
v

MASSIVELY PARALLEL COMPUTERS

R N IBBETT

Rapporteur: M J Elphick

1

!

I

-I
I

-. ,

•

V.1

MASSIVELY PARALLEL COMPUTERS

R.N. Ibbett
Department of Computer Science

University of Edinburgh
The King's Buildings

ER93JZ

Parallelism comes in essentially two varieties, data parallelism and code par
allelism, and most available systems can be divided correspondingly into Flynn's
SIMD (Single Instruction Multiple Data) and MIMD (Multiple Instruction Mul
t iple Data) systems. A few systems can act as both (e.g. the Fujitsu AP-1000)
and Multiple SIMD systems will doubtless appear as technology progresses.

SIMD systems have been around for a long time, and are relatively easy to
program, since the code is sequential , and what is needed are language extensions
(typically to FORTRAN) to allow software data structures to be mapped on to
the data parallelism in the hardware. Naturally the usefulness of these systems
depends strongly on there being a significant amount of data parallelism in the
application, and although they represent a fairly mature technology, their use has
until recently been largely confined to niche areas .

MIMD sys tems are taking longer to mature since they offer an additional
dimension of complexity i.e. multiple, concurrent threads of code execution, and
th is calls for a great deal more human ingenuity to make effect ive use of such
systems . The interconnection problem is also more complex, since whereas SIMD
systems depend for their performance on regularity in t he data and consequently
require, in most cases, only simple geometric communication patterns, MIMD
systems frequent ly involve either full or random commun icat ion patterns which
cannot easily be provided in hard ware.

Thus t he answer to t he question "What const itutes a massively parallel sys
tem?" is tens (possibly hundreds) of thousands of processors in SIMD systems,
but only hundreds (possibly thousands) of processors in MIMD systems.

1 MIMD Systems

The taxonomy of MIMD systems has been an area of fruitful (fruitless?) aca
demic endeavour for many years. The principal division is between shared mem
ory systems and message passing systems. Shared memory systems (e .g. the Cray
X-MP / Y-MP series) have been successful as supercomputers primarily because
each processor is so powerful; the scope for parallelism is str ict ly limited, simply
because all the memories are shared by all the processors and there has to be a
bottleneck somewhere. Message passing systems provide greater scope for paral
lelism. Here the novelty has been primarily in devising interconnection schemes
which are bounded in t ime and space by something less than the square of the

V.2

number of processors (c.f. the cross· bar switch in C.ll1mp, the original multi·
processor). Hypercubes and butterfly networks have found favour in the USA;
in Europe, where most parallel systems are based on the Transputer, more ad
hoc solutions involving a multiplicity of small configurable cross· bar switches have
been used . These allow the user to change the topology to suit the application. If
the problem seems to require a tree of processors, a square or even a hypercube,
the switches can be configured accordingly. These switching mechanisms were
developed as extensions to the limited funct ionality of the point-to-point commu
nications protocols implemented in t he Transputer. The development of efficient
software routing protocols first in software [7] and in hardware in t he T9000 is
now obviating the need for switch configurability.

Hypercubes

k k The hypercube, formally known as a 'binary k-cube', connects N = 2 networ
nodes in the form of a cube constructed in k-dimensional space. The corners of
this cube represent t he nodes, and the edges represent the inter-nodal connections.
More formally, if the nodes are numbered from a to 2k - 1, nodes whose binary
numbering differs in exactly one position have connections between t hem. Figure 1
shows how binary k-cubes are constructed for k in the range a to 4.

o
K=O

K=3

10
K = l K=2

K=4

Figure 1: Constructing binary k-cubes

The binary k-cube therefore has k routing functions, Gi {a ::; i ::; k - I}, one
routing within each dimension, defined thus

Gi(X) = {fi I I} (x)

Informally; for each dimension either an exchange permutation (fi) or an identity
permutation (1) is applied to x in order to establish a route from any source

V. 3

to any dest inat ion node. A route from any source to an)' desti na tion label can
be found by starting at the source node and then comparing each bit in the
source and destination labels in turn. If the bits are the same, then the identity
permutation is appl ied to t he source label and the route is not extended. If t he bits
are different, then the exchange permutation is applied to the source label, and
the route extends along the link connect ing t he current node to a new node with
a label equal to f;(cur rent label). Such a route is illust rated in figure 2. Since the
maximum number of bits required to identi fy n processors uniquely is k = POg2 n 1
the path length between an arbitrary pair of nodes is at most k.

110 1 1 1
S 100 1 I

0 1 100 1

100
10 1

I
I

I
CJIC, IC,IS II I ,

= 0 I
\ 011
\ 010

\ ,
.- 000

I / 00 1
\ I

" --.-, / - -- -
C, IC,ISII C ,ISI

Figure 2: Routing in a binary k-cube network

It is immediately apparent t hat the binary k-cube has a very ri ch interconnec
t ion struct ure, with a total of k2k

-
1 bidirect ional connections, and k communica

tion links per node. One possible problem, which could limit the number of nodes
in an k-cube network, is the number of communication links required per node,
and hence the physical complexi ty of the whole network . In fact, it is the length
of the interconnecting wires which poses the most serious problem for networks
with large values of k. This can be shown by examining the rate of growth of the
volume of the network.

The rate of growth of the inter-nodal distances in a binary k-cube depends
on the length of one side of the machine. Since most machines are constructed
physically in three-dimensional space, one side of a machine must have length
which is 0(N 1

/
3

). Consequently, the time delay associated with the transmission
of messa~es across the most significant dimension of the network will also be equal
to 0(N1 3) . If the system is synchronous then the clock speed of the machine must
decrease in proportion to th is increasing delay; alternatively, if each processor runs
at 0(1) instructions per second then t he interval between each communicat ion
event must increase in proportion to the increased transmission delay. The net
effect of increasing wire length is that the communication bandwidth per node

V.4

decreases as the system becomes larger. T his is csscllti a.ll y it problem of physical
scalability.

