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We use a functional programming formalism to specify algorithms and to 
abstract the execution characteristics of given parallel machines. In 
particular, a restricted form of functional program - a higher-order function 
called a skeleton - is associated with each corresponding parallel machine 
type on which its implementation is known to be efficient. Program 
transformation techniques are then used to convert general functional 
programs, or even higher level, non-executable specifications, into 
equivalent forms expressed using the appropriate skeletons. Portability is 
achieved in two different ways: by re-playing the transformational 
development process targeting a different class of skeletons, and by the 
availability of transformations between the different skeletal forms. We 
focus on a new class of communication-intensive algorithms and present in 
detail a parallel implementation of 'quicksort' that runs in (log n)2 time on n 
communicating processors. 

1. Introduction 
Application development has been well served in the past by the universality of the sequential von

Neumann model of computation. This has conveyed several significant software advantages that 

have largely gone unrecognised as there has been no alternative: 

• As the program model is one to one with the machine execution model a programmer can have 

confidence that a program will behave as expected and a program's performance can easily be 

envisaged at the program level. 

• Portability is guaranteed between different machines at the language level. This is important 

not only because it reduces software effort but also because it maintains the relative 

predictability of performance. A program moved to a sequential machine with a faster 

I Joint work with David W N Sharp and John Darlington 
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processor will, almost certainly, go faster without major changes being needed to the 

algorithms employed. 

This convenient picture has broken down with the arrival of parallel machines with diverse 

architectures with different execution characteristics. The diversity of parallel machine 

architectures is causing the application development activity to fragment into different, machine

oriented camps, each with their own languages, algorithms and libraries, at the expense of a deeper 

understanding of the field and the relative potential of different machines. We therefore seek a 

methodology for programming parallel machines that is not only uniform across all types of known 

parallel machines and guarantees portability but is also capable of achieving efficient execution on 
• 

any known parallel machine. 

We use functional programming to serve as a general model of parallel computation and 

abstract the execution characteristics of a given parallel machine with a particular, restricted form of 

functional program called a skeleton. Thus, each skeleton is associated with a corresponding 

parallel machine type on which its implementation is known to be efficient and even proved correct 

using transformational technology. Program transformation techniques are then used to convert 

general functional programs, or even higher level, non-executable specifications into equivalent 

forms expressed using the appropriate skeletons. Programs expressed as skeletons are then 

compiled onto the target machine using C as an intermediate code. This idea of limiting programs 

to a fixed repertoire of algorithmic forms has much in common with the FP school. 

Portability is achieved in two different ways: by re-playing the transformational 

development process targeting a different class of skeletons, and by the availability of 

transformations between the different skeletal forms. Hence the issues of correctness, portability 

and efficient implementation (i.e. resource allocation) are tackled in a structured manner in that all 

decisions made are explicitly incorporated in the transformation process and ultimately become 

parameters to the skeletons. This is in contrast to the case of hand-crafted code where the 

decisions made are implicit in an often obscure final program. Finally we observe that since the 

skeleton interface between specification and architecture is describable in the source functional 

language, the appropriateness of transformations and algorithms expressed in terms of skeletons 

can be validated before any parallel hardware is available, by executing on a trusted sequential 

implementation. 

There are several different types of skeleton, corresponding to the diversity of parallel 

algorithms and architectures. Our current collection of skeletons includes pipelines, process 

networks, processor farms, divide-and-conquer algorithms and dynamic message-passing 

architectures. The present paper focuses on a new class of communication-intensive algorithms, 

developed by David W N Sharp, for the last skeleton in this list. The synthesis of such an 

algorithm is described for 'quicksort'. 

We start from an initial specification of the problem given as a set of recursive functions 

which are standardised to correspond directly with the architecture. The architecture 
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specification helps to guide the synthesis towards an algorithm which exploits the 

communication facilities available. During the synthesis interprocessor communication is 

introduced by strengthening the problem specification: rules are introduced describing how 

receipt of one message should give rise to another. The new message contents can then be used 

by the processor that receives them to replace some local calculation. Thus the amount of 

computation is reduced and the problem is solved by cooperative message-passing. 

Traditionally quicksort [Hoare 62, Sedgewick 78] has been considered to be a highly 

dynamic algorithm requiring operating system support for run-time dynamic process creation 

with associated scheduling and load balancing overheads. These requirements have, in the 

past, discouraged the use of quicksort for parallel sorting. However, the algorithm we 

synthesise uses interprocessor communication to schedule and load balance itself using 

algorithm-specific knowledge and thus does not suffer from the overheads of run-time dynamic 

task creation and efficiently scales up to thousands of processors. The improved algorithm 

utilises communications whose destination is calculated at run-time using the values of local 

data. It is a member of a recently discovered class of Communication-Intensive Massively

