
VII

SCHEDULER ACTIVATIONS; EFFECTIVE KERNEL SUPPORT
FOR THE USER-LEVEL MANAGEMENT OF PARALLELISM

H M LEVY

Ra pporteu r; A Thomas

VII.l

Scheduler Activations: Effective
Kernel Support for the User-Level

Management of Parallelism

Thomas E. Anderson, Brian N. Bershad,
Edward D. Lazowska, and Henry M. Levy

Department of Computer Science and Engineering
University of Washington

Technical Report 90·04'()2
April 1990

Revised August 199 1

This version of the paper will appear in ACM Transactions on Computer Systems. It supercedes the version
contained in the Proceedings of the 13th ACM Symposium on Operating Systems Principles.

VII.2

VII . 3

Scheduler Activations: Effective Kernel Support

for the User-Level Management of Parallelism

Thomas E. Anderson. Brian N. Bershad, Edward D. Lazowska, and Henry \1 Levy

Department of Computer Science and Engineering
University of Washington

Seatt le , WA 98195

Abstract

T hreads are the veh icle fo r concurrency in many approaches
to parall el programming. T hreads can be s upported either
by the operat ing system kernel or by user. level library code
in the applicat io n address space, but neither approach has
been fu lly sa tisfactory.

This paper addresses this dilemma. First . we argue that
the pe rform ance of kernel threads is ltlherently worse than
that of user· level threads, rat her than this being an arti
fact of existing implementations: managing parallelism at
the user level is essential to high-performance parallel com
puting. .\fext , we argue that the problems encountered in
integrating user- level threads with o th er sys tem services is
a co nsequence of t he lack of kernel support fo r user-level
threads provided by contemporary multiprocesso r operating
sys tems ; ke rnel th reads are the wrong abst ra ction on which
Lo support user-level managemen t o f parallelism. Finally,
we desc ri be the design, implementation. and performance of
a new kernel inte rface and user-level t hread package that
toge ther provide the same fun ction ali ty as kernel th reads
without compromising the performance a nd flexibility ad
vantages of user-level management of parallelism.

1 Introduction

T he effectiveness of parallel computing depends to a great
ex tent on the performance of the primiti ves that. are used to
express and control the pa.rallelism within programs. Even

This work was supported in part. by the Nat.iona! Science
Foundation (Grants No. CCR-86 19663. CCR-8703049. and CCR-
8901666), the Washington Technology Cent.e r, and Digit.a! Equip
ment Corporation (the Systems Research Center and the Ex terna!
Research Program). Anderson was supported by an IBM Grad
uate Fellowship and Bershad by an AT&T Ph.D. Scholarship.
Anderson is now with the Computer Science Division, Univer
sity of California a t. Berkeley ; Bershad is now with t.he School of
Computer S~i e nce, Carnegie Mellon Universit.y.

a coarse-grained parallel program can exhibit poor perfor
mance if the cost of creating and managing parallelism is
high . Even a fine-grained program can achieve good per
formance if the cost of creating and managing parallelism is
low.

One way to cons truct a parallel program is to sha re mem
ory between a collection of tradit ional UNIX-like processes,
each co nsisting of a single address space alld a si llgle se
quential exec ution st ream within that address space. Un
fortunately. because such processes were designed for multi
programming in a unip rocessor environment, they are sim.
ply too inefficient for general-purpose paralle l programming;
they handle only coarse-g rained parall el ism well.

The shortcomings o f tradi tional processes for gene ral
purpose parallel programm ing have led t.o t.he use of t!treads.
T hreads separate the notio n of a sequential execu tion stream
from the other aspects of traditional processes such as ad
dress spaces and I/O descrip tors. This separation of con·
cerns yields a significant performance advantage relat ive 1.0

trad i t ional processes.

1.1 The Problem

T hreads can be supported ei ther at user level or in the ke rnel.
Neither approach has been fully sat is factory.

User-level threads are managed by runtime library rOIl
t ines linked into each application so t.hat thread management
operations require no kernel interven tion. The resu lt can be
excellent performance: in sys tems such as pe R (Weiser
et al. 89J and FastThreads [Anderson et al. 89], the cOS l of
user-level thread operations is within a n orde r of mag nitude
of the cos t of a procedure call. Use r-level threads are also
flexible: they can be customized to t.he needs of t.he lallguage
or user without kernel modi fica l io n.

User-level threads exec ute wit hin the context of tradi
tional processes; indeed , user-level thread sys tems are typi
cally built without any modifications 10 t.he underlying op
erating system kernel. The th read package views each pro
cess as a <: virtual processor". a nd treats it as a physical
processor executing under its control; each virtual proces
sor runs user-level code t hat pulls lhreads off the ready list
and runs them. In real ity, though, t hese virtual processors
are being multiplexed across real , physical processors by the
underlying kernel. " Real world" operating system act.ivit.y,

VII , 4

such as mul tiprogramming, I/ O, and page fau lts, dis torts the
equivalence be tween virtual and phys ical processo rs; in the
prese nce of these fac tors. user-level threads built on top of
trad itional processes can ex hibit poor perfo rmance or even
incorrect behavior ,

~\'I u lti p rocesso r opera ting sys tems such as i\'[ach [Tevanian
e t al. 87]' Topaz (T hacker et al. 88], and V (Cheri ton 88] pro
vide di rec t kernel support fo r multi ple t hreads per address
s pace. Programming with kernel t hreads avoids the sys
tem integrat ion prob lems exhi bited by use r-level threads. be
ca use the kernel direc tly schedules each application 's threads
on to phys ical processors. Unfo rtunately, kernel threads , jus t
like t raditional UN IX processes, a re too heavyweight fo r
lise in many parallel programs, T he perfo rm ance of ker
nel threads, although typicall y an order of magni t ude bet
te r t han th at of t radition al processes, has been typically
an o rder of magnitude worse t han t he bes t-case perfor
mance of use r-level t hreads (e,g" in t he absence of mul
ti programming and I/ O). As a result , use r-level threads
have ultimately been implemented on top of the kernel
t hreads of bo th Mach (CThreads (D raves & Cooper 88]) and
Topaz (WorkC rews (Vandevoorde & Roberts 88]). User-level
t hreads are bu il t on top of ke rnel t hreads exactly as they are
built on top of t radi tional processes: t hey have exactly the
same performance, and t hey suffer exactl y t he same prob
lems.

T he parallel programmer, t hen. has been faced with a dif
fi cult d ilemma: employ user-level threads. which have good
performance and correct behavior provided the application is
uniprogrammed and does no I/ O . or employ kernel t hreads,
which have worse perform ance but are not as res tricted,

1.2 The Goals of This Work

in t his paper we address t his dilemma, We desc ribe a kernel
interface and a user-level t hread package t hat together com
bine the functionality of kernel threads with the performance
and fl exibility of user-level t hreads. Specifically:

• In the common case when t hread operations do not
need kernel intervention. our perform a nce is essentially
the same as that achieved by t he bes t existing user
level t hread management sys tems (which suffer from
poor system integration).

• In the infrequent case when the kernel must be involved,
such as on processor re-allocation or I/ O , our system
can mimic the behavior of a kernel thread management
sys tem:

- No processor idles in the presence of ready
threads.

- No high- priority t hread waits fo r a processor while
a low-priority thread runs.

- \rV hen a thread traps to the kernel to block (for ex
ample, because of a page fau lt) , the processor on
which t he thread was runn ing can be used to run
ano ther t hread from t he same or from a different
address space,

• T he use r- le vel part of our sys tem is st ruc l urcd 10

simplify application-specific customization, [t is easy
to change the policy for scheduling an a. ppl ica tion's
t hreads , o r even to provide a d iffe rent conc urrency
model such as worke rs [Moelle r- Nie lsen & Stau nstrup
87], Acto rs [Agha 86], or Futures [Halstead 85] .

The d ifficul ty in achievi ng these goals in a [IIu lt ipro
grammed mul tip rocesso r is that the necessary cOllt rol and
scheduling information is disLributed between the kernel and
each application's address space, To be able to allocate
processors among applications, the keruel ueeds a.ccess to
use r-level scheduling information (e.g., how much parallel ism
t here is in each address space). To be able to manage t he a p
plica.tion's parallelism , t he user- level support software needs
to be aware of kernel events (e.g., processo r re-allocat ions
and I/ O request/ complet ions) t hat are normally hidden from
the application .

1.3 The Approach
Our approach provides each a ppl ication wi th a uirtuai mul
t iprocessor, an abstraction of a ded icated physical machine.
Each a pplication knows exactl y how many (and wh ich) pro
cessors have been allocated to it and has complete conl.rol
over which of i ts threads are run ning on those processors.
T he operating syst em kernel has complete co nt rol over the
al location of processors among address spaces including t he
ability to change the number of processors assigned to a n
application during its execution.

To achieve t his, the kernel no tifi es the address space
t hrea.d scheduler o f every kerne l event affecting t he address
space. allowing t he a pplica tion to have complete knowledge
of its scheduling s tate, The th read system in each address
space notifies the kernel o f the subset of user-level thread o p
erations that can affec t processor allocat ion decisions, pre
serving good performance fo r t he majority of operatio ns tha t
do not need to be reflec t ed to t he kernel.

The kernel mechanism t hat we use to realize t hese ideas is
called scheduler activations , A schedu ler ac tivation vectors
control from the kernel to the address space thread sched ule r
on a kernel event ; the thread scheduler can use the activation
to modify user-level thread data st ruc tures, to execute user·
level threads, and t o make requests o f the kernel.