The Cosmic Cube [17] and Mosaic [16] experiments carried out by Seitz at
Caltech are typical of the kinds of architecture that can be constructed using
binary k-cube topology. The commercial der ivat ives of these are the Intel iPS C
machines and the machines from N-Cube Corporation.

The ini t ial Intel range of iPSC/l machines, and t he subsequent iPSC/2 and
iPSC/860 machines, all have a maximum configuration size of 128 processors, and
offer peak performances of 27 MFLOPS (iPS C/2) and 7.6 GFLOPS (iPSC/860).
A maximum configuration N-CUBE-2 system would contain 8192 processors; the
largest system delivered so far contains 1024. Each processor node contains a
Vax-like 64-bit CPU which offers a performance of 7.5 MIPS/3 .3 MFLOPS.

1.1 Transputer based systems

T he major European vendors of Transputer-based systems are Meiko Scientific
Ltd., Parsys Ltd . and Parsytec GbmH.

Meiko

Meiko's main product is t he Computing Surface, a modular and expandable di s
tri buted memory system. Early versions were hos ted by Vax, PC or Sun machines,
but current versions are self-hosted, stand alone or networkable multi-user systems .
A Computing Surface consists of:

• an arbitrary number of individual processors (which may be Transputers,
but may also be SPARCs or i860s)

• an arbitrary number of special purpose boards (g raphics, I/ O, etc)

• an interconnection network for message passing

• a supervisor bus which provides some control functions for the system as a
whole.

Interconnection between the processors is provided by means of custom VLSI
crossbar switches which connect the processors to the backplane, and by the back
plane routing mechanism itself, details of which remain confidential. There is no
theoretical limit on the number of processor modules which can be installed in
a system, but an upper limi t on the length of the in te rmodule link wire imposes
a practical limit . The largest system currently in operation is the Edinburgh
Concurrent Supercomputer, which contains over 400 compute processors.

V.S

Parsys

Parsys produce the SuperNode seri es of machines (backplane compatible with
Telmat T ·Node machines) which offer a maximum possible configuration of 1024
Transputers (the largest so far delivered contains 256). The prime feature of the
SuperNode is its switch architecture, which was designed as part of an ESPRIT
project. A single level switch is constructed from eight 72·way crossbar switches,
which can themselves be interconnected by further switches to form a hierarchy.

Parsytec

The top range machines from Parsytec, the Super Cluster series, are stand alone
machines with up to hundreds of Transputers. The basic building block is a
16·Transputer cluster which contains a Network Control Unit (NCU). The NCU
provides full connectivity between the 16 Transputers in the cluster and has a
further 32 links with which to interconnect clusters. Systems with up to 400
Transputers have been delivered.

2 SIMD Sytems

The evolution of SIMD array processors can be traced as far back as 1958, when
Unger published a paper entitled "A Computer Oriented Towards Spatial Prob
lems" [20], from which the first array processor SOLOMON was developed [18, 10].
The SOLOMON design consisted of a two-dimensional array of 32 x 32 process
ing elements (PEs), each of which had 128 32-bit words of store and a bit-serial
arithmetic unit. All PEs acted in unison, under the control of a single stream of
broadcast instructions. The SOLOMON design had a major effect on the subse
quent thinking of computer architects , and led to the development of several im
portant high-performance architectures including the ILLIAC IV machine [1 , 9],
the Burroughs Scientific Processor [13], the Burroughs PEPE machine [8, 21], the
Goodyear Aerospace MPP [5], the Goodyear Aerospace STARAN [2, 3, 4], and the
ICL Distributed Array Processor (DAP) [14] . Advances in VLSI technology have
had a considerable impact on the design of SIMD array processors. The reduc
tion in minimum feature size, and the availability of high-density gate-arrays and
full-custom VLSI as a means of realising a particular implementation contributed
towards the construction of the Connection Machine [11] by Thinking Machines
Corporation in 1985.

2.1 The DAP

The ICL DAP enjoyed moderate commercial success and extensive use by the
scientific research community, particularly in the U.I<. In 1986 Active Memory
Technology was formed as a spin-off company to develop a VLSI version of the
DAP suitable for use as an accelerator hosted by, for example, a MicroVAX or a

V.6

/(fl6()O..~ / / / /
/DtsP\.A~ . / '" HOST

/"'''''''' HO ST V CONNECTION V UNIT

/ / r /
/ MASTER

CODE

/ CONTROL / MEMORY UNIT

Q P!....o.NE 'O'CCVMU\. ... ,O't

QI

• oc~, ",,'M" '0""0_1
AI

'oc"'" ,,,., I
CI

/ FAST DATA
CHANNEL I D

PROCESSOR ELEMENT I

I , ,

1
:!7

"
~

• II •
ARRAY MEMORY

Figure 3: DAP archi tecture

Plane

~j
'-
'-

"-
"-

Vert ica l
Cylind er

D
./

./

./

./

./

V.7

I II// X::"

\ \ \ \ \ x -J
Horizontal
Cyl inder

Figure 4: DAP array geometries

Torus

Sun workstation. The ICL DAP had a 64 x 64 processor array; the first AMT
DAP (Model 510) had a 32 x 32 array, but is now also available in a 64 x 64
configuration (Model 610) , running on a 10 MHz clock.

The DAP architecture is shown in figure 3. The processing elements (PEs)
are arranged in a square array, and each comprises a single-bit processor (in the
DAP / CP8 range announced in 1990 each PE also includes an 8-bi t coprocessor).
Each PE has a local memory which can range from 32 [(bits to 1 Mbits per PE.

Each PE has input connections from its four nearest neighbour processors
in the North, South, East and West directions. The boundary connect ions at
the perimeter of the array are determined by bits in the instruction. Either the
boundary inputs are set to zero and boundary outputs are discarded, or else the
boundary inputs are taken from the boundary outputs within the same dimension.
Hence, East may be connected to West and North may be connected to South.
The resulting four geometries are illustrated in figure 4.

