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ABSTRACT

We introduce a new invariant semantics of concurrent systems which is a direct gener-
alisation of the causal partial order semantics. Our new semantics overcomes some of
the problems encountered when one uses causal partial orders alone. We discuss vari-
ous aspects of the new invariant model. In particular, we outline how the new invari-

ants can be generated by 1-safe inhibitor Petri nets.

1) Appearcd in the Proceedings of the PARLE'91 Conference, Lecture Notes in Com-
puter Science, Springer, 1991.
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1 Introduction

[n the development of mathematical models of concurrent behaviours, the concept of partial and
total order undoubtedly occupies a central position. Interleaving models use total orders of event
occurrences, while so-called 'true concurrency' models use step sequences or causal partial orders
(comp. [BD87,Mi80, Ho85, Pr86]). Even more complex structures, such as failures [Ho85] or event-
structures [Wi82], are in principle based on the concept of total or partial order. While interleav-
ings and step sequences usually represent executions or observations, the causality relation repre-
sents a set of executions or observations. The lack of order between two event occurrences in the
case of step sequence is interpreted as simultaneity, while in the case of causality relation is inter-
preted as independency. Both interleaving and true concurrency models have been developed to a
high degree of sophistication providing a framework for specification and verification of concur-
rent systems. However, some of the behavioural aspects of concurrent behaviour are difficult to
tackle in the interleaving or partial order based setting. For instance, the specification of priorities
using partial orders alone is rather problematie, in particular, if the events are not instantaneous
(see [La85,Ja87,JL88, BK91]). Another example are inhibitor nets (see [Pe81]) which are virtually
admired by practitioners and almost completely rejected by theoreticians, in our opinion mainly
because their concurrent behaviour cannot be properly defined in terms of causality based struc-
tures. We believe that problems of this kind follow from an implicit assumption that all behaviou-
ral properties of concurrent systems can be adequately modelled in terms of causality based struc-
tures. We claim that the structure of concurrency phenomenon is richer, with causality being only
one of several fundamental invariants generated by sets of equivalent executions or observations.

[n this paper we will show how such invariants can be defined and constructed.

2 Motivation

We start by discussing two specific situations which we believe identify an inherent inability of the
causal partial order semantics to properly cope with some of the aspects of the non-sequential be-
haviour. We will use Petri nets [Pe81,Re85] as the system model, however this does not mean that
our approach is restricted to Petri nets. COSY with priorities, or TCSP with priorities could be
used as well (comp. [JL88]).

The first example closely follows the discussion in [Ja87,JL88]. We consider a concurrent system
Con comprising two sequential subsystems A and B such that: (1) A can engage in event a and
after that in event b; (2) B can engage either in event b or in event ¢; (3) the two sequential subsys-
tems synchronise by means of the handshake communication; and (4) the specification of Con in-
cludes a priority constraint stating that whenever it is possible to execute 6 then ¢ must not be ex-
ecuted.

The priority Petri net in Figure 1 illustrates this example. We now observe that causal partial or-
ders cannot provide a satisfactory semantical model of Con. We first note that in the initial state
both events a and ¢ are enabled and can be executed simultaneously (note that the priority con-
strained is not violated since b is not enabled in the initial state). Thus in any causality based
model Con generates a causal partial order with one occurrence of a and one occurrence of ¢ such

that there is no causal relationship between the two event occurrences. Now, since a and ¢ are in-
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priority(b) > priority(c)

6] :

dependent, it should be possible to execute ¢ followed by @, and a followed by ¢. Whereas the former

Figure 1

execution sequence does not violate the priority constraint, the latter does as after executing a
event b becomes enabled and ¢ must not be executed. Note that in [BK91] it was observed that
whether the simultaneous execution of ¢ and ¢ should be allowed is related to whether or not one
can regard a as an event taking some time. If ¢ is instantaneous then the step {a,c} should not be
allowed, and then a causal partial order semantics of Con can be constructed along the lines de-
scribed in [BK91]. If, however, a cannot be regarded as instantaneous (possibly because it is a com-
pound event) then one should look for an invariant model more expressive than causal partial or-

ders to capture the behaviour of Con.