We have implemented a prototype of our design on t he
DEC SRC Firefly multiprocessor workstation (Thacker et al.
88] . \rVhile the differences between sched uler activat ions a nd
kernel threads are crucial , t he similarities are great enough
that the kernel portion of our implementation req ui red only
relatively straightforward modifications to t he kernel th reads
of Topaz, the native operating system 0 11 the FireHy. Simi.
larly, the user-level po rtion of our implementation involved
relatively straightforward modifications to FastThreads. a
user-level thread sys tem o riginally designed to run on top of
Topaz kernel threads.

Since our goal is to demons trate that the exact funct ion
ality of kernel threads can be provided at t he user level, the
presentation in t his paper assumes tha t user- level threads
are the concurrency model used by t he program mer or co m
piler. \rYe emphasize , however , th at other concurrency mod-

VII.5

els. when implemented at user level on top of kernel threads
or processes , suffer from the same problems as user-level
threads - problems t hat are solved by implementing them
on top of scheduler activations.

2 U ser-Level Threads: P e rfor
mance Advantages and Func
tionality Limitations

In this section we motivate our work by desc ribing the advan
tages that user-level threads offer relative to kerne l threads ,
and the difficu lties that arise when user-level th reads are
built on top of the interface provided by kernel threads
or processes. We argue that the performance of user-level
threads is inherent ly better than that of kernel t hreads,
rather than this being an artifact of existing implementa
tions. User-level threads have an additional advantage of
flexibility wit h respect to programming models and envi ron
ments. Further, we argue that the lack of system integration
exhibited by user-level threads is not inherent in user- level
t hreads themselves, but is a consequence of inadequate ker
nel support.

2.1 The C ase fo r User-Level Thread
Managem ent

It is natural to believe that the performance optimizations
found in user-level thread systems could be applied within
t he kernel. yielding kernel threads that are as efficient as
user- level threads without the comp romises in funct ional i ty.
Unfortunately, there are significant inherent costs to man
aging threads in the kernel :

• The CO jt of acceHing thread management operations:
With kerne l threads. the program must cross an extra
protection boundary on every thread operat ion, even
when the processor is being switched between threads
in the same address space. This involves not only an ex
t ra ke rnel t rap, but the kerne l must also copy and check
parameters in order to protect itsel f against buggy or
malicious programs. By contrast, invoking use r-level
th read operations can be quite inexpensive. particularly
when compiler techniques are used to expand code in
line and perform sophisticated register allocation. Fur
ther , safety is not compromised: address space bound
aries isolate misuse of a user-level thread system to t.he
program in which it occurs.

• The cos t of ge nerality: With kernel t hread manage
ment , a single underlying implementation is used by all
applications. To be general-purpose, a kernel thread
system must provide any feature needed by any reason
able application; this imposes overhead on t hose appli
cations that do not use a par ticula r featu re. In contrast ,
t he facilities provided by a user-level thread system can
be closely matched to the specific needs of the appli
cations t hat use it , since diffe rent a pplications can be
linked with diffe rent user-level thread lib raries. As an

Operation
Null Fork
Signal- Wai t.

FastThreads
34
37

Topaz
threads

948
HI

Ultrix
processes

113 00
18·10

Table l : T hread OperaLion LaLencies (1'5ec.)

example, mos t kernel thread systems implement pre
emptive priority scheduling , eve n though many parallel
applications can use a simpler policy such as fi rs t-in
firsL-out [Vandevoorde & Rober .. 88].

These factors would not. be import.ant. if t hread manage
ment operations were inherent.ly expensive. Kernel trap
overhead and priority scheduling, for inst.ance, are not major
contributors to the high cost of UNIX-like processes. How
ever , the cost of thread operations can be wit.hin an order of
magnitude of a. procedu re call. This implies that any over
head added by a kernel implementation , however small , will
be significant, and a well-writ.ten user-level thread sys tem
wi ll have significantly better performance t.han a well-written
kernel-level thread system.

To illustrate this quantitatively, Table 1 shows the perfor
mance of example implementations o(user-level threads, ker.
nel t hreads, and UNIX-like processes. all ru nning on similar
hardware, a CVAX processor. Fast.Threads and Topaz kernel
t hreads were measured on a C VAX Firefly ; Ult rix (DEC's
derivative of UNIX) was measured on a CVAX uniprocessor
workstat ion. (Each of t hese implementations. while good , is
not "optimal". Thus, our measurements are illus trat ive and
not definitive.)

The two benchmarks are: N uiJ Fork, the time to cre
ate , schedule, execut.e and complete a. process/thread that.
invokes the null procedure (in other words , t he overhead
of fo rki ng a thread), and Signal- Wait , t. he t.ime fo r a pro
cess/thread to signal a waiting process/ thread. and then
wai t on a condition (in other words , the ove rhead o(synchro
nizing two th reads toge t he r). Each benchmark was executed
on a single processor , and t he results were averaged across
multiple repetitions. For comparison , a procedure call takes
a bout 7 JLsec. on t he Fi refl y, wh ile a kernel trap takes about
19 jisec.

Table 1 shows that while there is an order of magnitude
difference in cost between Ul trix process management and
Topaz kernel th read management, there is yet another order
of magnitude difference between Topaz t.hreads and Fast·
Threads. T his is despite the fact that the Topaz th read
code is highly tuned with much of the critical path wriuen
in assembler.

Commonly, a t.ra.deotT arises between performance and
flexibility in choosing where to implement system ser
vices [Wulf et aJ. Bl]. User-level t.h reads. however , a\'oid
t his t radeoff: they simultaneously improve both performance
and flexibility. Flexibility is particularly importan t in thread
systems since there are many parallel programming models.
each of which may require specialized support within the
t hread system. With kernel threads, supporting mu lt iple
parallel programming models may require modifying the ker
nel, which increases complexity, overhead , and the likelihood

VII . 6

of errors in the kernel.

2.2 Sources of Poor Integration in User
Level Threads Built on the Tradi
tional Kernel Interface

Unfortunately, it has proven difficult to implement user-level
threads that have the same level of integration with system
services as is available with kernel threads. This is not in
he ren t in managing parallelism at the user level, but rather
is a co nsequence of the lack of kernel support in ex.isting sys
tems. Kernel threads are the wrong ab"traction for support
ing user-level thread management. There are two related
characteris tics of kernel threads that cause difficulty:

• Kernel t hreads block, resume, and are preempted with
ou t not.ificat.ion to t he user level.

• Ke rnel threads are scheduled obli viously with respect
to the user-level thread state.

T hese can cause problems even on a uniprogrammed sys
tem. A use r-level t hread syst.em will often create as many
kernel t.hreads to serve as "virt.ua.1 processors" as t.here are
physical processors in the sys tem ; each will be used to run
use r- level threads. When a use r-level thread makes a block
ing I/O req ues t. or takes a page fault. though , the kernel
t hread serving as it.s virtua.1 processor a.1so blocks . As a re
sult , the phys ical processor is lost to the address space while
the I/ O is pending, because there is no kernel thread to run
ot.her user-level threads on the just-idled processor.

A plausible solution to th is might. be to create more ker
lIel threads than physical processors; when one kernel thread
blocks because its user-level thread blocks in the kernel , an
ot her kernel thread is available to run user-level threads
on that processor. However. a d ifficulty occurs when the
I/O completes or the page fault rel.u rns: t. here will be more
runnable kernel t hreads than processors. each kernel thread
in the middle of running a user-level thread . In deciding
which kernel threads are to be assigned processors, the op
erating sys tem will implicitly choose which user-level threads
are assigned processors .

In a t raditional system , when the re are more runnable
th reads than processors , the operating sys tem cou ld em
ploy some kind of t.ime-slicing to ens ure each thread makes
progress . "Vhen user-level threads are running on top of ker
nel t hreads, however, time-slicing can lead to problems. For
example, a kernel thread could be preempted while its user
level th read is holding a spin-lock; any user-level threads
accessing t he lock will then spin-wait until the lock holder
is rescheduled. Zahorjan et al. (9l) have shown that time
slicing in the presence of spin-locks can result in poor per
formance. As another example, a kernel thread running a
user-level th read could be preempted to allow another ker
nel t hread to run that happens to be idling in its user-level
schedu ler. Or a kernel thread running a high-priority user·
level thread could be de-scheduled in favor of a kernel thread
t hat happens to be running a low-priority user-level thread.

Exactly the same problems occur with multiprogramming
as with I/ O and page faults. If t here is only one job in

the system, it can receive all of the machine's processors: if
another job enters t he sys tem, t.he operating sys tem should
preempt some of the first job's processors to give to the new
job [Tucker &. Gupta 89]. The kernel then is forced to choose
which of the first job's kernel threads. and t hus im plicitly
which user-level threads, to run on the remai ning processors.
The need to preempt processors (rom an address space also
occurs due to variations in parallelism within jobs; Zahorjan
and McCann [90] show that t.he dy namic re-al location of
processors among address spaces in response to va riations in
parallelism is important to achieving high performance.

While a kernel interface can be des igned to allow the user
level to influence which kernel threads a re schedu led when
the kernel has a choice [Black 90), t.his choice is int imate ly
tied to the user-level thread s tate; the communication of this
inform ation between the kernel and t.he use r- level negates
many of the performance and fl exibi lit.y advantages of using
user-level threads in the first. place .