Program control is carried out by the Master Control Unit, which takes instruc
tions from the Code Memory, interprets then and controls the PEs, the memory
and data transfers. Access to the array is via row and col umn data highways.

Interaction between the DAP and the host is controlled by the MC68020-based
Host Connection Unit. Data can also be transferred to and from the memory via
the 0 plane over a fast data channel (70 Mbytes/s). This is particu larly useful for
the attachment of high-speed graphics displays.

Mesh

Ne twork-
Ou tput

V.8

-"--1 1(1111 ~' C U ---':=J tll..· 1 1111 MI'Il HHY 1\ t
,-- . 1~1 IW

-~-

I O utput MUlt,~
t T

Boolcilrl Processor

To M CU
1. 1~1 1 1 W"YS

r - ----- - - - -- ..,
I
I 0 I
I Ripple

Carry ~I
to I

Neighbour I

G 0
l ·bi! Adder

I
I
I
I Ca rr y ·in from
~ Neighbour
I

I '---------------

M esh·Network Inpui s

Figure 5: DAP processing element architecture

PE architecture

A simplified view of the internal architecture of a single PE is shown in figure 5.
Each processing element consists of a single-bit adder, an input multiplexer, an
output multiplexer and an n X I-bit store. The ALU consists of three one- bit
registers, the accumulator Q, the carry register C and an activity bit A. The
activity bit is used for local enabling or disabling of certain actions within the
PEs, thus permitting a subset of the array to take part in whatever computation
IS In progress.

The input mult iplexer selects data either from the output of one of the four
nearest neighbours or from the local memory, depending on the instruction being
executed. The output multiplexer selects which source of information is used when
writing to the local memory. The options include the output from the local adder
and the row and column highways.

The single-bit adder performs full addition of the accumulator and the selected
input , with an optional carry input. The selected input may be complemented
before addition, enabling subtraction and logical inversion operations to be imple
mented. The carry- in to the single-bit adder may come from the local carry register

I
I

\

\
\

/
I

\
\

/

\

/

\

\

\

/

I

I

\
\

V. 9

} Word C

• All PE s perform till!
S<'IIllC IH t -sc r liJl

lHi l h lllC l lC on IIlI cl!

Vf.'c {ors of Inls

• MCU r rovidcs Olo ilil l
"Cldd ' Inst ruc tion Dno
ilddrc sscs for ii, h ,111(1 c

Figure 6: Bit-serial word-parallel mode of arithmetic

or the carry-out of the Eastern neighbour, depending on the operating mode of
the array. This choice permits the DAP to perform word-arithmetic in two quite
distinct ways, either bit-serial (word-parallel) or bit-parallel (word-serial). These
two modes of operation are illustrated in figures 6 and 7.

The normal mode of arithmetic in the DAP is bit-serial word-parallel. In this
mode word values are assumed to be stored vertically as vectors of bits in the z
dimension of figure 3. A full word operation is programmed out as a DO loop,
consisting of n iterations, for n-bit words. As an example, consider the addition
of 64-bit integers, stored as the bit-vectors represented by Q, 12 and g. To perform
Q + 11 g it is necessary to index through these three bit-vectors, adding the two
operands in bit-serial fash ion, and storing the carry at each stage in the C register.
This sequence of operations can take place in all the PEs simultaneously. Thus,
although the time to perform a single Integer Add takes many clock cycles , the
massive parallelism can nevertheless produce very high overall processing rates.

An alternative method of performing word arithmet ic, which is supported by
the DAP system software, involves configuring each row of PEs as a 64-bit ripple
carry adder . This permits words stored in the x-dimension to be operated on
directly with a guaranteed carry-propagate speed of at least four bit-positions per
clock period. Under this scheme the three operand addresses are scalar values,
addressing a single bit in each row memory.

Although this method of processing is essentially word-serial within each row,
the fact that there are 64 rows means that a moderate amount of word parallelism
".Iso occurs in this mode. Bit-serial word-parallel mode yields a much greater

Carry .in
Izerol

4095 '--_..1/

V.10

Carr y out

~ ___ -Wor(j (J Adnrcss

~ Word b Address

~ Word c Address

Figure 7: Bit-parallel word-serial mode of arithmetic

maximum performance level than the bit-parallel word-serial mode, however, due
to the relatively slow carry-propagate speed compared with the cycle time of the
carry-save technique used in bit-serial mode.

Performance

The performance of the DAP can be considered in several ways. At the simplest
level we can examine the raw speed of its component parts and compare them
with other high performance scientific machines . This produces a set of peak
performance figures, but does not advance any insight into how well the machine
will perform on a real problem.

It is possible to characterise the raw performance of the DAP in terms of the
bandwidth of the distributed memory, the serial arithmetic rate and the rate of
data manipulation through the processing element network. The clock period of
the production ICL DAP was 200 ns, and in this time it was capable of performing
one memory cycle in each processing element memory. Each memory operation
involved one bit, and therefore the raw memory bandwidth was

4096
-2-x-lO---=7 = 20.48 Gbits/s

This is four times the 80 MWord/s effective memory bandwidth of the CRAY-l,
although in fairness the CRAY-l also has a very fast set of vector registers which
provide all the operands for the computat ional units. The CYBER 205 has a
memory bandwidth of 200 MWord/s per Pipe, and hence a 2-Pipe CYBER 205
has 25% more memory bandwidth than the DAP. This is a fair comparison since
the CYBER 205 architecture implements memory-to-memory vector operations.