As the second example we consider a system which supports an error recovery mechanism. That
mechanism is invoked by an occurrence of a special signalling event, err, which may occur
simultaneously with any other event in the system. The result of an occurrence of err is that: (1)
the error recovery procedure is called and its successful completion it signified by an occurrence of
a special event rcv; and (2) during the error recovery no event in the system is allowed to be
executed.

We again observe that the causal partial orders do not provide a satisfactory model of the system's
behaviour. For it is possible to execute err simultaneously with some other event, say a, and then
after the termination of the error recovery procedure to execute event rcv. In any causal partial
order which might underlay such a system history, the occurrences of err and a must be
independent, and the occurrence of rcv must not precede the occurrence of a. This, however, means

that it is possible to execute err followed by a and rev, violating (2).

The above two examples show that causal partial orders are not expressive enough to satisfactorily
model the invariant properties of certain kinds of concurrent systems. In the rest of this paper we
will outline an alternative invariant semantics which overcomes the problems highlighted in the

above two examples.

The overall goal of this paper might be explained in the following way. Consider the nets of Figure
2. Two of them, PN, and PN, are nets employing inhibitor arcs. (An inhibitor arc between place p
and transition ¢t means that ¢ can be enabled only if p is unmarked [Pe81].) We want to define an in-
variant semantics of these nets in such a way that the following would hold (below by a ‘complete’
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history or execution of net P; we mean one which involves exactly one occurrence of @ and one oc-
currence of b).

(1) Different nets generate different complete concurrent histories.

(2) Each net except PN3 generates one complete concurrent history.

(3) In each case a concurrent history is defined on the same level of abstraction as the causal par-

tial order.

Taking into account only complete executions (or observations) expressed in terms of step sequen-
ces, we might define the semantics of the nets in the following way. Let 0;7,02,03 be the step sequen-
ces o7 ={a}{b}, 0s ={b}{a} and 03 ={a,b}. Then:

Steps(PN|) ={07,02,03}

Steps(PN3g) ={o1,02}

Steps(PN3) ={o;,09}

Steps(PN4) ={o3}

Steps(PN3) ={o1,03}.
Step sequences cannot distinguish between PN» and PN3, and do not tell us that each of PN, PNy,
PNy, PN generates in fact only one complete concurrent history. That each of PN;, PN4 and PN;
generates only one complete concurrent history is intuitively obvious (no conflict occurs in these
nets). However, this may be not so clear in the case of PNy. Moreover, one might ask why at all
should we distinguish between PN and PN3. To show that making such a distinction may in some
cases be appropriate we consider a program statement:

a:x=x+1 & b: x:=x+3
where "&" denotes the commutativity operator (see [LH82]) which means that the instructions a
and b may be performed in any order but never simultaneously. We believe that this statement
should generate one concurrent history comprising two essentially equivalent executions, 0; and
09, rather than two different concurrent histories, one comprising oy, the other os. Thus, since PNy
seems to be a natural implementation of the commutativity operator, it should also generate one
complete concurrent history. On the other hand, PNj is clearly a net generating two different com-
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plete histories. Thus each PN, (i=1,2,4,5) should generate exactly one complete concurrent history
H;, where: Hy ={07,09,03}, Ha ={0y,02}, Hy={03} and Hs={0;,03}; while PN3 should generate two
complete concurrent histories: H3; ={0;} and H3g ={02}. A question which one might now ask is
whether we could define these histories in a more structured and compact way, for example, by
using causality-like relations? There are only three causal relationships involving one occurrence
of @ and one occurrence of b, namely:

c¢;=aand bare independent

co= a precedes b

c3= a follows b.
Clearly, c¢; characterises history Hj, co characterises H3; and c3 characterises H3g. This means
that none of Hy, Hy and H; can be characterised by a suitable causal relationship. To solve the
problem we then observe that causality and independency can be characterised in the following
way:

Ifaand b are two events involved in a concurrent history H then

aprecedes b ifinall executions belonging to H, a precedes b.

a follows b if in all executions belonging to H, a follows b.

Ifa neither precedes nor follows b, then a and b are independent.