Parallel (CIMP) algorithms [Sharp 91] which exploit the added power of communications with 

destinations calculated at run-time. CIMP algorithm communications are more powerful than 

ordinary communications because, in an n processor machine, when a CIMP communication is 

received by processor p rather than by one of the other n-} processors, processor p gains log2 

n bits of extra information about the data on the sending processor - even if only a one bit 

message was sent. This extra information can then be used in conjunction with new local 

information to calculate another new message destination, and so on. Algorithms which adopt 

this communication-intensive approach are likely to grow in importance as machines emerge 

with fast, optical communication paths. The specialisation of each processor to a particular 

sub task of the algorithm means that communications are not sent to arbitrary destinations 

detennined by a task scheduler and load balancer but to destinations that are calculated using 

run-time data as part of the algorithm. This approach can be applied to a wide variety of 

problems that can be converted into message passing form, for example tessellation of the 

plane and dynamic programming [Sharp 90]. 

Our strategy is to start the sort with one item on each of a numbered set of processors 

and to redistribute the items amongst the processors, by repeatedly passing messages, until the 

items are in ascending order with respect to the enumeration of the processors. This strategy is 

particularly suitable for sorting multiples of 65536 items using a Thinking Machines 

Connection Machine [Hillis 85, Thinking 87] which has 65536 processors that can be 

configured as mUltiples of 65536 virtual processors. The algorithm synthesised here scales as 

time = O( log2.7 N) sorting N items on N physical processors. 

The general idea is the following. Assuming, initially, that the whole list to be sorted is 

known to every processor, processors compute the position of their item in the sorted list and 
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send the item to the processor indexed by that position. For simplicity, we assume the list 

elements X=[XO, XI, ... Xn-tl are uniquely tagged values (e.g. the list [b, a, c) is represented 

by [(b, I), (a, 2), (c, 3») ) and that the comparison operators «, = , >, etc) automatically 

compare the values and not the tags. Thus the function posn, which returns the position of an 

element in a list can be used without ambiguity: posn(Xj• X) returns j even if the value field of 

other members of the list is equal to the value in Xj' Now, the initial algorithm involves every 

processor performing a searching operation on the whole list; not very efficient! The strategy 

of our transformation is to replace computations of item positions with messages from other 

processors that already have information leading to the answer. Thus, the transformation is 

driven by a desire to make an appropriate "answer message" be delivered to each processor. 

The quid pro quo is that a processor needs to send out information to other processors in order 

eventually to receive the desired answer. 

The soundness of our synthesis relies on an operational semantics based on the routing 

of messages and their contents. The routing itself depends on the pattern matching semantics 

of the functional language used. Each step in the synthesis is justified by formal rules but in a 

more rigourous presentation these would be replaced by statements relating to the interpretation 

of expressions by term rewriting. 

The rules allow us to perform two types of message folding. M-folding is the 

replacement of an expression with the contents of some incoming message and enables local 

recomputation to be replaced by message passing. R-folding (rule-folding) is the deliberate 

introduction of one message, which the rules state will give rise to another desired message. 

This enables a processor to request another to perform some operation instead of doing it 

locally. 

In section 2 we define the structure of the messages that are passed between processors 

and give an initial recursive program for the quicksort algorithm which exemplifies the type of 

synthesis we are advocating. In section 3 we present the synthesis of our novel algorithm by 

repeatedly replacing units of computation by values passed in messages, as discussed above. 

This yields the fmal algorithm and a flow chart illustrating the stages in the final algorithm is 

given in Fig. 3 and an example of the algorithm in operation is given in section 4. We present 

timings of the algorithm on the Thinking Machines Connection Machine in section 5 and 

conclude in section 6. First we define our notation. 

1.1 Notation 
In order to save space while synthesising the algorithm, we transform fragments of code in 

isolation of the context in which they appear in the whole program. Thus some variables that 

appear to be free in the isolated code actually have values bound in the corresponding outer 

code. The reader may find it helpful to note the following conventions that apply throughout 

the synthesis: 



IlI. S 

• x is the list [ XO' .•• , Xi ... ,Xn-1] that is to be sorted on processors numbered a, a+1, ... ,b. 

• a I b are the lowest I highest numbered processor in the sort ing of the sublist currently being 

sorted (i.e. a and b are not global constants.) 

• n is the total number of items being sorted by the whole algorithm (n is a global constant). 

• J is used as an index. 

• Xl is initially sent to processor a+J in a CS message (defined in section 2). 

• x: Processor a+J refers to Xl locally as x. 

• Xl consists of a value and a tag and the initial list X to be sorted is in the form 

[ (vo, 0) , (v1' 1), ... (vn-1 ' n-1) j, i.e. Xi'" (vi ,j) . All comparisons ( e.g. Xi < Xk ) are on the values 

Vi' The tags are only used when referring to the position of Xj in some list X'. Their main 

purpose is to distinguish items with equal values. They also allow us to insert items into a list 

in tag-order_as well as in value-order, i.e. preserving the appropriate ordering. 