V.11

Table 1: Inst ruct ion timings for the DAP

Processing rate

Operation Time ("S) (MOPS)

z- X 17 241

Z- X .S 40- 130 32-102

Z _ X 2 125 33

Z-X+Y 150 27

Z - -IX 170 24

Z-X.Y 250 16

Z - X / Y 330 12

Z -I Z 1 1 4096
4096

S- L 280 175
i=l

I - J+I< 22 186

Arithmetic performance in the DAP is heavily dependent on the chosen word
length, W; addition and subtraction requiring 0(10), and multiplication requiring
0(102

) micro-cycles respectively. According to Reddaway [14], integer addition
takes 3w + ~ cycles, where ~ is a small constant value, and fractional integer
multiplication takes

W (310 + 13)

2
cycles. Floating-point operations require extra cycles due to the exponent arith
metic, mantissae alignment and result normalisation. Table 1 shows the timing,
and resulting processing rates for a representative sample of bit-serial fixed and
floating point operations, taken from [151. All operations are in 32-bit precision
and are hand-crafted, assembler-coded system routines. The X, Y and Z values
are real arrays containing 4096 elements, S is a real scalar value and I, J, and I<
are integer arrays containing 4096 elements.

Several points are worth noting from these figures. First ly, because bit-serial
algorithms for transcendental functions are very different from their equivalent
algorithms on bit-parallel machines so that, for example, the time to compute the
square root of a real nu mber is less than the time to compute the product of two
real numbers. The implementation of certain fun ct ions is trivial; for example,

V.12

computing the absolute value of 4096 real numbers takes on ly 1 lIS thus yielding a
burst processing rate of 4096 MOPS. The technique of opt imising at the bit level
is exemplified by the L: operation which, instead of tak ing log2(4096) x 150 (i.e.
1650) cycles, takes only 280 cycles.

A major feature of the DAP architecture is the two-dimensional PE intercon
nection structure. This structure is capable of shifting an array of 64 x 64 bits,
held in the Q registers at a rate of one shift per clock period, excluding inst ruc
tion startup overheads. Hence, to move a bit of information from one memory to
another takes

x+y+6

clock cycles, where x and yare the relat ive displacements of the sou rce and desti
nation memories within t he array and 6 is a small overhead for inst ruction fetch
and memory read / write cycles . The grid of in terconnections and the Q registers
together form a parallel switch with a peak throughpu t of 4096 bit position trans
fers per clock period, or 20.48 G bit-posit ions/so It is also possible to use the row
and column highways to move any single row or column of 64-bits into an MCU
register, or to move the contents of an MCU register in to one or all of the rows
or columns of the array. T hese data transfer operations can be carried out at a
rate of one every 2.5 clock periods. This is an extremely powerful mechanism, as
it permits the rows and columns to be selected, exchanged or broadcast to the
whole array very rapidly.

2.2 The MasPar MP-l

The basic architecture of the MasPar MP-l family of SIMD processors [6] is similar
to that of the DAP, but uses a different interprocessor communication mechanism .
It is available in five array sizes of between 1024 and 16384 processing elements
configured in each case as a two-dimensional array. This array is tightly coupled
to a Vax front-end host.

T he processing elements are RISC-like processors grouped in clusters of 16
arranged as a 4 x 4 grid. Each PE cluster also has associated PE memories
(currently 16 Kbyte DRAM) and connections to the communications network.
Each PE provides operat ions on 1, 8, 16, 32 and 64-bit operands includes a 64-bit
mantissa unit, a 16-bit exponent unit, a 4-bit ALU and a single-bit logic section.
Each funct ional section within t he PE can be act ive simultaneously during each
microcode instruction; floating-poin t operations, for example, requ ire use of the
exponent, manitassa, ALU and logic units together. The in ternal 4-bit nature of
the PE is not visible to the user , allowing future machines to be produced with
larger (or smaller) ALUs without changing any user code.

Instructions are issued to the PEs by the Array Control Unit (ACU) (figure 8)
which fetches and decodes instructions , computes addresses, performs scalar arith
metic, sends control signals to the PE grid and monitors the PE array status. (Its
funct ion is thus similar to that of the MCU in the DAP.) Current ly it is a RISC-Iike

V.1 3

Figure 8: The MP-l System

=

V.14

X-Net mesh

PE PE PE

PE PE PE

\ /
Tri-state nodes

Figure 9: The MP-1 X-Net

processor based on standard T I chips, but may in future be rep laced by a faster
commercial RISC processor which could also act as the front end. The ACU is
linked to the PE array by a 48-bit data bus and a 4-bit instruction bus.

The hardware provides indirect addressing of PE arrays, which means that
individual PEs can access variables held at different offsets within their memories .
This feature is also found in the Connection Machine but not in the DAP.

Interprocessor Communications

Interprocessor communications are handled by two separate mechanisms. The
choice of which is more appropriate for a given applicat ion is determined by the
regularity of the data transfer. For situations in which an entire array of data is
to be moved across the PE lattice then the X-Net communicat ions mesh is used.

Conceptually, the X-Net mesh is a one-bit wide communicat ions network which
links each processor with its eight nearest neighbours. In fact each PE has only
fou r interconnects, located at its diagonal corners, thus forming an X-shaped gr id
at 45 degrees to the PE lattice, rather than the square grid of the DAP. However,

:

V.lS

the X·Net mesh is more soph isticated than the DA lO mechanism, sin ce the diag·
onal links do not simply cross over each other, but are connected at nodes which
a llow communications to be routed to any of the lOE's eight nearest neighbours
(figure 9). The direction for the outgoing message throug ll this tri-state node
is set by the ACU at the same time as the PEs are instructed to transmit, so
that there is no latency in the connection and hence the communications of a bit
between neighbouring processors takes one clock cycle. At the edges of the PE
array the interconnects are wrapped around to form a torus, though the user may
select planar boundaries, in which case any differences between the topologies are
handled by software. The aggregate X-Net bandwidth for the MPll01 systems is
1.1 Gbyte/s ; this increases linearly wi t h systems size.