Finally, ensuring t he logical correc tness of a user-level
thread sys t.em built on kernel threads can be difficult. i\ lany
applications, particularly those t.hat requi re coordination
among multiple address spaces , are free from deadlock based
on the assumption that all runnable threads eventually re
ceive processor time. When kernel t.hreads are used directly
by applications, the kernel sat.i sfies th is assumption by t. ime
slicing the processors among all of the runnable t hreads. But
when user-level threads a re multiplexed across a fix.ed num
ber of kernel threads. t he assumption may no longer hold :
because a kernel thread blocks when its user-level t.hread
blocks, an application can run ou t of kernel th reads to serve
as execution contexts, even when there are runnable user
level threads and available processors.

3 Effective Kernel Support for
the User-Level Management
of Parallelism

Section 2 described the problems that arise when kernel
th reads are used by the programmer to express parallelism
(poor performance and poor fl exibility) and when user-level
threads are built on top of kernel t.hreads (poor behavior
in the presence of multi programming and i/O). To address
t.hese problems, we have designed a new ke rnel interface and
user-level thread system t hat together combine the function
ality of kernel th reads with the perform ance and flexibility
of user-level threads.

The operating system kernel provides each user- level
t hread system with its own virtual multiprocessor, the ab
straction of a ded icated physical machine except that the
kernel may change the number of processors in that machine
during t he execution of the program. There are seve ra.1 as
pects to this abst raction:

• The kernel allocates processors to address spaces; the
kernel has complete control over how many processors
to give each address space's virtual mu ltiprocessor .

• Each address space 's use r-level t hread system has com
plete control over which threads t.o run on its allocated

,
J

processors . as it would if the application were running
on the bare physical machine.

• The kernel notifies the user-level thread system when
ever the kerne l changes the number of processors as
signed to it; the kernel also notifies the thread system
whenever a user-level t.hread blocks or wakes up in the
kernel (e.g. , on I/O or on a page fault). The ke rnel's
role is to vector events to the appropriat.e thread sched.
uler , rather t han to interpret these events on its own.

• The user- level thread sys tem notifies the ke rnel when
the application needs more or fewe r processors. The
ke rnel uses t his information to alloca.te processors
among address spaces. However, the use r level noti
fies the kernel only on those subset of user.level t hread
operations that might affect processor allocation deci
sions. As a result, performance is not compromised; the
majority of th read operations do no t suffer the overhead
of communication with the kernel.

• The application programmer sees no difference, except
for performance, from programming directly with kern el
threads. Our use r-level thread syste m manages its vir
tual multiprocessor transparently to the programmer,
providing programmers a normal Topaz thread inter
face [Birrell et al. 87}. (The user-level runtime system
could easily be adapted. though, to provide a different
paralle l programming model.)

In the remainder of this section we describe how kernel
events are vecto red to the user-level thread system, what
information is provided by the application to allow the kernel
to allocate processors among jobs. and how we handle user
level spin-locks.

3.1 Explicit Vectoring of Kernel Events
to the User-Level Thread Scheduler

T he communication between the kernel processor allocator
and t he user-level th read system is s truct ured in terms of
sched uler activations. The term "scheduler activation" was
se lected because each vectored event causes the user-level
thread sys tem to reconsider its scheduling decision of which
threads to run on which processors.

A scheduler activa.tion serves three roles:

• [t se rves as a vessel, or execution context, for running
user- level threads , in exactly t he same way tha t a kernel
t hread does.

• It notifies the user-level thread system of a kernel event.

• It provides space in the kernel fo r saving the proces
sor context of the activation'S current use r-level thread ,
when the thread is stopped by the ke rnel (e.g., because
the t hread blocks in the kernel on I/O o r the kernel
p reempts its processor).

A scheduler activation's data st ructures are quite similar
to those of a traditional kernel thread. Each scheduler ac
tivation has two execution stacks - one mapped into the
kernel and one mapped into the application address space.
Each user-level threap is allocated its own user-level stack

VII.7

when it starts running [Anderson et al. 89]; when a user-level
th read calls into the kernel, it uses its activation 's kernel
stack. The user-level t hread scheduler runs on the acti va
tion's use r-level stack. In addition, the kernel maintains an
activation cont rol block (akin to a thread control block) to
record the s tate of the scheduler activation 's thread when it
blocks in the kernel o r is preempted: the user-level thread
scheduler maintains a record of which user-level thread is
running in each scheduler activation.

When a program is s tarted , the kernel creates a scheduler
activation, assigns it to a processor, and upcalls into the ap
plica tion address space at a fixed ent ry point . The user- level
t hread management system receives the upcall and uses that
activation as the context in which to initialize itself and run
the main application thread. As the first thread executes,
it may create more user threads and request additional pro
cessors. In this case, the kernel will create an additional
scheduler activation for each processor and use it to upcall
into the user level to tell it t hat the new processor is avail
ab le. The user level then se lects and executes a thread in
the context of that activat ion.

Similarly, when the kernel needs to notify the user level of
a n event , the kernel creates a scheduler activation. assigns
it to a processor, and upcal ls into the appl ication address
space. Once the upcall is started , the activation is simi lar to
a traditional kernel thread - it can be used to process the
event , run user-level th reads, and trap into and block within
the kernel.

T he crucial distinction between scheduler ac tivations and
kernel threads is that once an activation 'S user-level th read
is stopped by the kernel, the th read is never directly resumed
by the kerneL Instead, a new scheduler activation is created
to notify the use r-level thread system that the thread has
been stopped. The user-level thread system then removes
the state of the thread from the old activa tion, tells the
kernel that the old activation can be re-used , and finally de
cides which thread to run on the processor. By contrast, in
a trad itional system , when the kernel stops a kernel thread,
even one running a use r-level thread in its context. the ker
nel never notifies the user level of the event. Later , the
kernel directly resumes the kernel thread (and by implica
tion, its user- level thread) , again without notification. By
using scheduler activations, the kernel is able to maintai n
the invariant that there are always exactly as many running
scheduler activations (vessels for running user- level th reads)
as there are processors assigned to the address space.

Table 2 lists the events that the kernel vectors to the user
level using scheduler activations; the parameters to each up
call are in parentheses, and the action taken by the user
level thread system is italicized. Note that events are vec
tored at exactly the points where the kernel would otherwise
be forced to make a scheduling decision. In prac tice, these
events occur in combina tions; when this occurs, a single up
call is made that passes all o f the events that need to be
h.ndled.

As one example of the use of scheduler activa
tions, Figure 1 illustrates what happens on an I/ O re
quest /completion. Note that this is the uncommon case;
in normal operation, threads can be crea ted , run , and com-

Time
Tl

User· Level
Runtime
System

VII .8

Add this processor (processor #)
Execute a runnable user-level thread.

Processor has been preempted (preempted activation # and its machine state)
Return to th e ready list the user-level thread that was exec uting in the
context of the preempted scheduler act ivation.

Scheduler activation has blocked (blocked activation #)
The blocked scheduler activation is no longer using its proce.uor.

Scheduler activation has unblocked (unblocked a.ctivation # and its machi ne state)
Return to the ready list the user-level thread that was executing in th e
co ntext of th e blocked scheduler activation .

Table 2: Scheduler Activation U pcal! Points

User Program ··· .. It'l .. ······· ···················· ··················· 1 1r\ 141 I. ~) (2) 0) :/)
. . . : '.

.ilL 6 0 ...
I- (C)

Operating
System
Kernel

(A)
(B)

A's th read
has blocked

fi me
T2

.....

~~.~.~~.~~.~~ .. S.· ... · .. ~~:~
Time
T3

User· Level
Runtime
System

Operating
System
Kernel

Processors

(A)

User Program

(B) (e) (D)
A's thread
and B's
thread can
continue

C'''') ••
.. .. ~

User Program
• • •••••• •••••• ••••••• •••••••••••• • •••• •• •••• •••••• .• • • o.

f) f(\f?
6 Q "

(e) (D)

ee
Figure 1: Example: I/ O Request /Completion

Time
T4

pleted. all without kernel intervention. Each pane in Fig.
ure 1 reRects a diffe rent time step. Straight a rrows represent
scheduler activations, s. shaped arrows represent user·level
th reads, and the cluster of user· level threads to the right of
each pane represents the ready list .

At time TI, the kernel allocates t he application two pro
cessors. On each processor, the kernel upcalls to user· level
code that removes a thread from the ready list and starts
running it . At time T2. one of the user· level threads (thread
I) blocks in the kernel. To notify the use r level of this event ,
t he kernel takes the processor that had been running thread
1 and performs an upcall in the context of a fres h scheduler
activation. T he user·level thread scheduler can then use the
processor to take another th read off the ready list and start
running it .

At time T3 . the I/O completes. Again, the kernel must
notify the user· level thread sys tem of the event, but this
no tification requires a processor. T he kernel preempts one
of the processors running in the address space and uses it
to do the upcal l. (If there are no processors assigned to the
address space when the I/O completes. the upcall must wait
unti l the kernel allocates one.) This upcall notifies the user
level of two things: the I/O completion and the preemption.
T he upcall invokes code in the user. level thread system that
1) puts the thread that had been blocked on the ready list
a nd 2) puts the thread that was preempted on the ready
list. At this point , scheduler activations A and B can be
discarded. Finally. at time T4, the upcall takes a th read off
t he ready list and starts running it.

When a user.level thread blocks in the kernel or is pre
empted , most of the state needed to resume it is already
at the user level - namely, the thread 's stack and control
block. The thread 's register state. however. is saved by low
level kernel routines, such as the interrupt and page fault
handlers; t he kernel passes this state to t he user level as part
of the upcall notifying the address space of the preemption
and/or I/O completion.