• posn( Xi' X') is used to return the position of an item Xi in a list X' which contains items in 

ascending order of their tags. Posn searches along X' until it finds an item with the same tag 

as Xi and returns its position. If an item is encountered with a tag greater than Xi 's, then the 

search stops (because Xl is not in the list in this case). Thus posn returns the position where 

Xi would be if it were in the list. 

• X' upto Xi returns the front of the tag-ordered list X' consisting of those elements whose tag 

is less than that of Xi (i.e. less than j). 
• ( f og) x = f(g(x)) . 

• Lpb(X, pivot, 0, n-I) is used to find the lengths of the three lists which arise when elements 

are compared with the pivot and partitioned. The first two parameters are often understood to 

be present and are not written in explicitly (i.e. Lpb is assumed to have been partially applied 

to X and pivot). The last two parameters are used to select a sub list of X to be partitioned. 

• MSG(DP, contents) is a message that transfers contents to the destination processor 

DP. 

• i is always an iteration number present in the contents of a message to distinguish messages 

from different iterations of the algorithm. 

• +++ adds triples together: (a,b,c) +++ (d,e,f) = (a+d, b+e, c+f) 

2. Message structure and the initial algorithm 
2.1 Message structure 

All messages take the form MSG(k, e) where the constructor function MSG takes two 

parameters: the first (k) is the destination processor of the message and the second is the 

contents of the message. To begin with, we take the message contents to be one of two 

variants with constructors CS (continue sort) and ANS (answer). However, as our synthesis 
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proceeds, we will introduce new kinds of message for particular purposes. The message 

contents therefore takes the form: 

CS( x, a, b, i, X) or ANS(x) . 

CS takes five parameters: the first (x) is a data item Xj from some list X=[Xo, ... , Xn_,) which is to 

be sent to the processor numbered a+j in the message MSG(a+j, CS( Xi' a, b, i, X)) . The second 

and third parameters (a and b) indicate the lowest and highest numbered pr~essors of a 

contiguous range involved in the sorting of the list; the fourth parameter, i, is the iteration 

number of the sort and is used to distinguish this CS message from any others. In the final 

synthesized version of the algorithm, CS will only have four parameters, however, in order to 

specify the problem on the architecture initially, it is necessary to have the whole list X present 

as the final parameter of the the CS message. This parameter will become redundant during the 

transformation process and will eventually be removed. 

For the ANS message constructor, its argument (x) is just the value of x in the CS message. 

We need iteration numbers in CS-messages because, as quicksort is recursive, care is needed to 

ensure that it is not possible for two identical messages to be produced. This is because the 

specification of the routing of messages is defined in terms of sets of messages; there is no 

guarantee that if two identical messages were produced, both copies would arrive at the input 

stream of the destination processor. In fact if identical messages were allowed, the maintenance 

of referential transparency would be impaired. For example suppose one of the processors 

carrying out the sort were much slower than the others. The other processors may race ahead to 

subsequent iterations of the algorithm and the slow processor would have no way of 

distinguishing messages concerning the iteration of the sort that it is working on from 

messages for the next iteration. An incorrect result could therefore be produced. (No iteration 

number is needed in the ANS messages because only one ANS message is sent to each 

processor). 

As a result of sending out the CS messages to processors k=a to a+n-l, the sorting 

process should proceed until the position of each of the elements in the sorted list has been 

established. Each element is then sent in an answer message to its destination processor to 

produce the result Thus, processor a+j must ensure that (eventually) the message 

MSG( a + posn(Xj' scrt X), ANS(Xj) ) 

is sent to the processor numbered a + posn(Xi' sort X) in response to the incoming message 

MSG( Hj, CS(Xj' a, Hn-1, i, X)) . Processor 8 is therefore sent the smallest item in the list, 

processor 8+1 the second smallest and so on up to processor 8+n-1 which is sent the largest 

item in the list. 
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Any suitable high level specification of sort can be used which satisfies the following 

condition which is required for a stable sort (Le. one that preserves the relative ordering of 

equal elements). 

Here we use quicksort as our specification: 

sort( X ) = sort L <> E <> sort G 

where (L, E, G) = part(X, pivot) 

pivot E X 

sort([ D = [] 

sort([x]) = [x] 

«> denotes the append function on lists in infix form). The function part partitions the list X 

into those items less than, equal to and greater than the pivot and satisfies the following law: 

LAW 1 Xi< pivot => Xi E L; Xi = pivot => Xi E E; O,;;j,;;length X -1 

InOrder(L), InOrder(E), InOrder(G) 

InOrder is a predicate that is true if the tags of the elements of its list argument are in ascending 

order: its presence in the second line of law 1 is required to produce a stable sort. The 

following recursive function satisfies law 1: 

part(Xeest, pivot) <= 

II ( Xi < pivot) 

II ( Xi = pivot) 

then 

then 

(XfL, E, G) 