Random communications between arbit rary processors are possible via a three
stage global router which emulates a crossbar swi tch. Each PE cluster has a
connection to the router stage of the switch a.nd another to the target stage.
These ports are shared by all PEs within the cluster. The router and target units
of the global switch are connected by an intermediate stage. The address of the
target PE is calculated by t he originating processor and, if all the links through the
router between the start PE cluster and the finishing one are free, then connection
is established. Clearly, this may necessitate some PEs waiting, perhaps for some
t ime, for others within the same cluster to finish their data transfer. Once set, the
link is bi-directional and on closing the target PE sends an acknowledgement. For
the smallest MP-1 machine (with 1024 PEs) this communicat ion hardware acts
like a 64 x 64 crossbar switch. Data transfers through the links are bit-serial and
clocked synchronously with t he PE clock. Since the router ports are multiplexed
for each PE cluster arbitrary communications patterns require a minimum of 16
router cycles to complete. A connection through the router takes 40 clock cycles
to estab li sh and a further 10 to close. MasPar claim to be working to reduce
these quite considerable overheads but, in any case, app lications which require
the global router would be more difficult to code on other SIMD computers.

2.3 The Connection Machine

The design philosophy of the Connection Machine [11] challenged t he convent ional
view of what constitutes an efficient computing machine, by shifting the emphasis
from an obsession with instruction cycle times to a more realist ic consideration
of processor-memory bandwidth requi rements. The designers observed that tech
nology has evolved to the point where processors and memories are made using a
common (VLSI) technology. Thus the physical separation of processors and mem
ory inherent in earlier technologies (and the cause of the so-called 'von Neumann
bottleneck') need no longer be maintained, and a processor can be placed in the
memory to create a cell which is then replicated as a unit to create large and
highly parallel systems. This form of logic-in-memory is no different in principle
from that used in the DAP (or indeed SOLOMON); what the Connection Machine
emphasises is the programmability of the connections between processing cells.

Host

M emory

Bus

Array
Ins truc tio ns

M icro
controlle r

Broadcas t
.I I instructions

V.16

64 K Processin9 Cell s
4096 Bit s/cel l

Square-grid Con nection s

Hy percu be Connecti ons

High Bandwidth I/O I ~ 500 Mbits/sec l

Figure 10: Architecture of the Connection Machine

The first Connection machine, the CM-1, contained 16K processors and was
first delivered in 1986. In 1987 a revised version, the CM-2/CM-2a range of
machines was announced. The CM-2a can contain 4K or 8K processors, while the
CM-2 can contain 16K, 32K or 64K processors.

System architecture

The system level architecture of CM-1 is illustrated in figure la, in which the
similarity with the DAP (and most other SIMD array processors) is clearly visi
ble. The array of processing elements, comprising a simple boolean processor and
some local memory, is seen by the host machine simply as an extended region of
memory. The host computer directs the connection machine to implement paral
lel portions of code, and in this respect it differs from the DAP or MP-1 which
have an instruction processor built into the array unit. The CM-1 host broad
casts a sequence of instructions to the array micro-controller, which interprets the
instructions and broadcasts an appropriate sequence of micro-instructions to the
array of PEs, for each received host instruction. In the largest CM-2, this system
is rep licated four times, and a 4 x 4 crossbar switch (the Nexus) interconnects the
arrays to four Front End Bus Interfaces.

The processor-memory cells, like those of the DAP, are too small and slow to
perform meaningful computations individually. In CM- I , which was designed to
address the AI/symbolic processing market, the main language supported was CM
Lisp. When running CM-Lisp processor-memory cells are li nked together in data
dependent patterns called active data strllct1l1'es. Low-level operations on active
data structures are then evaluated in parallel by the low-level boolean processors

V.1 7

acting in concert on their local segments of those structu res, thus exploiting the
paralleli sm and producing high process ing rates.

Network structure

An important feature of a Connect ion Machine is its support for programmable
links between PEs. In the DAP, when one processor communicates with its Nort h
ern neighbour all processors must communicate with their Northern neighbour, or
not at all. This is because the DAP has a static square-mesh communication
network , which only supports eight routing functions. Communication in CM-l
is significantly more powerful t han this, since each group of sixteen process ing
elements shares a link into a packet-switched binary l2-cube network , as well as
having individual connections to a DAP-like grid (known as the North-East-West
South, or NEWS grid). Essentially this means that all PEs can compute the
address of a PE to which they want to send a message, and then use the l2-cube
network to route the message in logarithmic time. A two-dimensional grid routes
messages in O(.,(iii) time, where N is the number of PEs. A full set of NN permu
tat ions is supported by a dynamic binary k-cube network , where k = log N, and
in t he case of CM-l this produces a quoted worst-case bandwidth of"," 3.2 x 107

bits/s and a best-case bandwidth of,," 1.0 x 109 bits/so
In the CM-2 a redesigned NEWS array uses an n-dimensional grid (n in the

range 1 - 31, selectable by software), rather than being rest ri cted to two dimen
sions. Furthermore, this network is implemented on top of t he hypercube network ,
rather than using its own hardware.

Processing elements

The CM processing elements are implemented using custom VLS[components
which contain a group of sixteen boolean processors, a local cont roller, and a
message-routing interface to the cube network. This chip is fa bricated in CMOS
technology, and contains approximately 50,000 act ive devices. The processing ele
ment is a general-purpose single-bit processor with a private 4K x l-bit memory (64
Kbits to 1Mbits in the CM-2). Whereas in machines like the MPP and STARAN
special architectural features, such as shift registers , were introduced to support
integer multiplication, in the CM machines the processor cell is kept as simple as
possible. It is also highly programmable.