We use exactly the same mechanism to re·allocate a pro
cessor from one address space to another due to multipro
gramming. For example, suppose the kernel decides to take a
processor away from one address space and give it to another.
The kernel does this by sending the processor an interrupt,
stopping the old activation. and then using the processor to
do an upcall into the new address space with a fresh acti
vation. The kernel need not obtain permission in advance
from the old address space to steal its processor; to do so
\yould violate the semantics of address space priorities (e.g.,
the new address space could have higher priority than the
old address space), However, the old address space must sti ll
be notified that the preemption occurred . The kernel does
this by doing another preemption on a different processor
still running in the old address space. T he second processor
is used to make an upcall into the old address space using a
fresh scheduler activation, notifying the address space that
two user· level threads have been stopped. The use r-level
thread scheduler then has full control over which of these
t.hreads should be run on its remaining processors. (When
the last processor is preempted from an address space, we
could simply skip notifying the address space of the preemp-

VII .9

tion , but instead . we delay the notification until the kernel
eventually re·allocates it a processor. No tifica tion allows the
user level to know which processors it has been assigned , in
case it is explicitly managing cache locality.)

The above description is over.simplified in several minor
respects. Fi rst, if threads have priorities, an additional pre·
emption may have to take place beyond the ones descri bed
above. In the example in figure 1, suppose thread 3 is (ower
priority than both threads 1 and 2. In that case, the user·
level thread sys tem can ask the kernel to preempt thread 3's
processor. The kernel will then use that processor to do an
upcall, allowing the user-level thread syste m to put. thread 3
on the ready list and run thread 2 instead. The user level can
know to ask for the additional preemption because it knows
exactly which thread is running on each of its processors.

Second, while we described the kernel as stopping and sav·
ing the context of user-level threads , the kernel's interaction
with the application is entirely in terms of scheduler activa·
tions. The application is, free to build any other concurrency
model on top of scheduler activations; the kernePs behav ior
is exactly the same in every case. III particular, the kerne l
needs no knowledge of the data st ructures used to represent
parallelism at the user level.

Third, scheduler activations work properly even when a
preemption or a page fault occurs in the user· level thread
manager when no user-level thread is running. In this case,
it is the thread manager whose state is saved by the kernel.
T he subsequent upcall, in a new activation with its own
stack, allows the (reentrant) thread manager to recover in
one way if a user-level thread is running, and in a different
way if not. For example, if a preempted processor was in the
idle loop, no action is necessary; if it was handling an event
during an upcal l, a user-level context switch can be made to
continue processing the event. The oil ly added complication
for the kernel is that an upcall to notify the program of a
page fault may in tu rn page fau lt on the same location; t.he
kerne l must check for this. and when it occu rs, delay the
subsequent upcall until the page fault completes.

final ly, a user· level thread that has blocked in the kernel
may still need to execute further in kernel mode when the
I/O completes. If so, the kernel resumes the th read tern·
porarily, until it either blocks again or reaches the point
where it would leave the kernel. It is when t he latter occurs
that the kernel notifies the user level, passing the user-level
thread's register state as part of the upcall.

3.2 Notifying the Kernel of User-Level
Events Affecting Processor Alloca
tion

The mechanism described in the last sub.-section is indepen.
dent of the policy used by the kernel for allocating proces·
sors among address spaces. Reasonable allocation policies ,
however, must be based on the available parallelism in each
address space. In this sub-section, we show that t his in·
formation can be efficiently communicated for policies that
both respect priorities and guarantee that processors do not
idle if runnable threads exist. These constraints are met by
most kernel threa.d systems; as far as we know, they are not

VII . l0

Add more processors (additional # of processors needed)
Allocate more proce4S0rs to this address space and start
them running scheduler ac tivations.

This processor is idle ()
Preempt this processor if a nother addreS! space needs it .

Table 3: Communication from the Address Space to the Kernel

met by any user-level t hread system built on top of kernel
threads.

T he key observation is that the user-level thread system
need not tell the kernel about every thread operation, but
only a.bout the small subse t that can affect the kernel 's pro
cessor allocation decision. By contrast, when kernel threads
are used directly for pa.rallelism, a. processor traps to the ker
nel even when the best th read for it to run next - a. thread
that respects priorities while minimizing overhead and pre
serving cache context - is within t he same address space.

[n ou r system, an address space no tifies the kernel when
ever i t makes a transition to a state where it has more
runnahle th reads than processors. or more processors than
runnable threads. Provided an application has extra threads
to run and the processor allocator has no t re-assigned it ad
ditional processors, then all processors in t he system must
be busy. C reating more parallelism cannot violate the con
s traints. Similarly, if an application has notified the ker
nel that it has idle processors and the kernel has not taken
them away, then there must be no other work in the system.
T he kernel need not be notified of add itional idle processors.
(A n extension to this approach handles the situation where
threads, rather than address spaces, have globally meaning
ful priorities.)

Table 3 lists the kernel calls made by an address space
on these state t ransitions. For example, when an address
space notifies the kernel that it needs more processors, the
kernel searches for an address space that has registered that
has idle processors. If none are found , nothing happens, but
the address space may eventually get a. processor if one be
comes idle in the future. These notifications are only hints:
if the kernel gives an address space a processor that is no
longer needed by the time i t ge ts t here, the address space
simply returns the processor to the kernel with the updated
information. Of course, the user-level thread. system must
serialize its notifications to the kernel, since ordering mat
te rs.

An apparent drawback to this approach is that appli
cations may not be honest in reporting their parallelism
to t he operating system. T his problem is not unique to
multiprocessors: a dishonest or misbehaving program can
consume an unfair proportion of resources on a multi pro
grammed u~iprocessor as well. In either kernel-level or user
level thread systems, multi-level feedback can be used to en
courage applications to provide hones t information for pro
cessor allocation decisions. T he processor allocator can favor
add ress spaces that use fewer processors and penalize those
that use more. This encourages address spaces to give up
processors when they are needed elsewhere, since the priori-

ties imply that it is likely t hat the processors will be returned
when they are needed. On the other hand , if overall the sys
tem has fewer threads than processors, the idle processors
should be left in the address spaces most likely to create
work in the near future, to avoid the overhead of processor
re-allocation when the work is created.

Many production uniprocessor operating sys tems do
something similar . Average response time, and especially
interactive performance, is improved by favoring jobs with
the leas t remaining service, often approximated by reducing
the priority of jobs as they accu mulate service ti me. 'We
expect a similar policy to be used in multiprogrammed mul
tiprocessors to achieve the same goal: this policy cou ld easily
be adapted to encourage honest report ing of idle processors.

3.3 Critical Sections

One issue we have not yet addressed is that a user-level
thread could be executing in a critical sec tion at the instant
when it is blocked or preempted. l There are two possible ill
effec ts: poor performance (e.g. , because other threads con
tinue to test an application-level spin-lock held by the pre
empted thre.d) [Z.horj.n et .1. 91], .nd de.dlock (e.g., the
preempted thread could be holding t he ready list lock; if so,
deadlock would occur if the upcall attempted to place t he
preempted thread onto the ready list). Problems can occur
even when critical sec tions a re not protected by a lock. For
example, FastThreads uses unlocked per-processor (really,
per-activation) free lis ts of thread cont rol blocks to improve
latency [Anderson et al. 89]; accesses to these free lists also
must be done atomically.

Prevention and recovery are two approaches to dealing
with the problem of inoppor tune preemption. With pre
vention, inopportune preemptions are avoided through the
use of a scheduling and locking protocol between the ker
nel and the user level. Prevention has a number of serious
drawbacks , particularly in a multi programmed environment.
Prevention requires the kernel to yield control over proces
sor allocation (at least tem porarily) to the user-level , vio
lating the semantics of address space priorit ies. Prevent ion
is inconsistent with the efficient implementat ion of critical
sections that we will describe in Section 4.3. Fin ally, in
t he presence of page faults, prevention requires "pinningH
to physical memory all virtual pages that might be touched

IThe need for criti cal sections would be avoided if we were
to use wait-free synchronization [Herlihy 90J. Many conunercial
architectures, however , d o no t p rovide t he required hardware sup
port (we assume only an atomic t est-and-set instruction); in addi
tion . the overhead of wait-free synchronization can be prohibitive
for protecting anything but very small data structures.

.I

VILll

while in a critical sect ion; identifying t hese pages can be
cumbersome.

Instead, we adopt a solution based on recovery. When
an upcal l informs the user-level thread system that a thread
has been preempted or unblocked , the thread system checks
if the thread was executing in a critical sec tion. (Of course,
t his check must be made before acquiring any locks.) If so,
t he thread is continued temporari ly via a user-level context
switch. W hen the continued t hread exits the cri tical section.
it relinquishes control back to the original upcall , agai n via
a user-level context switch. At this point , it is safe to place
t he user-level thread back on the ready list. We use the same
mechanism to continue an activation if it was preempted in
the middle of processing a kernel event .

This t echnique is free from deadlock. By continuing the
lock holder , we ensure that once a lock is acquired, it is al
ways eventually released. even in t he presence of processor
preemption or page faults. Further , th is technique supports
arbitrary user-level spin-locks, since t he user-level thread
sys tem is always notified when a preemption occurs, allow
ing it to continue the spin-lock holder . Although correct ness
is not affected, processor time may be wasted spin-waiting
when a spin-lock holder takes a page faul t; a solution to this
is to relinquish the processor after spinning for a while (Lo
& Gligor 871.

4 Implementation

We have implemented the design desc ri bed in Section 3 by
modifying Topaz, the native operating sys tem for t he DEC
SRC Firefly multiprocessor workstation. and FastThreads , a
user-le vel thread package.