(L, XfE, G) 

(L, E, XfG) 

where (L, E, G) = part(rest, pivot) 

part( D, pivot) <= (0, D, m 

else 

else 

The function posn returns the position of an element in a list, with the first element 

having position zero. Posn is defined by 

posn(Xi, Xl = length( X upto Xi) 

Xc::rest upto Xi = If (c>j) then D else Xc::( rest upto Xi) 

and it satisfies the following law: 

LAW 2 posn(x, A<>8) = il x E A then posn(x, A) else length A + posn(x, 8) 
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The function length returns the length of its list valued argument. Position (posn) is defined in 

terms of the function upto and upto compares the tags of the items rather than their values and 

thus can distinguish equal valued items. We formalise the relationship between the CS and 

ANS messages by the following rule: 

RULE 1 
MSG( a+j. CS(Xj. a. a-1+length(X). i. X» E messages O:S;j<length X. i;;,1 

::) 

MSG( a + posn(~ . sort X) . ANS(Xj) ) E messages 

where messages denotes the set of all messages that exist in the evaluation of quicksort. 

This rule, which expresses a property of the messages, operationally implies that when 

processor a+ j receives a message 

MSG( a+j . CS(Xj. a. b. i . X) 

it is responsible for ensuring that a message 

MSG( a + posn(Xj. sort X). ANS(~) ) 

is produced. This is because only processor a+j is aware of the existence of messages whose 

destination is a+j, and thus it must make rule 1 hold. 

Rule I has a base case, which is when only a single item is being sorted. In this case )=0. a=b 

and posn(Xj. sort [Xj]) = o. 

2.2 The initial algorithm 

The CS and ANS messages can be introduced into the definition of a dynarnic-message-passing 

architecture to yield an architecture-specific problem specification in the form of a top level call 

which sorts a list X = [Xo. X 1 ... .. Xn-11 to give a list Y = [ Yo. Y 1 ... .. Y n-1 1 on processors numbered 

k=O to n-l. Processor k=a+j receives Xj initially and receives Yj at the end of the algorithm. 
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messages = ( MSG( k, CS( Xk, 0, n-1, 1, X)) I 0:$kS n-1 } v 

( Pk ( fi~er(k, messages), 1 ) I 0:9<s n-1 } 

fi~er(k, ms) = ( me ms I m=MSG(k..j } 

Pk ( Messagesln, i ) = 

let ( MSG(a+j, CS( x, a, b, I , X) )} u OtherMessagesln = Messagesln In 

If (a=b) 
then (MSG( k, ANS( x ) ) } u Pk( OtherMessagesln, i+ 1 ) 

else FreeMessagesOut u ( MSG( destination, ANS(x) ) } u Pk ( OtherMessagesln, i+ 1 ) 

where destination = a + pasn( x, sort X ) 

The processors are represented by the functions Pk (0~k!;n-1)_ The fi~er function is used to 

define the operation of the dynarnic-message-passing architecture and uses the first parameter 

of the MSG messages as the destination processor number for the message. Thus, a message 

MSG(destination, contents) appearing on the right hand side of the equation for Pk will become a 

member of the set of input messages to P destination. The last parameter (i) is equal to the 

number of the iteration of the current call to Pk and is incremented on each new recursive call to 

Pk' In the definition of Pk the variable i appears in the parameter list and on the left hand side 

of the let-expression_ The pattern matching system must ensure that the right hand side is used 

only when the value of i in the message equals the value of i which is the last parameter. The 

initial program contains the free variable FreeMessagesOut in the message stream emerging 

from Pk; any value of FreeMessagesOut that is consistent with rule I provides a correct 

specification for quicksort; for example 0_ To prove that this specification satisfies rule I, 

messages can be instantiated to MSG(a+j, CS(Xj , a, a-1+length(X), 1, X) ) and the program code can 

be unfolded until MSG(a+pasn(Xj, sort X) , ANS(Xj» appears in the messages as well. 

The function Pk relies on access to the whole of the list to be sorted (X) and this is 

initially present in the CS message sent to processor k in addition to the value of one of the 

items in the list. X will be removed during the transformation. Moreover, each processor 

individually calculates the position of its item in the final list and sends out a corresponding 

answer message. Clearly this is not a very efficient parallel algorithm as each processor 

duplicates all of the sorting work_ The aim of the transformation process is to remove this 

redundancy, replacing it by inter-processor communication whereby useful results computed 

by one processor are transmitted to the processor that needs them_ Thus, in our initial 

algorithm, processor k would like to arrange for some other processor to compute the value 
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destination and send the result ANS(x) there. It therefore wants to pass on the value x to another 

processor closer to destination. It is by the instantiation of the free variable FreeMessagesOut 

that message passing is introduced. The synthesis is realised by successively taking a sub

expression from the body of Pk and replacing it with the contents of a message. The message 

(which was created' by instantiating the free variable FreeMessagesOut in the defmition of some 

Pk' ) is extracted from Messagesln using a let-clause. 