By following the above pattern we now can introduce three new invariant relations, called commu-
tativity, synchronisation and weak causality, in the following way:
acomm b if in all executions belonging to H, either a precedes b

or b precedes a

asynch b ifin all executions belonging to H, a is simultaneous with b
awcbh if in all executions belonging to H, a precedes

oris simultaneous with b.
One now may observe that a comm b characterises Hg; a synch b characterises Hy; and a wce b char-
acterises Hz. The new invariant relations can be used to distinguish between the five nets of
Figure 2, but it is not at all clear yet whether they would work in the general case. One might also
ask several other questions, such as: How can one define commutativity, synchronisation and
weak causality in the general case? What is their relationship to the causality relation as well as
their mutual relationship? Are there other relations of this kind? These are examples of questions
we will try to answer in this paper. As we already mentioned, the distinction between the concur-
rent histories generated by PNy and PN3 may or may not be desirable, depending on the intended
interpretation of the nets. Another question which seems to be interesting in this context is
whether there is a formal mechanism which, when switched on makes PN and PN3 semantically
different, and when switched off makes them semantically identical. It is then worth observing
that under the assumption that for every allowed concurrent history: the existence of the executions
in the opposite orders implies the existence of a simultaneous execution, PNy and PN3 become equi-
valent as Hs is no longer a valid history (we have to decompose it onto H3; and H3g). We will call

such rules paradigms, and show how they can be defined and used.
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3 The Model

The model we are going to develop is a three-level model: Systems-Invariants-Observations, and
we will proceed from the bottom (i.e. the observation level) to the top of the hierarchy. In this paper
we will focus on the invariant level. We will provide only the most basic results concerning the ob-
servation level (for more details see [JK90,JK90a]), while the system level will be considered in an

informal manner at the end of this paper.
3.1 Observations

We define observation as an abstract model of execution. More precisely, by an observation we will
mean a special report supplied by an observer who can perceive the evolution of a concurrent sys-
tem. Such an observer has to fill in a (possibly infinite) matrix with rows and columns being in-
dexed by event occurrences. The observer is supposed to fill in the entire matrix except the diago-
nal using only three symbols: —, < and <, with — denoting precedence, < following, and < sim-
ultaneity. (How the observer makes his judgement is beyond our interest.) Together with a natural
interpretation of the precedence relation this means that observations can be represented by par-
tially ordered sets of event occurrences, where ordering represents precedence, and incomparability

represents simultaneity.

A partially ordered set (or poset) is a pair po =(X,R), where X is a non-empty set and RCX X X is an
irreflexive (—aRa) and transitive (aRb A bRe = aRc) relation. We say po is total if for all different
a,b€X, aRb or bRa. We also denote: dom(po) =X, =p, =R, «p, =Rl and o, ={(a,b)€ XXX |a=b
A —aRb A —bRa}. Not all partial orders may be interpreted as possible observations. The addi-
tional properties we require are that: (1) the observer perceives only a single thread of time, and
can only observe a finite number of events in a finite period of time and that (2) an event can last
only for a finite period of time. [t can be shown that (1) and (2) lead to the following definition of an
observation of a concurrent history (see [JK90,JK90a] for details).
Observation is an initially finite interval order of event occurrences.

Note that a poset is initially finite if for every a€dom(po), the set {b€dom(po) | = a—>pb} is finite,
and that a poset po is an interval order if (a=,,b N\ c=pod) = (a—>p,d \/ c—>pob). The definition of
interval order is taken from [Fi70], however the origin of this concept can be traced back to
Wiener's 1914 paper [Wnl4], where he considered interval orders as a way to analyse temporal
events, each event occurring over some finite time span. The main characterisation of interval or-
ders is given below.

Theorem 1 [Fi70]
A countable poset po is an interval order if and only if there are ¢, p : dom(po) = Reals such that
p(a) >0 for all @, and if a,b€ dom(po) then: a—,,b & dla) + pla) <d(b). []

The above result was strengthened in [JK90a] by showing that we can additionally require that ¢
is injective. The general properties of interval orders and their applications to the measurement
theory were discussed in [Fi85], while the application of interval orders to model observations of
concurrent histories was discussed in [JK90,JK90a].
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A step sequence is an initially finite poset po such that (a<>,,b N\ b p0c A aZc) = a<p,c, while an
interleaving sequence is an initially finite total order. Let Obs, Obsg,p, Obs,y denote respectively
the sets of observations, step sequences and interleaving sequences. We have Obs,yC Obsg,,CObs,
and throughout the rest of this paper, o (with an index, if necessary) will usually range over Obs.