We modified the Topaz kernel thread management rou
tines to implement scheduler activations. Where Topaz for
merly blocked. resumed . or preempted a th read, it now per
fo rms upcalls to allow the user level to take t hese actions
(see Table 2). In addition . we modified Topaz to do explicit
al location of processors to address spaces; formerly, Topaz
scheduled threads obliviously to the address spaces to which
they belonged. We also maintained object code compatibil
ity; existing Topaz (and therefore UN IX) applications still
run as before.

FastThreads was modified to process upcalls, to resume
in t errupted critical sections, and to provide Topaz with the
information needed for its processor alloca tion decisions (see
Table 3).

In all, we added a few hundred lines of code to Fas t
Threads and a bout 1200 lines to To paz. (For comparison,
t he original Topaz implementation of kernel threads was over
4000 lines of code.) The majority of t he new Topaz code was
concerned with implementing the processor allocation policy
(discussed below) , and not with scheduler activations per "e.

Ou r design is "neutral" on the choice of policies for al
locating processors to address spaces and for scheduling
threads onto processors. Of course, "orne pair of policies had
to be selec ted for our prototype implementation; we briefly
describe these , as well as some performance enhancements
and debugging considerations, in the subsections that follow.

4.1 Processor A llocation Policy

T he processor allocation pol icy we chose is similar to the
dynamic policy of Zahorjan and McCann [90J. T he pol
icy "space-shares" processors while respecting priorities and
guaranteeing that no processor idles if there is work to do.
Processors are divided evenly a mong t he highest priority ad
dress spaces; if some add ress spaces do not need all of the
processors in their sha.re, those processors are div ided evenly
among t he remainder. Space-shari ng reduces the number of
processor re-allocations; processors are time-sliced only if
the number of available processors is not an integer multiple
of the number of address spaces (at the same priority) that
want them .

Our implementation makes it possible for an address space
to use kernel threads , rather than requiring that every ad
dress space use scheduler activations. Continuing to support
Topaz kernel threads was necessary to preserve binary com
patibility with existing (possibly seq uential) Topaz applica
tions. In our implementation , address spaces t hat use kernel
threa.ds compete for processors in the same way as applica
tions that use scheduler activations. T he kernel processor
allocator only needs to know whether each address space
could use more processors or has some processors that are
id le. (An application can be in neither state; for instance, if
it has asked for a processor, received it , and has not asked
for another processor yeLl T he in terface described in Sec
tion 3.2 provides this information for address spaces that use
sched uler activations; internal kernel data structures provide
it for address spaces that use kernel threads directly. Proces
sors assigned to address spaces using scheduler activations
are handed to the user-level thread scheduler via upcalls;
processors assigned to address spaces using kernel threads
are handed to the original Topaz thread scheduler. As a
result, there is no need for sta tic partitioning of processors.

4.2 Thread Scheduling Policy

An important aspect of our design is that the ke rnel has no
knowledge of an application 's concurrency model or schedul
ing policy, or of the data structures used to manage paral
lelism at t he user leveL Each application is completely free
to choose these as appropriate; they can be tuned to fit the
application 's needs. The default policy in FastThreads uses
per-processor ready lists accessed by each processor in last
in-first-out order to improve cache local ity ; a processor scans
for work if its own ready list is empty. This is essentially the
policy used by Multilisp [Halstead 851.

In addition, our implementation includes hysteresis to
avoid unnecessary processor re-allocations; an idle proces
sor spins for a short period before notifying the ke rnel t hat
it is available for re-allocation .

4.3 Performance Enhancements

While the design as just described is sufficient to provide
user-level functionality equivalent to that of kernel threads ,
there are some additional considerations tha t are important
for performance.

=

The most. significant. of t.hese relat.es t.o crit.ical sec tions,
desc ribed in Section 3.3. In order to provide temporary con
t inuation of critical sections when a user-level t hread is pre
empted (or when it blocks in t he kernel and can be resumed),
the user-level thread system must be a ble to check whether
the thread was holding a lock. One way to do t his is for
the thread to set a flag when it en ters a critical section,
clear the flag when it leaves, and then check to see if it is
being continued. T he check is needed so that the thread
being t emporarily continued will relinquish the processor to
the o riginal upcall when it reaches a safe place. Unfortu
nately, t his imposes overhead on lock acquisition and re
lease whether or not a preemption or page fault occurs , even
though these events are infrequent . Latency is particularly
important since we use these continuable critical sections in
bui lding our user-level th read system.

We adopt a different solution that imposes no overhead in
t he common case; a related technique was used on a unipro
cessor in t he T rellis/Owl garbage collector {Moss & Kohler
87]. We make an exact copy of every low-level critical sec
tion. We do this by delimiting, with special assembler labels,
each critical sec tion in the C source code for t he user-level
t hread package; we t hen post-process the compiler-generated
assembly code to make t he copy. T his would also be st raight
forward to do given language and compiler support. At the
end of the copy, but not the original ve rsion of t he critical
sec tion , we place code to yield t he processor back to the re
sumer. Normal execution uses the original code . When a
preemption occurs, the kernel starts a new scheduler activa
tion to notify the user-level t hread system ; this activation
checks the preempted thread 's program counter to see if it
was in one of these cri tical sect ions , and if so, continues the
t hread at t he corresponding place in t he copy of t he critical
sec tion. The copy relinquishes control back to the original
upcall at the end of the cri tical sec tion. Because normal ex
ecution uses the original code, and t his code is exactly the
same as it would be if we were not concerned about pre
emptions, there is no impact on lock latency in the common
case. (In ou r implementation , occasionally a procedure call
must be made from within a critical sec tion. In this case,
we bracket the call, but not the straight line path, with the
se tting and clearing of an explicit flag.)

A second significant performance enhancement relates to
the management of scheduler activations. Logically, a new
scheduler activation is created for each upcall. Creating
a new sched uler activation is not free , however , because
it requires data. structures to be allocated and initialized.
Instead, discarded scheduler activations can be cached for
event ual re- use. T he user-level thread sys tem can recycle
an old scheduler activation by returning it to the kernel as
soon as the user-level thread it had been running is removed
from its context: in the case of preemption, after processing
the upcall that notifies the user level of the preemption; in
the case of blocking in the kernel , after processing the up
call that no tifies the user level that resumption is possible.
A similar optimization is used in many kernel thread im.
plementations: kernel threads, once created, can be cached
when destroyed to speed future thread creations (Lampson
& Redell 80J .

VII .1 2

Further, discarded scheduler act ivations can be collected
and returned to the kernel in bulk, instead of being retu rn·
ing one at a time. Ignoring t he occasional bulk deposit of
discards, our system makes the same number of application
ke rnel boundary crossings on I/ O or processor preemption
as a traditional kernel t hread system. In a kernel thread sys
tem, one crossing is needed to s tart an I/O , another when
t he I/ O completes. The same kernel boundary crossings oc
cur in our system.

4.4 Debugging Considerations

We have integrated scheduler ac tivations wi th the Firefly
Topaz debugger. There are t wo separat.e environments, each
with their own needs: debugging the use r-level th read sys
tem and debugging application code running on top of the
t hread system.

T ransparency is crucial to debugging - the debugger
should have as little effect as possible on the sequence of
instructions being debugged. T he kernel support we have
described informs t he user- level thread sys tem of the state
of each of its physical processors, but this is inappropriate
when the thread system itself is being debugged . Instead,
t he kernel assigns each scheduler activation being debugged
a logical processor; when the debugger stops or single-steps
a scheduler activation , these events do not cause upcalls into
the user-level thread system.

Assuming the user-level thread system is working cor
rectly, the debugger can use the facilities of the t hread sys
tem to stop and examine the state of application code run
ning in t he context of a user· level thread (Redell 88].

5 Performance

The goal of our research is to combine the functionality of
kernel threads with the performance and fl exibility advan
tages of managing parallelism at the user level within each
application address space. The functionality and fl exibility
issues have been addressed in previous sec tions. In te rms of
performance, we consider three ques tions. Fi rst , what is the
cost of user-level thread operations (e.g., fo rk, block, and
yield) in our sys t.em? Second, what is the cos t of commu
nication between the kernel and the user level (specifically,
of upcalls)? Third , what is the overall effect on the perfor
mance of applications?

5 .1 Thread Performance
The cost of user- level t.hread operations In our system is
essentially the same as t hose of t he FastThreads package
running on the Firefly prior to our work - that is, running
on top of Topaz kernel threads, with the associated poor
sys t.em integra.tion. Table 4 adds the performance of our
system to the data for original FastThreads, Topaz kernel
threads, and Ultrix processes contained in Table 1. Our sys
tem preserves the order of magnitude advantage that user
level threads offer over kernel threads. There is a 3 J1.sec.
degradation in Null Fork relative t.o original Fast.Threads,
which is due to incrementing and decrementing the number

VIL13

Operation
Fast Threads on
Topaz threads

FastThreads on
Scheduler Activations Topaz threads Ultrix processes

Null Fork
Signal-Wait

34
37

37
42

948
441

11300
1840

Table 4: Thread Operation Latencies (J.lsec.)

of busy threads and determining whet.her t he kernel must he
notified. (This could be eliminated for a program ru nning
on a uniprogrammed ma.chine or runn ing with sufficient pa.r
allelism that it can inform the kernel that it always wants as
many processors as are available.) T here is a. 5 ,",sec. degra.
da.tion in Signal- Wait, which is due to this fac tor plus the
cost of checking whether a preempted t hread is being re
sumed (in which case extra. work must be done to restore
t he condition codes). Although sti ll an order of magnitude
better t han kernel th reads, O Uf performance would be signif~
icantly worse without a ze ro-overhead way of marking when
a lock is held (see Section 4.3). Removing this opt imization
from FastThreads yielded a Null Fork t ime of 49 IJ-sec. and
a Signal~ Wait time of 48 IJ-sec. (The Null Fork benchmark
has more critical sections in its execut.ion path t.han does
Signal-Wai t .)