Figure 11 shows t he logical structure of a process ing element. It consists of
a single-bit arithmetic and logic unit, a file of sixteen single-bit registers (called
flags) and connect ions from the local memory to the A L U and from the flags to the
message router. The ALU is capable of reali si ng all 256 poss ible boolean funct ions
of three inputs (two memory operands and one fl ag), and it does this for both the
value to be written back to memory and the value to be wri tten back to one of the
flag registers. This requires a total of sixteen bits of control input to the ALUs.
In addition, the PE microcontroller must also specify various parameters for each

m·Fullct ior
Select

1

A·Operand
Address

B-Operand
Address

8

12

12

V.18

Slll qi \ ~ IlIl 'AlU'

Memory I Fla g
Output I Ou tput

Funct Ion I F,HlC li on ,

J1 ~
F

4K>.. l ·bit
I

Local •
M em ory 9

s

'---

4

4

8 f·Fullct lo n
St~Ip.('t

Rca d·f!etg Adclress

Writ e· flag Add ress

Figure 11: Structure of a CM- l processing element

operation. These include:

1. A-address and B-address. The two memory operand bits are read from the
A and B addresses and the memory output from the ALU is written back
to the A address location.

2. Read and write flag addresses. These specify one input flag for the ALU,
and one flag register to which the flag output from the ALU is written.

3. Condition flag address . Specifies which of the sixteen flags is to be used to
determine whether a conditional operation will take place locally.

4. NEWS direction. Specifies in CM-l which of the four 20 mesh permutations
is selected for operations involving the NEWS grid.

The flag register file contains eight general purpose flags and eight special
purpose flags. The special purpose flags provide links between the ALU (and
hence memory) and the interconnection networks (that is, the NEWS grid and
the router). For example, one read-only flag contains information written from
the flag output of the neighbouring ALU in the direction specified by the NEWS
direction controls.

The sixteen PEs in each processor chip can also be linked to form a chain
of processors, as well as a square mesh, and t his permi ts (rather slow) carry
propagation across 16-bit slices of process ing elements. So, whilst the des ign of
the processing elements is not highly optimised for speed, t he flexibility of the
ALU and the flags together compensate somewhat, and the massive replication

V.1 9

of the PEs puts their combined power of about 109 integer :32-bit addit ions per
second, well into the supercomputer category.

Although the CM-l was aimed at the AI/symbolic process ing market, TMC
soon perceived the need to address the computat ionally intensive scientific market,
and added a floating-point capability in the form of a floatin g-point unit based on
the Weitek 3132 chip. One such unit is provided for each pa il' of processor chips
·(i.e. per 32 processors). A memory interface unit is incorporated to carry out
the necessary transpositions between data stored in serial form in the individual
processor memories to the parallel form needed for the Weitek chip, but in fact
most floating-point users never use the I-bit processors, so their data is stored in
parallel form anyway.

The router

Each group of sixteen PEs shares a single message router , which itself constitutes
one node in a binary k-cube network. In CM-l k = 12, and so there can be a
maximum of 4096 routers, with each router being connected directly to twelve
other routers. Processors whose node addresses differ in only the ith bit-position
have a direct connection in the ith dimension of the cube network. Since any
two addresses can only differ in a maximum of twelve bit-positions (i.e. one is
the inverse of the other) there can be at most twelve unique links forming a path
between them. Hence, in a k-cube, no pair of nodes is separated by more than k
links.

The routing algorithm is based loosely on the standard routing functions for
binary k-cubes. Each message contains an address and a data field. The address
comprises a relative router address field (12 bits), a PE address within a group of
sixteen (4 bits), and an address in the memory of the dest ination processor where
the message is to be deposited on delivery. Router addresses are relative because
they specify the distance to be moved in order to get from the source to the desti
nation processor. Hence, a 1 in bit position i indicates that the message must be
routed through dimension i before it can arrive at its destinat ion. Conversely, a a
in bit position i means that no routing through dimension i is required. Therefore,
when an address is all zeros the message must be at its destination. Also, when
a message is routed through dimension i towal'ds its destination, bi t i must be
cleared; and when routed away from its destination, bi t i must be set.

Each parallel message delivery cycle consists of a sequence of repeated petit
cycles. In a single petit cycle all messages which do not encounter routing delays
(caused typically by contention in the network) will be delivered. These petit
cycles are repeated unt il all messages within a ' burst ' of messa.ges have been de
livered. Message bursts are associated with Lisp ' beta reduction ' operations, for
example. Each petit cycle consists of a sequence of twelve dimension cycles, and
during the ith dimension cycle messages are routed (where required and where
possible) through the ith dimension.

V.20

Network performance

The performance of the interprocessor communication network in the DAP is easy
to analyse since all permutations are homogeneous (all processors communicate
using the same routing function). However, in the Connection Machine routing
functions are not homogeneous, and hence the distribution of message addresses
can have a major effect on the net communication bandwidth.

It follows from the routing algorithm that the number of inter-nodal hops that
a message must make is equal to the number of l 's in the destination address .
Uniformly distributed message addresses will have a mean of n/2 1 's, where n is
the number of bits in the address. Only one message can occupy each link during
a single petit cycle, and during each dimension cycle only one twelfth of all com
munication links can be active. This is not a particularly efficient use of wire, the
component which most severely limits the extensibi li ty of cube-connected archi
tectures. From the assumptions above we can predict the sustainable bandwidth
of the network. A cube network with N = 2n nodes has nN = n2n wires in total.
Since the number of l 's in all message addresses can only be changed to O's at a
rate of one per wire per petit cycle, in its steady-state the network cannot accept
more than n2n injected address bits which are 1. This means it cannot accept
more than twice this number of uniformly distributed messages. Thus there can
only be 2N injected messages, or two injected messages per node, in each petit
cycle.

The network does however contain some message buffering, and so at the begin
ning of a burst of messages the message-injection rate can be higher than two per
node in each petit cycle. Higher levels of message injection can also be sustained
when message addresses are localised. This must be considered when allocating
elements of an active data structure to processing cells. Some operations naturally
require local communications only. For example, steps in each beta- red uction op
eration specify near-neighbouring processors , and hence the number of l's in each
message address is just 1.