For example, suppose the set of messages already contains the message 

M1 =MSG(dest1, contents1). To introduce some message M2=MSG(dest2, contents2) 

into the set of messages, a new rule is added which states that M1 e messages => M2e 

messages. Processor dest1 (which received M1) is then charged with ensuring that M2 

appears. This is achieved by instantiating Pdast1'S free variable FreeMessagesOut to M2 u 

FreeMessagesOut2. Processor dest2 will then receive contents2 in a message. If 

contents2 appears as a SUb-expression in the body of P daat2, for example in a where clause, 

its calculation can be replaced by the contents of the message. The message is extracted from 

Messagesln using a let-clause. Thus, for example, in the body of the message recipient, we 

can replace the expression E(x) where x = y+z with 

let MSG(k, ValueOfxIs(x)) u rest = MessagesIn in E(x) 

providing we have introduced the message "ValueOfx" by instantiating FreeMessagesOut of 

some other processor. Proceeding this way the synthesis begins thus: 

3 Synthesis of Parallel Quicksort 

3.1 Step 1: Introducing Recursion 

Unfolding the function sort in our specification changes only the last line of the where-clause: 

destination = a+ posn( x, sort L <> E<> sort G ) 

where (L, E, G) = part(X, pivot) 

pivot E X 

Interprocessor cooperation would be facilitated during the calculation of the partition if each 

processor were using the same pivot. The pivot must be one of the items being sorted and the 

quicksort algorithm operates more efficiently if the pivot chosen is one near the median of the 

elements. Many different algorithms could be used to choose the pivot. In order to simplify the 

transformation, the item on processor numbered a will be used as the pivot and this will be 

broadcast to all of the processors (including processor a). A better strategy using a tree of 

processors is described in [Sharp 90). 
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Thus processor 8 will send a message to each of processors 8 to 8+n-1 to inform them 

of the pivot. Pk must now be transformed to make use of these extl'l! messages so that all 

processors use a common pivot. The new messages must satisfy the following rule: 

RULE 2 

MSG(a, CS(x, a, b, i, X) ) E messages 
~ 

( MSG(k', PIVOT(x, i)) I ~'sb} E messages 

Thus following receipt of the message MSG( a, CS(x, a, b, i, X) ), processor 8 will send out 

messages { MSG(k', PIVOT(x, i)) I ~'~b}. To modify Pk to conform to rule 2, its free 

variable FreeMessagesOut can be instantiated as follows (recall that i is the iteration number): 

FreeMessagesOut = ( II k=a then { MSG(k', PIVOT(x, i)) I a,;k',,;b} else {} ) u FreeMessages2 

A new free variable FreeMessages2 has been introduced to provide scope for introducing 

further messages later in the transformation. The new PIVOT messages are routed by the filter 

function and arrive in the input set of the appropriate processors. All processors can then use 

the value of x in the PIVOT message as the pivot. By using Rule 2 and M-folding, we can 

instantiate OtherMessagesln: 

OtherMessagesln = MSG( k, PIVOT(pivot, i)) u Othersln2 

Applying laws I and 2 gives a more refmed version of Pk within the initial program: 

Pk ( Messagesln, i ) = 

let MSG( a+j. CS( x, a, b, i , X) ) u OtherMessagesln = Messagesln In 

( II k=a then { MSG(k', PIVOT(x, i)) I ~'sb} else {} ) 

u 

let MSG(k, PIVOT(pivot, i)) u Othersln2 = OtherMessagesln In 

where 

FreeMessages2 u MSG( destination, ANS(x) ) u Pk ( Othersln2, i+ 1 ) 

destination = a + (II x<pivot then (pesn( x, sort L) 

else II x=pivot then length L + pesn( x, E) 

else length L + length E + pesn(x, sort G)) 

(L, E, G) = part(X, pivot) 

This function has reduced the sort of n items to three smaller sorts of the lists of items indexed 

by L, E and G. As each processor is using the same pivot, each will have calculated the same 
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lists L, E and O. It would be better if the processors cooperated: rule I can be used to make 

this happen. R-folding the sUb-expression MSG( destination. ANS(x) ) using rule 1 when x < 

pivot. sending the message 

MSG( a + posn( x. L). CS(x. a. a+ length L - 1. i+ 1. L) ) 

will eventually cause the message 

MSG( a + posn( x. sert L). ANS(x) ) 

to be sent. A similar result holds for the case x > pivot, with a replaced by 

a + length L + length E. Thus we obtain 

Pk ( Messagesln. i ) = 

let MSG( a+j. CSt x. a. b. i. X) ) u OtherMessagesln = Messagesln In 
( if k=a then ( MSG(k·. PIVOT(x. i)) I ~'g,} else {} ) 

u 

let MSG(k. PIVOT(pivot. i)) u Othersln2 = OtherMessagesln In 

FreeMessages2 

u 

( ifx < pivot then MSG( a + PL. CS(x. a. a+ NL-1. i+ 1. L)) else 

if x = pivot then MSG( a + NL + PE. ANS(x)) else 

If x > pivot then MSG(a + NL + NE + PG. CS(x. a+NL+NE. i+1. G) 
u Pk ( OtherMessagesln. i+ 1 ) 

where (PL. PE. PG) = (posn( x. L). posn( x. E). posn( x. G) 