5.2 Upcall Performance

T hread performance (Sect.ion 5 .1) charact.erizes the frequent.
case when kernel involvement is not necessary. Upcal l per~
fo rmance - t. he infrequent. case - is impor tant , though, for
several reasons. First , it helps determine t he "break_evenn

point , t.he ratio of t hread operat.ions that can be done at
user level to those that require kernel intervention, needed
for user~level th reads to begin to outperform kernel threads.
If t he cost of blocking or preempting a user-level thread in
the kernel using scheduler activat ions is similar to the cost of
blocking or preempting a kernel thread, then scheduler acti~
vations could be practical even o n a uniprocessor . Further,
the latency between when a th read is preempted and when
the upcall reschedules it. determines how long other threads
running in the application may have to wait for a c ritical
resource held by t he preempted thread.

W hen we began our im plementation. we expected our up
call performance to be commensurate with the overhead of
Topaz kernel thread operations. Our implementation is con~
siderably slower than that . One measure of upcal l perfor~

mance is the time for two user-level threads to signal and
wait t hrough the kernel ; this is analogous to the Signal-Wait
tes t in Table 4, except that the synchronization is forced to
be in the kernel. This approximates t he overhead added by
t he scheduler activation machinery of making and complet~

ing an I/ O request or a page fault . T he signal-wait time is
'2 .4 milliseconds, a factor of five worse tha.n Topaz threads.

We see no t.hing inherent in scheduler activations that is
responsible for this difference , which we attribute to two
implementation issues. First, because we built scheduler ac
tivatio ns as a quick modification to the existing implemen
tation of the Topaz kernel thread system. we must maintain
more sta.te, and thus have more overhead , than if we had

designed that portion of the ke rnel from scratch. As impor~

t antly, much of t he Topaz thread syst.em is written in care
fully tuned assembler; our kernel implementation is enti rely
in Modula-2+. For comparison , Schroeder and Burrows (90]
red uced SRC RPC processing costs by over a factor of four
by recoding Modula-2+ in assembler. Thus, we expect t hat. ,
if tuned, our upcal l performance would be commensurate
with Topaz kernel thread performance. As a result , the ap
plication performance measurement.s in t.he next sect.ion are
somewhat worse t han what might be achieved in a produc
tion scheduler activations implementation.

5.3 Application Performance

To illustrate the effect of our system on application per
formance, we measured the same parallel application us
ing Topaz kernel threads , original FastThreads built on top
of Topaz th reads, and modified FastThreads running on
scheduler activations. T he app licat ion we measured was an
O(N log N) solution to the N-body problem [Barnes & Hut
86]. T he algorithm constructs a tree representing the center
of m ass of each portion of space and then traverses portions
of the tree to compute the force on each body. The force
exerted by a duster of distant masses can be approximated
by the force tha.t they would exert if they were al l at the
center of mass of the d uster.

Depending on the relati ve ratio of processor speed to avail
able memory, this application can be eit.her compute or I/O
bound. We modified the application to manage a part of
its memory explicitly as a buffer cache for the application's
data. T his allowed us to cont rol the amount of memory used
by the application; a small enough problem size was chosen
so that the buffer cache always fit in our F irefly 1s physical
memory. As a further simplificat ion, threads that miss in t.he
cache simply block in the kernel for 50 msec.; cache misses
would normally cause a disk access. (Our measurement.s
were qualitatively similar when we took contention for the
disk into accountj because the Firefly 's Iloating point per
formance and physical memory size are orders of magnitude
less than current generation systems, our measurements are
intended to be only illustra.tive.) All tests were run on a six
processor CVAX Firefly.

First , we demonstrate that when the application makes
minimal use of kernel se rvices, it runs as quickly on our
system as on original FastThreads and much faster than if
Topaz threads were used. Figure 2 graphs the application 's
speedup versus the number of processors for each of the three
systems when the sys tem has enough memory 50 that there is
negligible I / O and there are no other applications running.
(Speedup is relative to a sequential implement.ation of the
algorithm.)

5
~ Topaz threads

orig fastThrds

...... new fastThrds
4

go 3

" <11

~ 2
'"

1

O +----,-----r----r---~----,
1 2 3 5 6

number of processors

Figure 2: Speedup of N-Body Application vs. Number
of Processors, 100% of Memory Available

With one processor, all three systems perform worse t ha.n
the sequential implementation. beca.use of the a.dded over
head of creaLing and synchronizing th reads to parallelize
the applica.tion. This overhead is greate r fo r Topaz kernel
threads than for either user- level th read system.

As processors are added, t he performance with Topaz
kernel th reads initially improves and then fia.Ltens ou t. In
Topaz, a. thread can acquire and re lease an application lock
on a c riti cal section wi thout trapping to t he kernel. provided
t here is no contention for the lock. If a. thread tries to acquire
a busy lock, however , the thread will block in t he kernel and
be re-scheduled only when the lock is released. T hus, Topaz
lock overhead is much great.e r in the presence of cont.ent.ion.
The good speedup attained by both use r-level thread sys
tems shows t hat the application has enough parallelism; it
is the overhead of kernel th reads that prevents good perfor
mance. We might be able to improve the performance of
t he appl ication when using ke rnel threads by re-st ructuring
it so that its critical sec tions are less of a bottleneck or per
haps by spinning for a shor t time at user level if the lock is
busy before trapping to the ke rnel [Karlin et al. 91li these
optimizations are less crucial if the a pplication is built with
user-level threads.

The performance of original FastThreads and our sys tem
dive rges slightly with four or five processors. Even though no
other applications were running during our tests, the Topaz
operating system has several daemon threads which wake
up periodically, execute for a short time, and then go back
to sleep. Because our system expl icit ly allocates processors
to address spaces, these daemon t hreads cause preemptions
only when there are no id le processors available; this is not
true with the native Topaz sched uler. which controls the
ke rnel threads used as virtual processors by o riginal Fast
Threads. When the application tries to use all of the proces
sors of the machine (in this case, six processors), the number
of preemptions for both user-level thread systems is similar.
(The preemptions ha.ve only a small impact on t he perfor-

VII.14

100
000- Topaz th reads

u
80 -- orig Fast.Thrds <11

'" ... new Fast.Thrds
<11 60 E ."
" c 40
0 ."
" " 20 u
<11
X
<11 0

100% 90% 80% 70% 60% 50% 4C'

% available memo ry

Figure 3: Execution T ime of N-Body Application vs.
Amount of Available Memory, 6 Processors

rnance of original FastThreads because of their short. du ra
tion .)

Next, we show that when t he application requ ires kernel
involvement because it does I/O, our system performs better
than ei ther original FastThreads or Topaz th reads. Figure 3
graphs the application's execution time on six processors as
a function of the amount of available memory.

For all three systems, performance degrades slowly at. first.
and then more sharply once t.he application's working set
does not fit in memory. However , application performance
with original FastThreads degrades more quickly than with
the other two systems. T his is because when a use r-level
thread blocks in the ke rnel, the kernel t hread serving as
its virtual processor also blocks, a nd thus the application
loses that physical processor for the du ra t.ion of the I/O.
The curves for modified FastThreads and for Topaz threads
parallel each other because bot h systems are able to exploit
Lhe parallelism of the application to overlap some of the I/O
latency with useful computation. As in Figure 2, though, ap
plication performance is better with modified FastThreads
than with Topaz because most thread operations can be im
plemented without kernel involvement.

Finally, while Figure 3 shows the effect on performance of
application-induced kernel events, multiprogramming causes
system-induced kernel events t.hat result in ou r syst.em hav
ing better performance than either original FastThreads or
Topaz threads. To test this, we ran two copies of the N
body application at the same time on a six processor Firefly
and t hen averaged their execution times. Table 5 lis ts the
result ing speedups for each system; note that a speedup of
three would be the maximum possible.

Table 5 shows that application performance wit h modified
FastT hreads is good even ill a multiprogrammed environ.
ment; t.he speedup is within 5% of that obtained when the
application ran un iprogrammed on th ree processors. This
small degradation is about what we would expect from bus
content.ion and the need to donate a processor periodically to
run a ke rnel daemon th read. In cont.rast. multi programmed

VII .15

Topaz
threads

1.29

Original
Fas tThreads

1.26

New
Fast Threads

2.45

Table 5: Speedup for N- Body App lication , Multipro
grammmg Level = 2, 6 Processors , 100% of Memory
Availab le

performance is much worse with eit her original FastThreads
or Topaz threads, although fo r different reasons. vVhen ap
plications using o riginal FastThreads are multi programmed,
the operating sys tem time-slices the kernel threads serving
as virtual processors; t his can result in physical processors
idling waiting for a lock to be released while the lock holder
is de-scheduled. Performance is worse with Topaz threads
than with ou r system because common thread operations
are more expensive. In addition, because Topaz does no t do
explicit processor allocation, it may end up sched uling more
kernel threads from one address space than from the other;
Figure 2 shows, however , that perform ance flattens out for
Topaz threads when more than three processors are assigned
to t he application .