Another important consideration for message delivery in an SIMD system is
that each burst of messages only terminates when all messages have been delivered.
Where routing conflicts occur, additional petit cycles must be provided during the
latter stages of the burst. Since all messages destined for the same node must be
delivered sequentially, the maximum number of messages going to anyone node
during a burst of messages defines the number of add itional petit cycles that will
be required. TMC quote typical values of 2.5 Gbyte/s in a 64K processor CM-2 for
the NEWS grid (this compares with 5.2 Gbyte/s in t he DAP and 4.5 Gbytes/s in
the MasPar 1104) and 259 Mbytes/s (without collisions) for the router (compared
with a theoretical maximum of 7 Gbytes/) .

V. 21

CLS Ues lgn ApplicatIOns L:II;:'.~" I
Environment

8
Environment Hardware

.cnf

ie' progra1 n
D

l'e'Library l .cal

8 I screen I
Host Compute

Figure 12: Software Architecture of the Algotronix CAL system

3 Custom Computing

American versions of the history of computing frequently refer to the ENIAC as
the world's first electronic digital computer. In fact it was an application specific
machine in the sense that its ' program' had to be hardwired. This is a perfectly
respectable computational paradigm which has continued to co-exist with the
von Neumann model. With the advances now being made in SRAM programmed
varieties of field-programmable gate arrays, however, Gray [11] claims that a third ,
Configurable Hardware paradigm can now be supported. Support for this view
also comes from Bell [6] who classifies machines built on this principle as Custom
Computers.

A custom computer is programmed by mapping an algorithm directly into
the hardware. In the current version of the Algotronix system (based on their
Configurable Array Logic (CAL) chips) both the array itself and its control RAM
are mapped into the memory address space of the PC into which the hardware
is plugged. Software support involves two major areas, a design environment for
creating ci rcui ts and an applications environment for running programs (figure 12.
Although the current system is quite small (consisting of a 2 x 4 array of 1024 gate
chips), the chip interconnection mechanism allows circuits to be spread across chip
boundaries without the programmer being aware of them. Thus very large arrays
could in principle be constructed, leadi ng to the poss ibility of massive parallelism.

"

V.22

4 Conclusions

The term 'massively parallel computers' can really only be applied to SIMD sys
tems. They have a long history in niche markets but are begining to attack the
traditional supercomputer market as levels of IC integration increase and the in·
dividual processors become more powerful. In 1989 TMC won the IEEE Gordon
Bell A ward both for raw performance and best price/ performance. For the for
mer a sesimic modelling program run on a 64K processor CM-2 gave a sustained
performance of 5.6 GFLOPS. This represents only 20% of peak performance. By
comparison, an 8-processor Cray Y-MP has a peak performance of 3 GFLOPS,
giving the CM-2 a price/performance advantage of about 12. The next goal is to
produce a TeraFLOPs machine, by the middle of the decade. It will probably take
till the turn of the century.

References

[IJ G.H. Barnes, R.M. Brown, M. Kato, D.J. Kuck, D.L. Slotnick, and R.A.
Stokes. The ILLIAC IV computer. IEEE Transactions on Computers, C-
17:746-57, 1968.

[2J K.E. Batcher. STARAN Parallel Processor System Hardware. In Proc.
AFlPS-NCC, volume 43, pages 405-410, 1974.

[3J K.E. Batcher. The FLIP Network in STARAN. In Int. Conf. Parallel Proc.,
pages 65-71, 1976.

[4J K.E. Batcher. Multi-dimensional Access Memory in STARAN. IEEE Trans
actions on Computers, C-26:174-177, 1977.

[5J K.E. Batcher. Design of a Massively Parallel Processor. IEEE Transactions
on Computers, C-29:836-840, 1980.

[6J C.G. Bell. The Future of High Performance Computers in Science and Engi
neering. Communications of the ACM, 32, 1989.

[7J T. Blank. The MasPar MP-l Architecture. In Proceedings IEEE Compcon,
February 1990.

[8J L.J. Clarke and G.V. Wilson. Tiny: An efficient routing harness for the inmas
transputer. Technical Report EPCC-TR90-04, Edinburgh Parallel Computing
Centre, 1990.

[9J B.A. Crane, M.J. Gilmartin, J .H. Huttenhaff, P.T. Rus, and R.R. Shively.
PEPE Computer Architecture. In IEEE Compeon, pages 57-60, 1972.

[10J H. Falk. Reaching far the gigaflop. IEEE Spectrum, 13(10):65-70, 1976.

V.23

[11] J.P. Gray and T.A . Kean . Configurable Hardware: A New Paradigm for Com
putation . In Proceddings Decennial Caltech Conference on VLSI, Pasadena,
Ca, USA, 1989.

[12] J. Gregory and R.C. McReynolds. The SOLOMO N compu ter. IEEE Trans
actions on Electronic Computers, EC-12:774- 81, 1963.

[13] W. Daniel Hillis . The Connection Machine. MIT Press, Cambridge, MA,
1985 .

[14] R.N. Ibbett and N.P. Topham. Architecture of High Performance Computers
Vol II. Macmillan, 1989.

[15] D.J. Kuck and R.A. Stokes. The Burroughs Scientific Processor (BSP) . IEEE
Transactions on Computers, C-31 (5):363-376, 1982 .

[16] S.F. Reddaway. DAP - a distributed array processor. In 1st Int. Symp. Compo
Architecture, pages 61- 65, 1973.

[17] S.F. Reddaway. The DAP Approach. In C. R. Jesshope and R. W. Hockney,
editors, Infotech State of the Art R eport: Supercomputers, volume Vol 2, pages
311- 329, Maidenhead, England, 1979. Infotech Inti Ltd.