3.2 Invariants and Histories

A description of a concurrent system solely in terms of the observations it may generate is unsatis-
factory for many reasons. In fact, any argument made in favour of causal partial orders existing in
the literature (see, for instance, [BD85]), can also be used to support the introduction of the new in-
variants. We will first focus on the relationship between different observations of a concurrent his-
tory, where a concurrent history is essentially an invariant or a set of invariants satisfied by all its
observations. It will be shown that the familiar causality relation is just one of many possible in-
variant relations. There are, of course, different ways in which an invariant might be defined for a
given set of observations, depending on the specific kind of properties of the system one is inter-

ested in. In this paper we restrict ourselves to invariants which seem to be the most basic ones.

A report set is a non-empty set A of observations such that dom(o;) =domf(og) for all 07,02€A. We
will denote by dom(A) the common domain of the observations in A. Note that a report set may be

considered as the first approximation of a concurrent history.

Let A be a report set with the domain . A simple (binary) relational invariant of A, is a relation
[CY X ¥ which can be characterised by:

(a,b)€l @ azbN\Yo€A. P(a,b,o),
where ®(a,b,0) is any formula derived from the following grammar:

D= true | false | a=yb | asyb |ae,b | 2@ | dyP | PAD.
Some of the basic terms of the above grammar are redundant, e.g., a<,b is equivalent to —(a—,b
\/ a+,b). However, this does not cause any problems, while increases readability. Let SRI(A)
denote the set of all simple (binary) relational invariants of A, and let =4, <4, <4, =a, 74, Nabe
binary relations on Z such that for all a,b€Z,

a—pb & az=bAVo€A a—,b

aspb @ axbAVo€A aeyb
aepb & azbAYo€A aeyb
a=pb © az=bAYo€A a—,b\/ ae,b
asab © azbAVYo€A a—, b\ ae,b

afNpab & azxbAYo€A aeyb\/ aeryb.

The relations =4, <4 are called causalities, =, commutativity, <> synchronisation, and /4, N\x
weak causalities. In the sequel we will use —,«,<,=, 7,\ to denote mappings, called invariants,
which for every report set return respectively —4,44,<4,=4,”4,N4a. The set of all invariants
will be denoted by SRI.

Proposition 2
For every report set A, SRI(A) ={&,—4,<4,<4,=4,74,\4,L X E-idz}, and there is A such that
SRI(A) consists of eight different relations. []
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Proposition 3
—p=(=2)1, Na=( )1, 2p= aN=pand o4 =N\, [

Due to the symmetry present in SRI(A) one can in fact consider only four non-trivial invariants,
namely =4, <4, =4 and /4. Furthermore, =4 and ©4 may be expressed in terms of /4 and =,,
s0 it seems reasonable to try to find a possibly smallest sets of invariants from which all the rela-
tions in SRI(A) could be generated.

A signature of a non-empty family F of report sets is a set of invariants SCSRI such that for all
AN €F we have:

(dom(A) =dom(A,) AVIES. I(A)=I(A,)) = (VIESRI. I(A)=1(A,)).

A signature is universal if F is the family of all report sets. Moreover, a signature S of F is minimal
if (1) no proper subset of S is a signature of F, and (2) for every J€S and every I€SRI-S, if
I(A)CJ(A) for all report sets A, then (S-{J})U{I} is not a signature of F. [.e., a signature is minimal
if it cannot be 'reduced' by removing any of its invariants (see (1)) or by replacing any invariant by

a 'weaker' one (see (2)).

Proposition 4
{/,=}and {\,=}are the only minimal universal signatures. []

A history is a report set A which is a complete (w.r.t. certain viewpoint) representation of some
phenomenon underlying the reports of A. This completeness is to be captured by requiring that A
includes all reports satisfying the relevant properties which can be attributed to the report sets. In
our approach, these properties are the domain of A, dom(A), and the simple report invariants
generated by A, SRI(A).

For every I€SRI, let ®; denote any formula (see the definition of a simple relational invariant and
Proposition 2) such that (a,b)€I(A) & Vo€A. ®fa,b,0). Let A be a report set and SCSRI. The S-
closure of A, denoted A(S), is the set comprising all observations o such that dom(o) =dom(A) and
forallI€S, (a,b)€I(A) = Dfla,b,o0).