\Vhile the Firefl y is an excellent vehicle for cons tructing
proof-of-concept pro totypes , its limited number of proces
sors makes it less than ideal for experimenting with sig
nificantly paral lel applications or wi th multiple, multipro
grammed parallel app lications. For th is reason, we are im
plementing sched uler activations in CThreads and Mach ; we
are also porting Amber (Chase et at. 89], a programming
system for a network of multiprocesso rs, onto our Firefly
implementation .

6 Related Ideas

T he two sys tems with goals most closely related to our ow n
- achieving properly integrated user-level threads through
improved kernel support - are Psyche {Scott et al. 90]
and Symunix [Edler et aI . 88J. Both have support [or
NUMA multiprocessors as a primary goal: Symunix in a
high-performance parallel UN IX implementation, and Psy
che in the context of a new operating system.

Psyche and Symunix provide "virtual processors" as de
scri bed in Sections I and 2, and augment these virtual pro
cessors by defining software interrupts t hat notify the user
I.evel of some kernel events. (Software interrupts are like
upcalls, except that al l interrupts on the same processor use
the same stack and thus are not re-entrant.) Psyche has also
explored the notion of multi-model parallel programming in
which user-defined th reads of various kinds , in d ifferent ad
dress spaces, can synchronize while sharing code and data.

While Psyche, Symunix, and our own work share similar
goals, t he approaches taken to achieve t hese goals differ in
several important ways. Unlike our work, neither Psyche nor
Sy munix provides the exact functionali ty of kernel threads
with respect to I/O, page faults, and multiprogramming;
further , the performance of t heir user-level th read operations
can be compromised. vVe discussed some of t he reasons for
t his in Section 2: these systems notify the user level of som e

but not all of the kernel events that affect the address space.
For example, neither Psyche nor Symunix notify the user
level when a preempted virt ual processor is re-sched uled.
As a result , t he user-level t hread system does not know how
many processors it has or what user t hreads are running on
those processors.

Both Psyche and Symunix provide shared writable mem
ory between the ke rnel and each application, but neither
system provides an efficient mechanism fo r the user-level
thread system to notify the kernel when its processor allo
cation needs to be re-considered. The number of processors
needed by each application could be written into this shared
memory, but that would give no efficient way for an app li
cation that needs more processors to know that some other
application has idle processors.

Applications in both Psyche and Symunix share synchro
nization s tate with the kernel in order to avoid preemption at
inopportune moments (e.g., while spin-locks are beIng held).
In Symunix, the application sets and later clears a variable
shared with the kernel to indicate that it is in a cri tical
sec tion; in Psyche, t he applica tion checks for an imminent
preemption before starting a critical sec tion. T he setting,
clearing, and checking of t hese bits adds to lock latency,
which constitutes a large portion of the overhead when doing
high-performance user-level t hread management {Anderson
et al. 89] . By contrast, our system has no effect on lock la
tency unless a preemption actual ly occurs. Fu rthermore, in
t hese other sys tems t he kernel notifies the application of its
intention to preempt a processor be/ore the preemption ac
t ually occurs; based on t his notification , the application can
choose to place a thread in a "safe" state and volunta ri ly re
linquish a processor. T his mechanism violates the cons traint
that higher priority threads are always run in place of lower
priori ty t hreads.

Some systems provide asynchronous kernel I/O as a mech
anism to solve some of t he problems with user-level thread
management on multiprocessors [Edler et al. 88, Weiser
et a.1 . 89] . Indeed , ou r work has t he flavor of an asyn
chronous I/O sys tem: when an I/O request is made, the
processor is returned to the application. and later , when the
I/O comple tes, the application is notified . There are two
major differences between our work and traditional asyn
chronous I/O systems, though. First , and most important,
scheduler activations prov ide a single uniform mechanism to
address the problems of processor preemption, I/O, and page
faults. Relative to asynchronous I/O, our approach derives
conceptual simplicity from the fact that all interaction with
t he kernel is synchronous from t he perspective of a single
sched uler activation. A scheduler activation that blocks in
the kernel is replaced with a new scheduler activation when
the awaited event occurs. Second, whi le asynchronous I/O
schemes may require significant changes to both application
and kernel code, our scheme leaves the st ructure of both the
use r-level thread system and t he kernel largely unchanged.

Finally, parts of our scheme are related ill some ways to
Hydra [Wulf et al. 81], one of the earl iest multiprocessor op
erating systems, in which scheduling policy was moved out
of t he kernel. However, in Hydra, this separation came at a
performance cost because policy decisions required commu-

VII . 16

nication through the kernel to a sched uling policy server, and
t hen back to the kernel to implement a context switch. In
our system, an application can set its own pol icy for schedul
ing its th reads onto its processors, and can implement this
policy without trapping to the kernel. Longer-term proces
sor allocation decisions in our system are the kernel's respon
sibility, although as in Hydra, this could be delegated to a
d ist ing uished application-level server.

7 Summary
Managing parallelism at the user level is essential to high
performan ce parallel computing, but kernel threads or pro
cesses , as provided in many operating systems, are a poor
abst raction o n which to support this. We have described the
design , implementation, and performance of a kernel inter
face and a user- level thread package that together combine
t he performance of user-level threads (in the common case
of thread operations that can be implemented e ntirely at
use r level) wi th the functionality of kernel t hreads (correct
behavior in the infrequent case when the kernel must be
involved). Our approach is based on providing each appli
catio n address space with a vidual multiprocesso,' in which
the application knows exac tly how many processors it has
and exactly which of its th reads are running on those pro
cessors. Responsibilities are divided between the kernel and
each application address space:

• Processor allocation (the alloca tion of processors to ad
dress spaces) is done by the kernel.

• T hread scheduling (the assignment of an address
space's threads to its processors) is done by each ad
dress space.

• The kernel notifies the address space thread scheduler
of every event affecting the address space.

• T he address space notifies the kernel of the subset of
user-level events that can affect processor allocation de
cisions.

T he kernel mechanism that we use to implement these
ideas is cal led scheduler activations. A scheduler activation
is t he execution context for vectoring control from the kernel
to t he address space on a kernel event . The address space
t hread scheduler uses this context to handle the event , e.g.,
to modify user-level thread data structures , to execute user
level threads, and to make requests of the kernel. '-IVhile
ou r prototype implements threads as the concurrency ab
st ractio n supported at the user level, scheduler activations
are not linked to any particular model ; scheduler activations
can support any user-level concurrency model because the
kernel has no knowledge of user-level data structures.

8 Acknowledgements
We would like to thank Andrew Black, Mike Burrows, Jan
Edler , Mike Jones , Butler Lampson , Tom LeBlanc, Kai Li ,
Brian Marsh, Sape Mullender , Dave Redell, Michael Scott,
Garret Swart , and John Zahorjan for t.heir helpful com ments.

We would also like to thank the DEC Systems Research Cen
ter for providing us with t heir Firefly hard ware and software.

References
[Agha 86] Agha, G. Actors : A Model of Concurrent Co m

putation in Distr ibuted Systems. MIT Press,
1986.

[A nderson et al. 89] Anderson, T. , Lazowska, E., and Levy,
H. T he Performance Implications of T hread
Management Alternatives for Shared Memory
Multiprocessors. IEEE Transact ions on Com
puters, 38(12):1631- 1644, December 1989. Also
appeared in Proceedings of the 1989 ACM SIC
i\.fET RICS and Performance '89 Conference on
Mea surement and Modeling of Computer Sys
tems, May 1989.

[Barnes & Hut 86] Barnes, J. and Hut , P. A Hierarchical
O(N log N) Force-Calculation Algorithm. Na
tu re, 324:446-449. 1986.

[B irrell e t aI. 87) Birrell. A. , G uttag, J., Horning, J .. and
Levin, R. Synchronization Primitives for a Mul
tiprocessor: A Formal Specification. In Proceed
ing.5 of the 11 th A CM Sy mposium on Operat
ing S ystems Principles, pages 94-102, November
1987.

[Black 90) Black, D. Scheduling Support lor Concurrency
and Parallelism in t he Mach Operating Sys
tem. IEEE Computer Magazine. 23(5):35-43 .
May 1990.

{Chase et al. 89] C hase, J. , Amador, F., Lazowska, E., Levy,
H. , and Littlefield, R. The Amber System: Par
allel Programming on a Network of Multiproces
sors. In Proceedings of the 12th ACJY[Sympos ium
on Operating System s Principles, pages 147-58,
December 1989.

[Cheriton 88) Cheriton, D. The V Distributed System.
Communicat ions oj the ACM, 31(3):314-333 ,
March 1988.

[Draves & Cooper 88] Draves, R. a nd Cooper, E. C
T hreads. Technical Report C M U-CS-88-1S<! .
School of Computer Science, Carnegie-Mellon
University, June 1988.

[Edler et aI. 88) Edler, J., Lipkis, J .• and Schonberg, E.
Process Management for Highly Parallel UN IX
Systems. In Proceedings oj the USENIX Work
shop on UNIX and S upercomputers, pages I-Ii ,
September 1988.

[Halstead 85) Halstead , R. Multilisp: A Language lor Con
current Symbolic Computation. ACM Tra nsac
tions on Programming Languages and Sys tems,
7(4):501-538, October 1985.

[Herlihy 90) Herlihy, M. A Methodology lor Implementing
Highly Concurrent Data Structures. In Proceed
ings oj the 2nd ACM SIGPLAN Symposium on

· ,

VII. 17

Principle" and Pract ice 0/ Parallel Programm ing,
pages 197-206 , March 1990.

