or routing) vectors each of which controls the 
direction of data movement and hence data flow in the final design. Similarly, the 
LP problem by definition will produce a timing function within a constant bound 
of being optimal for a single URE. For a system of URE's an equivalent URE is 
produced by a process called tupling (which basically amounts to treating the 
statements in a loop-body as a single compound statement). However standard 
simplex-type procedures work on the principle that the feasible solutions of the LP 
form a convex polytope. The feasible solutions of the timing function correspond to 
the vertices of this polytope and so a systematic procedure can be used to generate 
a number of different but feasible solutions. Any of these alternative functions can 
be used and are often useful when one wants to pipeline designs together (so that 
mutually compatible timing functions can be produced). For each timing function 
we can apply a large range of possible projection functions. For example, 
interpreting the direction vector of each point in the space as direction of 
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projection produces a possible design. In practice one often confines attention only 
to the directions associated with the co-ordinate axes, or a linear combination of 
the axes where the co-efficients of the combination are integer valued (this is 
because most useful arrays result from these projections). Alternatively we can 
choose a direction parallel to the normal vector of the timing hyperplane - this 
projection has the virtue of exploiting as much parallelism as possible (but the 
disadvantage of using the most processors and often complex dataflow). Some 
possible projections are also invalid, for instance projecting in a direction 
perpendicular to the time axis is not permitted otherwise a case when t (p ) =t (q ) and 
a (p ) =a (q ) for two points on the same hyperplane occurs. That is two computations 
must be performed simultaneously on the same processor which is impossible . 

7.0 Extensions: 
The above tutorial has given a very basic introduction to the techniques of systolic 
synthesis, it shows that a potentially enormous number of designs which trade-off 
cells, computation time , and data flow complexity exist and can be used to satisfy 
practical engineering constraints. Many extensions which improve the power of 
the technique or reduce the computational cost of the algorithms required to 
generate various parts of the design exist. For example we can consider using 
affine or .non-linear timing and projection functions. Where a number of arrays are 
designed independently and then pipe lined together piece-wise linear timing are 
also useful. Domains can be used as building blocks to produce composite 
algorithms or to construct composite domains with different operations at the 
nodes. Indeed in our simple examples above only one computation is possible at 
each of the nodes. When the operations at different nodes are permitted projections 
can generate architectures where the cells change function over time. Changing 
from one function to another requires some control of the cells. Systematically 
generating control flow is currently an active and interesting area of research . 

The number of cells in a design are always related in some way to the loop-bounds 
of the program. It follows that area efficient designs are most likely to result from 
projections involving the axes describing the smallest faces of the convex 
polyhedral domain. Provided the bounds are sufficiently small and the resulting 
cells simple enough it may be possible to produce a dedicated array for evaluating 
the problem. When all the loop sizes are all significantly large or unbounded (e.g 
while, repeat loops) the practicality of building a dedicated array is reduced . 
Instead one looks towards programmable arrays with fixed numbers of processors 
and partitioning the DG so that it is projected onto the available connection 
topology of the underlying architecture becomes important. These additional 
topics are beyond the scope of this tutorial but work on all these areas is being 
actively pursued. In conclusion, the days of ad-hoc design appear numbered. 
Indeed it is disconcerting to find that a sizeable section of the research community 
continue to use heuristics methods. One possible explanation for this fact is the 
lack of software tools for the synthesis method. As such tools emerge and become 
more widespread we can expect the situation to change for the better. 
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