(NL. NE. NG) = (length L. length E. length G) 

(L. E. G) = part(X. pivot) 

The recursive call to sort is now distributed over the processors by the CS messages and the 

calculation of PL, PE and PG has been abstracted out of nested if statements to make it more 

uniform over the processors. However, the calculation of the partition is not yet distributed. 

In order to achieve cooperative calculation of the partition, we now consider the 

evaluation of PL, PE and PO. In the following well known auxiliary functions and laws, * 

denotes the post-fix form of map (defined on tuples, i.e. f* (a, b, c) = (f a, f b, f c ) ) and 0 

denotes function composition. Let PA2partpivot be the partial application of part to its second 

argument pivot and PA2uptox be the partial application of upto to its second argument x. I.e. 

PA2uptox = A X. (X upto x) and PA2partpivot = AX. part(X. pivot). 

LAW 3 (Distributivity of map) 
( f o g)" = f* 0 g* 

LAW 4 (Promotion of upto) 
PA2uptox* 0 PA2partpivot = PA2partpivot 0 PA2uptox 
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Now, (PL, PE, PG) = (PA1posnx" 0 PA2partpivot) X where PA1posnx is the partial application 

of pesn to its fIrst argument x. We therefore have 

PA1pesnx = length 0 (PA2uptox 

(abstracting the second argument from the defmition of posn) 

PA 1 posnx" = length" 0 P A2uptox" 

PA 1 posnx" 0 PA2partpivot = length" 0 PA2uptox" 0 PA2partpivot 

length" 0 PA2partpivot 0 PA2uptox 

Therefore, applying this expression to X, we obtain 

(PL, PE, PG) = length" ( part( X upto x , pivot) ) 

But, we already have 

(NL, NE, NG) = length" ( part( X, pivot) ) 

Consequently the where abstraction 

(by law 3) 

(by law 4) 

(L, E, G) = part(X, pivot) is no longer needed and can be removed. Some way is needed to 

calculate length" part( X upto x, pivot) and length" part( X, pivot) in parallel. The quickest way of 

calculating lengths in parallel is to use a divide and conquer method that sums up items using a 

tree of additions. 

3.2 Step 2: A divide and conquer algorithm for length* 

In order to convert functions which sequentially traverse lists into divide and conquer 

functions, a way is needed to refer to sublists within a list. An infix function between can be 

used to do this. The function between: list alpha X num X num .> list alpfla takes a list of items 

([xo, .. xn.l]) and two numbers (p and q, 0:s;p~:s;n·1) and returns the sublist 

[xp' ... , xql. We make the following abbreviations (where PA1betweenX is the partial application 

of between to its first argument X): 

Lpb = length" 0 PA2partitionpivot 0 PA1betweenX 

(a. b, c) +++ (d, e, f) = (a+d, b+e, c+f) 

Lpb can be read as "lengths of partition between". Note that Lpb(j, j) can easily be calculated 

by processor 8+j because it knows the value of item Xj' We have (by unfolding): 

LpbO, j) = ij Xj<pivot then (1, 0, 0) else ij Xj=pivot then (0, 1, 0) else (0, 0, 1) 

This special case of Lpb will be very useful so we define a function triple based upon it: 

triple(x, pivot) = ij x<pivot then (1, 0, 0) else ij x=pivot then (0, 1, 0) else (0, 0, 1) 

A divide and conquer law can now be expressed in terms of Lpb: 



LAW 5 ( Divide and Conquer) 

Lpb( j, j+1 ) = LpbO, j) +++ Lpb( j+1 , j+1)) 
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Lpb( p, r) = Lpb(p, p) +++ Lpb( p+ 1, q ) +++ Lpb( q+ 1, r) 

The value of q has been left loosely defined so that different values of q can be used as 

necessary. Now from the definition of Pk it can be seen that each processor needs to know the 

value of length' part(X upto Xi' pivot) which is the same as Lpb( 0, j ). Unfolding this expression 

for list length seven (for example) using Law 5 above with 

q = a + (Ira) div 2 yields the tree of computations shown in Fig. 1. 