[Karlin et al. 91] Karlin, A. , Li, K. , Manasse. M., and Ow
icki, S. Empirical Studies of Competitive Spin
ning on A Shared-Memo ry Multiprocessor. In
Proceedings 0/ the 13th A eM Symposium on Op
er-ating Systems Principles, October 1991.

(Lampson & Redell 80) Lampson. B. and Redell, D. Expe
riences with Processes and Monitors in Mesa.
Co mmunications of the ACM, 23(2): 104-117 ,
February 1980.

(Lo & Gligor 87) Lo, S.-P. and Gligor, V. A Compara
tive Analysis of Multiprocessor Scheduling Al
gor ithms. In Proceeding" of the 7th International
Co nference on Dist ributed Computing Sy"tems,
pages 356-363 , September 1987.

(Marsh el al. 91) Marsh , B., Scott, M. , LeBlanc, T., and
Markatos, E. First-Class User-Level Threads. In
Proceedings 0/ the 13th ACM Symposium on Op
era ting Systems Principle", October 1991.

[MoeHer-N ielsen &. Staunstrup 87] Moeller-N ielsen, P. and
Staunstrup, J. Problem-Heap: A Paradigm for
Multiprocessor Algorithms. Parallel Comput ing,
4(1):63-74 , February 1987.

(Moss & Kohler 87) Moss, J . and Kohler, W. Concur-
rency Features for the Trellis/Owl Language. In
Proceedings of European Conference on Object
Orien ted Programming 1987 (ECOOP 87), pages
171-180, June 1987.

(Redell 88) Redell , D. Experience Wilh Topaz TeleDe-
bugging. In Proceedings of the A CM SIG-
PLAN/SIGOPS Workshop on Parallel and Dis
tributed Debugging, pages 35-44, May 1988.

[Schroeder &. Burrows 90} Schroeder, M. and Burrows , M.
Performance of Firefly RPC. A CM Tran.5actio ns
on Co mputer Syste ms , 8(I): 1-1 7, February 1990.

(Scott el al. 90) Scott, M .. LeBlanc, T ., and Marsh , B.
Multi-Model Parallel Programming in Psyche. In
Proceedings of the 2nd ACM SIGPLAN Sympo
.:Iium on Principles and Practice of Parallel Pro
gramming, pages 70-78 , March 1990.

(Tevanian el al. 87) Tevanian , A. , Rashid, R., Golub, D.,
Black, D., Cooper, E. , and Young, M. Mach
T hreads and the Unix Kernel: The Battle for
Conlrol. In Proceedings of the 1987 USENIX
Summer Confere nce, pages 185-197 , 1987.

(Thacker el al. 88) Thacker, C., Slewarl , L., and Satterlh
waite, Jr., E. Firefly: A Multiprocessor Work
station. IEEE Transactions on Computers,
37(8):909- 920, August 1988.

(Tucker & Gupla 89) Tucker. A. and Gupla, A. Process
Control and Sched uling Issues for Multipro..
grammed Shared Memory Multiprocessors. In
Proceedings of the 12th ACl~'f Symposium on Op
era ting System! Princ iples, pages 159-166 , De
cember 1989.

[Vandevoorde &. Roberts 88} Vandevoorde ,
M. and Roberts , E. Wo rkCrews: An Abstrac
tion for Controlling Parallelism . Internat ional
Journal of Parallel Programing, 1 i (4):347-366.
Augusl 1988.

(Weiser e t aI. 89] Weiser , y(. , Demers, A ., and Hauser, C.
The Portable Common Runtime Approach to
Interoperability. In Proceedings of th e 12th
A e M Symposium on Opera ting Systems Princi.
pies , pages 114- 122 , December 1989.

(Wulf el al. 81) Wulf, W., Levin, R. , and Harbison , S. Hy
dra/C.mmp: An Experimental Computer Sys.
tem. McGraw-H ili , 1981.

(Zahorjan & McCann 90) Zahorjan, J. and McCann. C.
Processor Scheduling in Shared Memory Mul
tiprocessors. In Proceedings of the 1990 ACM
SIGMETRICS Co nference on J"feasurement and
Modeling of Computer Systems, pages 214-225,
May 1990.

[Zahorjan et al. 91] Zahorjan, J., Lazowska, E., and Eager,
D. The Effect of Scheduling Discipline on Spin
Overhead in Shared Memory Multiprocessors.
IEEE Transactions on Parallel and Distrib uted
S ystems, 2(2):180-198. April 1991.

VII . 19

DISCUSSION

Rapporteur: Andrew Thomas

Lecture One

The idea that we should standardize on kernel threads was refuted by Professor Levy
because "we do not really understand threads"; at this point Professor Randell quipped
that an understanding was not a requirement in standardization.

During the discussion of the allocation of processor to jobs the question was raised of
whether the processors were exclusively to jobs - Professor Levy confirmed that this
was indeed the case.

Professor Levy explained that it is his belief that application should be responsible for
scheduling and controlling its threads. Then, Professor Randell asked whether this
approach was related to mechanisms used in MVS (from IBM as employed in transaction
systems) ? Professor Levy responded by saying that he did not know what MVS provided
- however, he was not aware of any other system which provided the facilities he was
outlining (signals from the kernel etc.) Professor Levy continued by saying that
implementing threads within an address space had been done many years ago, at which
point Professor Shepherd commented that research in computing science did not look
back further than 10 years.

Professor Shepherd asked whether this technique would scale to multi-processors with a
large number of processors - Professor Levy responded by saying he felt it would work
for system containing a hundred or so processors, but did not feel able to comment on its
appropriateness for machines with say ten-thousand processors.

Mr Ron Kerr, asked whether an application should be structured according to the
number of processors available or by the amount of parallelism it contained. Professor
Levy said that applications should be decomposed "naturally" and this was why fine grain
threads at the user level were necessary as typically you would express much more
logical parallelism than physical parallelism, consequently threads need to be cheap.
Furthermore, the language runtime system would be responsible for managing
scheduling not the application program, the programmer would not necessarily be aware
of the user level scheduling . In this way, the runtime system could be considered as
another level interposed between the kernel and the application.

Professor Swierstra asked why the execution stack (for LRPe) is allocated/set-up at
call time rather than at binding time. Professor Levy replied that the stacks have been
allocated at binding time and at call time one is removed from a queue.

Professor Shepherd enquired whether the term RPe had been manipulated to suit
Professor Levy's purpose because the "remote" operations were local to a machine.
Professor Levy responded by saying that RPe was a mechanism for communicating
.between different address spaces (whether local or remote) and that he had optimised the
common case of cross address space communication on the same machine. He then
suggested the term protected procedure call instead of RPe .

Professor Tanenbaum reiterated Professor Levy's point about wanting an operating
system "not because it is clean but because it is fast'. Professor Tanenbaum continued by
stating that UN IX caught on because it was clean not because it was fast - Professor
Randell interceded with the comment that it was free - Uproar ensued as many people in
the audience simultaneously made derisory comments about UNIX. Professor Levy felt
that UNIX did not have clean semantics. Professors Randell and Tanenbaum put forward
V6 or V7 as having clean semantics. Professor Levy still held the position that UNIX did
not have clean semantics but proposed that its main attribute was portability.

j
I

.1

VII . 20

Professor Randell closed this discussion by having the last word - he attributed the
success of UNIX to its small set of well defined system calls .

Lecture Two

Professor Levy discussed the Emerald Language and stated that designing a new language
was a bad approach to solving a problem. Professor Randell offered the suggestion that
creating a new language was a good idea but writing a compiler for it was a bad idea, the
point being that the language would be used purely for "thought experiments".

Several delegates raised questions about the mobility of objects in the Emerald system.
Professor Levy explained that objects could be migrated to the same node on which
another object resided. As nodes were also represented as objects, an object could be
migrated to a particular (physical) node.

Professor Randell enquired whether Emerald had inheritance, and if so, was the scheme
single or multiple inheritance. Professor Levy stated that Emerald had a different notion
of inheritance (as compared to Smalltalk) instead inheritance in Emerald is composed of
two parts: an abstract type hierarchy which relates the interfaces between different
objects; and an implementation hierarchy which is sharing of code - there is no user
level sharing of code though.

During the presentation of threads and scheduling in the Presto System, Professors
Randell, Lee and Shepherd raised separate questions about the scheduling of threads and
the possibility of deadlock. Professor Levy explained that deadlock avoidance and
scheduling were up to the user. However, the runtime system supplied several possible
schedules and it was up to the user to decide which one to use.

Professor Shepherd commented that the structuring scheme in Amber was conceptually
similar to DASH, which Gordon Bell had outlined in a previous session. Professor Levy
concurred with this opinion but pointed out that the coherency in Amber was supported
by software, whereas the DASH system used complicated hardware. In both of these
systems the application needs to be structured to take advantage of locality of reference,
the difference is smaller on DASH (by maybe a couple of orders of magnitude), but it is
still an important issue for that system.

Dan McCue pointed out that objects have a representation which is accessed by an address
which is implemented by using a machine addresses; objects also have names and the
space of names represents another kind of address (by which an object can name other
objects). In Amber the machine address was being used for both kinds of address, and
that this was an implementation technique to improve performance, even though there
are conceptually different name spaces.

Mr Waterworth made the point that remote operations in Emerald were essential when
accessing remote phYSical resources (such objects can not usually be migrated) and
therefore remote invocation should also be fast. Professor Levy agreed and alluded to a
fast RPC system.

Professor Atkinson was concerned about the ever increasing resources required by
applications running on Amber. Professor Levy admitted that this was a problem which
could be solved by doing garbage collection (which is not currently performed) .