Proposition 5
(1) ACA(S),
(2) IfSisauniversal signature then AS) =ASRD, ]

Consider a report set A ={07,02}, where 0; and og are as in Figure 3. Then a=4b, a=,c and b=xc.
Hence A(®)={0;,09,03,04,05,05}, where the o; (i=3,4,5,6) are shown in Figure 3. Thus ACA(=).
Moreover, A(®) =A(SED, We now can introduce the central notion of this paper.
A history is a non-empty report set A such that A =A(SRD.

Le., a history is a report set which is fully characterised by the invariants it generates. Thus if A is
a history, denoted A€ His¢, then the following essentially deseribe the same thing.

A

(D, =A,<A,90,=2,71"4,E%XZ-idx)

(A/a,=4)

(Na,=4)

(Iy(A),....Ip(A)) where {I},...,I;} is a signature of any F' such that A€F.
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Figure 3

In concurrency theory, the causality relation is sometimes treated as an invariant, and sometimes
as the set of all observations (step sequences or interleavings) it generates. We have just shown

that this dual treatment can be generalised to other invariants in SRI.
3.3 Components and Paradigms

Let A be a concurrent history. The set SRI(A) can be treated as any other finite family of sets. In
particular, we can find all the components defined by this family, as shown in Figure 4. There are
seven non-empty components (non-empty means that there is A such that all seven components

are non-empty), and we will denote CSRI(A) ={—4,4,<4,54,24,<4,la}-

A formula which says that a given relationship between two event occurrences a and b has been
observed in A is called a simple trait. There are three simple traits: w_,=30€A. a—,b, y_=30€A.
a<,b and y.,=30€A. ae>,b. One can easily show that the relations in CSRI(A) can be defined as

conjunctions of simple traits and their negations.

Proposition 6

For every a,b€dom(A), we have
a=2pb © YN\ P Ay
ae—pb & YLoAy. Ay

A Sa —>A
s - - £X Z-ids
A I “A 4 =4 T “a
lla

Figure 4
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© YAy ANAys
® YAy yo
a=2ab © YNyl Ay
aspab & Yo Ay Ny
adlab & yoAgAyea. O

Since we have — 4 =(«4)-! and =4 =(<4)-! we need to discuss only five components: =4, [a, Sa,

ae>pb

asab

< and = 4. The first component (and also an invariant), =4, is causality. The second component,
lla, should be interpreted as concurrency (two events can be observed simultaneously and in both
orders). Both causality and concurrency can be found in the models supporting the notion of true
concurrency. The third component, s,, represents what is usually referred to as interleaving (two
events can be observed in both orders, but not simultaneously), and is usually dealt with on the
level of observations rather than invariants. The fourth component (and also an invariant), &4,
can be interpreted as synchronisation. It is currently introduced only in its implicit form, e.g., as a
silent action in CCS [Mi80]. The fifth component, =4, is not to our knowledge a part of any of the
existing models. It captures disabling of one event by another event and was discussed in [Ja87]
from where we took its intuitive meaning. As one now may see, the five components describe quite
precisely the semantics of the nets of Figure 2, namely a|y 6, aSy,b, a—pn,,b, b =H 0, aeyband
az>p,b.

The approach to concurrency which is based entirely on the concept of causality relation requires
that for every concurrent history the following holds: if two event occurrences can be observed sim-
ultaneously, then they can also be observed in both orders, and vice versa. This means that every
concurrent history besides being invariant-closed must also satisfy the following: (J0€A. aeyb) &
(Jo€A. a—>,b) A (Jo€A. a,b). Note that this formula is built from simple traits. In general, any
formula built in this way will be called a paradigm, and will characterise the internal structure of

of concurrent histories.

Formally, the paradigms, w€ Par, are given by the following syntax.
w:=true | false | g5 | g | Yo | "0 | 0V | oA | 020
The evaluation of the formulas w€Par follows the standard rules [Mo76]. Note that in this gram-

mar we need all three basic terms y_,, yand y.,.

A history A€ Hist satisfies a paradigm w€ Par if for all a,b€dom(A), a# b = w(a,b,A). We denote this
by A€ Par(w). Two paradigms, w and w,, are equivalent, w~w,, if Par(w) =Par(w,). Let w; (i=1,...,5)
be the following paradigms:

0= Yo YoV Pe 02= Yo A YPe = Yo
O4= Y PPV Yo 03= Yo N\ Yo = Ye
W= Yo A\ P\ Yo = false

Proposition 7

(1) A€Par(w;) & ©4=0.