Lpb(O,6) 

o 

0b(O,~ 

Lpb( 1,3) 
1 

~ 
Lpb( 4, 6) 

~.,,~ 
Lpb( 2, 2) Lpb( 3, 3) Lpb( 5, 5) Lpb( 6, 6) 

~b(2'~ Eb(3,~ ~b( 5,:0 ~b( 6,3> 
2 3 5 6 

Fig. 1 Calculation of Lpb( 0, 6 ) 

In Fig. 1, at each oval, the triple inside the oval is added to the sum of the triples from the left 

subtree and the right subtree. Currently Pk instructs each processor to duplicate this 

summation. 

Each oval has been labelled with a number k, (k=O to 6). If processor k performed the 

additions of oval k and sent out an appropriate message to its parent (in the tree), then the result 

Lpb( 0, 6 ) would emerge from processor one after a time O(log n). The result could be 

communicated to the rest of the processors in O(log n) time by sending it back down the tree. 

However, to simplify the transformation we assume the presence of a broadcast channel, and 

hence 0(1) time. 
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A suitable rule to make this happen follows the definition of some auxiliary functions 

which we assume are given for tree navigation. The definitions refer to a depth first numbered 

tree containing m elements numbered a. a+l ..... a+(m-l). 

BiggestDesc(k. a. m) = Largest numbered descendant of processor k. 

e.g. BiggestDesc(O. O. 6) = 6. 

If processor k is a leaf then BiggestDesc(k. a. m) = k. 

Parent(k. a. m) = The parent of processor k. 

(if k is a left child. the parent is k-l. If k is a right child. the 

parent is k -q-l where q is the number of items in the left 

subtree of the parent) 

LeftChild(k. a. m) = hI (for a depth first tree) 

RightChild(k. a. m) = BiggestDesc(k+I. a. m) + 1 

IHaveARightChild(k. a. m) = True. if processor k has a right child. otherwise false. 

= ( BiggestDesc(k. a. m) > BiggestDesc(k+ 1. a. m) ) 

RULE 3: 
MSG( a, PIVOT(pivol, i» E messages, 

~ 

( MSG( k', LENGTHS( Lpb( 0, n-l ), i) 

MSG( k, PIVOT(pivOI, i» E messages, 

~ 

a5k'';;a+n-l} E messages 

k,.a 

MSG( parent(k, a, n), AT( Lpb( j, BiggeslOesc(k, a, n) - a), k, i) ) E messages 

Operationally. following receipt of the message MSG( k, PIVOT(pivol, i) ) ,processor k=a+j will!" 

a) If ko<a. send an "Add Triples" message 

MSG( parenl(k, a, n), AT( Lpb( j, BiggeslOesc(k, a, n) - a). k, i) ) 

to its parent. 

b) If k=a. broadcast the message 

MSG( k', LENGTHS(Lpb( 0, n-l ), i» to all processors k' = a 10 a+n-l. 
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The processor number k in the add triples message ensures that no two identical AT messages 

can be produced. The first AT messages come from the leaf processors. The parents of the leaf 

processors receive these messages and use the information in them to calculate further AT 

messages for their parents. Finally the root processor sends out the LENGTHS messages. Thus 

we instantiate FreeMessages2: 

FreeMessages2 = 

(If leaf( k, a, n ) 

then MSG( parent( k, a, n), AT( triple( x ), k, i) ) 

else If k;<a 

then MSG( parent( k, a, n ), AT( Lpb( k-a, BiggestDesc( k, a, n) - a). k, i) ) 

else {MSG( k', LENGTHS(Lpb( 0, n-1 ). i» I 0 ~ k' ~ n-l } ) 

u FreeMessages3 

Law 5 can be used in the calculation of Lpb( k-a, BiggestDesc(k, a, nJ - a ): applying the second 

case of law five for processors with two children, taking q = q' - a. gives: 

Lpb( k-a, BiggestDesc(k, a, n) - a ) = 

Lpb(k-a, k-a) +++ Lpb( (k+ 1) - a , q' - a) +++ Lpb( q'+ 1 - a, BiggestDesc(k, a, n) - a ) 

where k < q' < BiggestDesc(k, a, n) 

The Lpb function has been highlighted because it calculates values that can be deduced from 

incoming messages. From rule 3 we can deduce that processor k receives AT messages 

containing 

• 

• 

Lpb( k'- a, BiggestDesc(k', a, n) - a) 

Lpb( k"- a, BiggestDesc(k", a, n) - a ) 

from its left child 

from its right child 

The letter k has been dashed because relative to the parent (processor k), k'=k+1 and 

k"= right child of processor k = BiggestDesc(k', a, n) + 1. 