[18] C.L. Seitz. Experiments with VLSI Ensemble Machines. Journal of VLSI (13

Computer Systems, 1(4):311- 334, 1983.

[19] C.L. Seitz. The Cosmic Cube. Communications of the ACM, 28(1) :22-33,
1985.

[20] D.L. Slotnick, W.C. Borck, and R.C. McReynolds. The SOLOMON com
puter. In AFIPS Conf. Proc. , volume 22, pages 97- 107, 1962.

[21] A. Trew and G.V. Wilson. Past, Present, Parallel: A Survey of Available
Parallel Computing Systems. Springer-Verlag, London.

[22] S.H. Unger. A computer oriented towards spatial problems. In Proc. Inst.
Radio Eng., volume 46, pages 1744-50, 1958.

[23] C.R. Vick and J.A. Cornell. PEPE architecture - present and future. In
AFIPS Conf. Proc, volume 47, pages 981- 1002, 1978.

V. 24

V. 2S

DISCUSSION

Rapporteur: M. J. Elphick

In response to Professor Randell's query about the relative use of multi· Transputer
machines for specific applications and for general workloads, Professor Ibbett pointed
out that the Edinburgh Meiko system could be split into as many as 128 "domains"; much
development work could be done on single-Transputer domains, while large physics
applications might use the whole system as a single domain. The Intel i860 version of
such systems could be used to imitate the "Cray style" (but with some effort, as the
compilers were not really good enough yet); most physics and engineering applications
can use vector operations effectively, but Crays are expensive I

Professor Randell then referred to the early versions of the DAP architecture, when
there were arguments about the most effective use of developing technology .. should
one make the individual processors more powerful, or increase the array size? The
latter option had been favoured then .. had this view changed now? The speaker
observed that while the processor elements were still 1-bit, additional 8-bit co
processors had been added. Several people commented (not always favourably) on the
attempts to extend sequential languages to cope with parallel computation ; Professor
Levy felt that some aspects (e.g. the 'slicewise' storage patterns used by some extended
FORTRAN's) were an admission of failure, being in effect just elaborate strategies for
feeding data to multiple floating-point units.

Turning to the question of abstraction, Professor Randell asked what kinds of abstraction
are affordable; Professor Levy had found that for very high performance, very few
abstractions could be afforded. This effect of the low-level details of an implementation
was similar to the importance of the sequential component of a parallel program
(expressed by Amdahl's law). The speaker's response was that while we understood
sequential machines (with their need for large fast memories being satisfied by suitably
managed memory hierarchies) parallelism introduced another dimension of complexity,
where we don't understand the problem's spatial locality well enough . In reply to
comments by Professor Shepherd, he said that there seemed to be two classes of users:
those who don't want to know about these problems, and those (principally scientists and
engineers) who are willing to invest the time and effort in organising their computations
to take advantage of the speedups possible. It might be that we need two classes of
languages for these two approaches to parallelism. Professor Whitfield felt that some
people in the latter class might be more interested in their specific application (and the
possibility of Nobel prizes?) than in in exploring more general methods for a wider
class of problems.

Professor Levy commented that a lot of commercial interest was solely in achieving
improved price:performance ratios, and in coping with "code museums", while
Professor Lee said that there was much resistance from engineers in particular to such
new architectures; however, in many cases inspection of "dusty decks" had revealed that
much effort had been expended originally on what were now inappropriate trade-offs
(e.g. in economising on memory usage), and that considerable speedups were possible by
eliminating this trade-off.

Finally, Mr. Kerr said that he had intended to make the following points after Professor
Levy's next talk but the foregoing discussion had already touched on some of them; one is
frivolous, one possibly naive and a third intended to be neither but which may turn out
to be bothl

V. 26

(1) "Any realistic person has to attach some weight to Gerhard Goos's comments
yesterday on the ever·continuing dominance of FORTRAN in the presence of
superior programming systems. I offer a glimmer of hope. Over the past 30
years, I have observed with wry amusement the gradual evolution of FORTRAN
into an approximation to ALGOL. If th is trend continues, we can expect FORTRAN
to turn into some sort of SIMULA during the next 20 years, giving it some
object-oriented properties which might enable the past to co-exist with the
present and future I As with humour, frivolity often has a thread of truth."

(2) "Regarding yesterday's comments on the ability to apply object-oriented
principles in the diametrically opposite scenarios of shared and distributed
memory architectures, I would hypothesise that OOP in the parallel context is no
more tied to the shared/distributed issue than the virtual memory concept is to
the physical characteristics of memory boards. Both present an illusion which is
accomplished with ingenuity on ill-matched hardware."

(3) "As a comparative novice in the parallel field, I am concerned at a practical level
about the diversity of competing parallel architectures and the deep divisions
between their eminent and expert designers. I agree with lann Barron's
comments in his after-dinner speech that the central issues revolve around
th inking parallel in the first place but, more than that, we need the ability to
express these thoughts in a notation which preserves the parallel perspectives.

In my view, object-orientation is currently the best vehicle we have for this. In saying
this, I am drawing on a broader view of object-orientation than that held by most of its
proponents. Almost 25 years ago were laid down three fundamental concepts of object
orientation: encapsulation, inheritance and autonomous activity. Of these, the last has
been largely ignored in modern incarnations of the original inspiration (SIMULA).
However, this notion is the one which addresses the description of inherently
independent computational activity which makes parallelism possible. (This is related
to the threads notion already mentioned in this seminar.) Application of this concept
will result in parallel systems descriptions whose structure are determined, a priori,
by the parallelism inherent in them. Having said that, we can expect to observe certain
relationships and regularities within the sets of objects identified which may well
suggest that their execution will be best served by one or other of the diverse
architectures available.

As lann Barron observed last night, our thinking has been dominated and conditioned by
the strait-jacketing influence of serial processing. OOP is our current best hope of
avoiding falling into the same trap in the context of some other stylised form of
processing. '