(2) A€Par(wg) & Sp=0.

(3) A€Par(wg) ® —2p=ep=9.

(4) A€Par(wg) ® —p=ep=00

(5) A€Par(wz) ® a=9. [
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Proposition 8 (equality up to ~)
Par:{w,-I/\.../\coik[ k=5 ij$5}. ]

From the last proposition it follows that we have 25 =32 different paradigms. However, the nature
of problems considered in Computer Science is such that two of the w;'s may be safely rejected. The
first w; that we reject is wy since it rules out causality and hence invalidates the sequential compo-
sition construct. For a similar reason we reject wj since it is not compatible with the standard par-
allel composition operation. Thus we consider 23 =8 paradigms:

ny =true M3 =ws 5 =wiN\wg ny=wsN\w3

Mg =wj My =3 ng=wiN\w3 g =wiNwaNwg

Proposition 9 (relationship between components and paradigms)

(1) A€Par(my). (5) A€Par(ng) & os=5,=0
(2) A€Par(ng) & o =0. (6) A€Par(ng) & o =>2,=0
(3) A€Par(ng) & S,=9. (7) A€Par(ng) © Spy=—,=0
(4) A€Par(ng) & —p=0. (8) A€Par(ng) & ep=S=>,=0. ]
n
9 4
5 ny
ng
Figure 5

We obtain a hierarchy of eight fundamental paradigms of concurrency shown in Figure 5. In this
paper we will only discuss nj,n3 and ng. Paradigm n; simply admits all concurrent histories. The
most restrictive paradigm, ng, is the paradigm adopted by the models supporting true concurrency
semantics. As we pointed out earlier on, this paradigm has given rise to a number of elegant the-
ories in the field of concurrency, however, it has some limitations such as an inability to model
some aspects of systems with priorities. In the next section we will show that 3 allows us to pro-
vide an invariant semantics for inhibitor nets, as well as for priority systems. The following major

result characterises minimal signatures of the eight paradigms.

Theorem 10
(1) {7,=}1is a minimal signature for Par(n;) and Par(ny).
(2) {=,—} isa minimal signature for Par(ny) and Par(ng).

(3){—,/7} isaminimal signature for Par(n3) and Par(n;).
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(4) {7} is a minimal signature for Par(ny).

(5) (=} is a minimal signature for Par(ng). (]

Thus when the law Jo€A. ae,b & (Fo€A. a—,b) A (Fo€A. b—,a) holds, then causality is the only
invariant that is needed, and this fact is a theorem in our approach. Note that in the most general
case (i.e. Par(ny)) the explicit causality invariant is not needed. We also note that under the para-
digm 3 (and any other paradigm which contains it, i.e. nz,n7,mg8) we cannot distinguish between
PNgand PNj of Figure 2.

4 Applications
4.1 Interleavings Inside ng

Paradigm ng deserves special attention as it is the only paradigm considered in the present lit-
erature. We will show that for histories satisfying paradigm mg, one only needs the sequential ob-
servations. A base of a concurrent history A is a pair (A,,S), where A,CA and SCSRI, such that
A,S)=A. In other words, a base provides a complete description of a history in terms of a (possibly

smaller) set of observations and a suitable set of simple report invariants.

Proposition 11
[fA€Par(ng) and A;yy={0€A | 0€0bs;y} then (A, {—}) isabase of A. []

The above result means that in the case of paradigm ngit is possible to adequately represent a con-
current history by taking only its sequential observations. Clearly, this was the basic idea behind
many models [Ma86,KP87], and can be traced back to [Sz30]. One should emphasise, however, that
Proposition 11 cannot be extended to any other paradigm.

4.2. Step Sequences Inside n3

In this and the next section we shall assume that all observations are step sequences, and that
every history considered belongs to n3. From Theorem 10 it follows that in this case {/,—}is a
minimal signature. We shall provide an axiomatisation for this kind of signature and then define
an invariant semantics of inhibitor nets. Below Obsg,, denotes the set of all step sequences, and Z,

denotes the set of all event occurrences.

A pre-ordered set is a pair (X,R) such that X is a non-empty set and RCX X X is an irreflexive
(—aRa) and weakly transitive (aRb A\ bRc = a=c\/ aRc) relation (see [Fr86]).

Note that for any A, the causality —, is always a poset, while the weak causality /4 is always a
pre-ordered set. We will show that if AC Obsg,p and mi3 holds, then the pair {—, 7} can be modelled
by a certain relational system which we call a composet.

A combined purtial order (or composet) is a relational system co=(X,P,R) such that X is a set and
P,RCX XX are two relations satisfying the following.

(1) —aRa

(2) aRbA bRc=a=c\/aRc

(3) aRb= —bPa

(4) aPb=aRb
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(5) aRb/\ bPc = aPc
(6) aPbA bRc = aPe.

Intuitively, P corresponds to =, R corresponds to 7, and X is a set of step sequence observations.
The conditions (1) and (2) say that R is a pre-order; (4) indicates that P is included in R; (1),(4)
together with, e.g., (5) imply that P is a poset; (3) is a kind of 'consistency’ rule between the two or-
ders; and (5), (6) give a kind of combined transitivity which ties together P and R.

Corollary 12
If (X,R,P) is a composet then (X,P) is a partially ordered set and (X,R) is a pre-ordered set. []

Proposition 13
If ACObsg,p then (dom(A),— 4, 4) is a composet. []

The above proposition is not true if A-Obsg,, =D since (5) and (6) may not hold. A relational sys-
tem rs=(X,P,R) with P, RCXXX is called a ngster-history descriptor if XCZ,, R=/(rs) and
Pz_’d(rs), where
A(rs) ={0€ Obsgep | dom(o)=X N (Va,b€X. aRb = a—,b\/ aeyb)

A (Va,b€X. aPb = a—,b)}.

Theorem 14 (axiomatisation of { ,—})
Let X be a finite set. A relational system rs =(X ,R,P) is a ngstep-history descriptor if and only if
XCX,and rsis a composet. []

The assumption ACObsgp is essential. Without it the result does not hold. The above theorem pro-
vides an axiomatisation of signatures for histories involving finite step sequences and conforming
to the paradigm n3 (and all paradigms below 13 in the hierarchy of Figure 5). [t says that every fi-
nite composet of event occurrences may be interpreted as a representation of a finite concurrent
history of the kind described above. In other words, in this case concurrent histories can be unam-
biguously described by composets (in the same way as the histories in ng can be described by causal
partial orders). For infinite histories the axiomatisation is less elegant as we have to take into ac-
count the fact that step sequences are initially finite posets. We will not discuss this issue in detail,
but basically one needs to provide an analysis similar to that for infinite causal partial orders (see
[BD85]).

There is certain similarity between our definition of the composet and the axioms for strong and
weak precedence relation presented in [La86]. However, the way these two concepts are derived,
the motivations, and the reasons for their introduction are quite different. Hence this similarity is
either accidental or, as we would suggest, the composet is a natural generalisation of the concept of

the partial order, and it may be useful for various, perhaps unrelated, applications.
4.3. Composet Semantics of Inhibitor Nets

In this section we outline a method of constructing the set of composets of a concurrent system rep-
resented by a l-safe Petri nets with inhibitor arcs [Pe81]. Note that 1-safeness means that each
place may hold at most one token. An inhibitor arc between place p and transition (event) ¢ means
that ¢ can only be enabled if p is not marked. In the diagrams inhibitor arcs are identified by small
circles. A technique similar to that described below might be used for other kinds of inhibitor nets,
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as well as for various priority models and nets (see [JL88]), however this would usually require the

introduction of some new formal concepts.

The standard approach in which the partial order semantics of ordinary 1-safe Petri nets is derived
employs occurrence nets [Re85]. An occurrence net can be regarded as a representation of a cau-
sality relation on event occurrences (or a single abstract history of the net). It is an unmarked acy-
clic net whose each place has at most one input and one output transition. Occurrence nets are ob-
tained by unfolding marked nets and resolving the conflicts via the firing rules, as shown in Figure
6(a,b). Each occurrence net induces a poset on event occurrences derived in the following way:
First an auxiliary relation —,,, is derived by transforming each three-node path
event;—place—>events in the graph of the occurrence net into a pair event;— 4, zevents. Then a poset
is obtained by taking the transitive closure of —,,,. For the occurrence net of Figure 6(b), the rela-

tion —,,, is shown in Figure 6(c), and the resulting poset is shown in Figure 6(d).

The way in which we construct composets for an inhibitor net will closely follow the above proce-
dure. Let Ny be the inhibitor net shown in Figure 7(a). We first define an occurrence net of an in-
hibitor net by generalising in a straightforward way the standard definition of an occurrence net of
an ordinary Petri net. The only new element is the handling of the inhibitor arcs. Since in the oc-

currence net places represent tokens, it is not possible to join ¢ with place 2 using an inhibitor arc.

2
O

aux

(c)

ordinary 1-safe Petri net

(a)

poset generated by
occurrence net occurrence net
(b) (d)

Figure 6



VLI5S

However, we can join ¢ with the complement place [Re85] of 2, i.e. place 5, using an activator arc
(with a black dot at one end). Intuitively, this means that ¢ can be executed only when 5 is marked.
We also note that there is no restriction on the number of activator ares which can be adjacent to a
single place. A possible occurrence net for the inhibitor net N is shown in Figure 7(b). The next
step is to transform the structural relationships embedded in the graph of the occurrence net into
two auxiliary relations, =4, and 7 ,,,, from which the composet can be derived. There are three
structural relationships which we need to consider, as shown in Figure 8(a). For the occurrence net
of Figure 7(b) the two auxiliary relations are shown in Figure 8(b). The final step has to take into
account the various transitivities which hold for a composet. More precisely, if =4, and /4, have
been defined for an occurrence net ON with £ being the set of event occurrences, then the composet
induced by ON is defined as co(ON) =(Z,—, 7), where (£,—, /) is a minimal (w.r.t. set inclusion for
both = and /) composet such that —,,,C— and /4,,C /. [t can be shown that co(ON) is well-
defined (i.e. it always exists and is uniquely defined). The algorithm for deriving co(ON) is a
straightforward generalisation of an algorithm which yields the transitive closure of the auxiliary
relation in the construction of the poset for an ordinary occurrence net. For the occurrence net of
Figure 7(b), the resulting — and ./ are shown in Figure 8(c).

Final Comments

Our main goal was to show that in order to cope properly with general concurrent behaviours one
should not be restricted only to poset based structures. We also tried to show that causality is only
one of many possible invariants. The other invariants can be derived in a natural way when we use
the bottom-top approach starting from the concept of observation as the primary notion. Although

in this paper we defined observations as a certain kind of poset, concepts such as invariant, signa-

1 ° 1
Ny
l a
5 2
[ !
4 a
b °
3
C h 2
(a)
il 3

(b)

Figure 7
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(a)

7 aux

(b) (c)
Figure 8

ture, S-closure, history, etc., are not associated with any specific definition of an observation. This
paper presents a simplified version of a more general approach. In [JK90a] a general concept of 're-
port system' is defined, and all the concepts from Section 3 can be rendered in terms of 'reports' -
generalising the notion of an observation. Consequently, the results presented here are just special
cases of more general results obtained in [JK90a]. The extension of the definition of an observation
(e.g. by adding relation representing uncertainty or by using the model similar to that of [AK85])

would not change the general structure of the approach introduced in this paper.
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DISCUSSION
Rapporteur: J. Harley

Colin Bron asked, in relation to the three types of semantics discussed in the paper,
whether Dr. Koutny had defined composition rules for his system. Dr. Koutny replied
that he could have defined composition operations, based on the composition of partial
ordes, but that he had not looked at this problem yet.

Brian Randell asked what insights should we gain regarding notations such as CSP
and CCS - in terms of advantages or disadvantages. Dr. Koutny replied that the prob-
lems were essentially the same as those with Petri Nets, and remarked that this kind
of problem is orthogonal to that of comparing Petri Nets to CSP and so on. He also
emphasised that one important technique to be gained from his work was that of apply-
ing reduction techniques.

Alexander Jakovlev asked whether Dr. Koutny had made any comparisons to other
paradigms. Dr. Koutny said that this was another topic for future work.

Chris Holt asked what the problems might be if one introduced ‘‘real’’ time into the
system. Dr. Koutny replied that one would need a non-linear, partial order time domain,
and that this was not included in the present model as it would be too complex.
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