Choosing q'= BiggestDesc(k', a, n) and observing that 

BiggestDesc(k, a, n) = BiggestDesc(k", a, n) 

enables the AT messages to be used instead of calculating Lpb( (k+1) - a, q' - a) and Lpb( q'+l - a, 

BiggestDesc(k, a, n) - a) locally. Thus we can write equivalently (j=k-a and x is the first value 

received in the CS message) : 
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FreeMessages2 = 
(If leaf( k, a, n ) 

then let Othersln3 == Othersln2 In MSG( parent( k, a, n ), AT( triple(x, pivot), k, i) ) 

else If not IHaveARightChild(k, a, n) 

) 

then let MSG(k, AT( Tl , _, i )) u Othersln3 == Othersln2 In 

if k .. a then MSG( parent(k, a, n), AT( Tl +++ triple(x, pivot) , k, i) ) 

else (MSG( k', LENGTHS(Tl +++triple(x, pivot) , i)) I 0" k'" n-l ) 

else let MSG(k, AT( Tl, LeftChild(k, a, n) ,i )) u MSG(k, AT(T2, RightChild(k, a, n) ,i)) 

u Othersln3 == Othersln2 In 

If k .. a then MSG( parent(k, a, n), AT( Tl +++ triple(x , pivot) +++ T2, k, i) ) 

else (MSG( k', LENGTHS(Tl +++ triple(x , pivot) +++ T2, i)) I 0" k'" n-l) 

u FreeMessages3 

(Notice that for direct implementation we would require pattern matching against non

constructors, e.g applications of LeftChild.) 

Rule 3b now enables Othersln3 to be instantiated to 

MSG( k, LENGTHS( (NL, NE, NG), i) ) u Othersln4 

and the contents of the lENGTHS message can be used instead of calculating 

length' part( X, pivot) locally. Thus only (PL, PE, PG) = length' ( part( X upto x , pivot) ) 

remains in the final where-abstraction and the next step of the transformation is to eliminate it 

by introducing further messages. 

3.3 Step 3: Determining Destination Processors 

Once again the divide and conquer laws can be applied and a depth first tree connection of the 

processors is suitable. However, a more efficient algorithm is produced if different values of m 

are used for left children and right children. Further specialisations of law 5 are obtained by 

taking q = k-a and q = parent(k, a, n) - a respectively: 

LAW Sa (Divide and Conquer Law for Left Children): 

Lpb( a, k-a ) = Lpb( a, k-a-l, pivot) +++ Lpb( k - a, k-a ) 

LAW 5b (Divide and Conquer Law for Right Children): 

Lpb( a, k-a) = Lpb( a, parent(k, a, n) - a) 

+++ Lpb( parent(k, a, n) + 1 - a, k-a-l) 

+++ Lpb( k - a, k-a ) 
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Applying these laws leads to the network of computations in Fig. 2 which illustrates the case 

when a=O and n=6. To visualize law Sb, consider processor 4: it is trying to calculate 

Lpb( 0, 4). It is a right child so it uses the right child divide and conquer law (Sb) to get 

Lpb( 0, 4 ) = Lpb( 0, ° ) +++ Lpb( 1, 3 ) +++ Lpb( 4, 4 ) 

Now processor 0 can easily calculate Lpb( 0, ° ) as it has item 0 on it. Processor 0 also knows 

the value of Lpb( 1,3) because this was sent to it by its left child (processor 1) in an AT message 

in Fig. 1. Thus if a rule is introduced to make processor 0 produce a "Determine Destination" 

message MSG(5, OO( Lpb( 0, ° ) +++ Lpb( 1,3 ), i) ) then processor 4 will not have to recompute 

these values locally but can use the information in the message. 

Now consider processor S. It uses the law of divide and conquer for left children (law 

Sa) to determine that Lpb( 0, 5) = Lpb( 0, 4 ) +++ Lpb( 5, 5 ). It will not have to recalculate 

Lpb( 0, 4) locally if processor five sends it a message MSG( 5, OO( Lpb( 0, 4), i) ). Note that the 

DD messages consist of three integers and are thus quick to send. The following rule will thus 

dramatically reduce the amount of redundant computation: 

Lpb( 0, 1) 

2 

o 

~ 
Lpb( 0, 0) Lpb( 0, 0) +++ Lpb( 1, 3) 

+++ 
Lpb( 2, 2) 

d3.2V 
3 

}(,.~ 
L b( ° 4) Lpb( 0, 4) 
p, +++ 

Lpb( 5, 5) 

~~~ 
5 6 

Fig, 2 Determination of Destination of Continue Sort Message 
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RULE 4: 
( MSG( parent(k, a, n), AT( TI , k, i) ) 

( MSG( k', LENGTHS( Lpb( 0, n-I ), i) 

~ 

I a+19<'+I ~<l+n-l) E messages, 

~k'~a+n-I) E messages 

MSG( k'+ I, DD( Lpb( 0, k'-a), i) ) aSk'+ l$a+n-I) E messages 

( MSG( RightChild(k', a, n), DD( Lpb( 0, k'-a) +++ TI, i)) aSk'+I$a+n-l) E messages 

Thus following receipt of the LENGTIIS message, processor k sends messages 

• MSG( k+l, DD( Lpb( 0, k-a), i)) 

• MSG( RightChild(k, a, n), DD( Lpb( 0, k-a ) +++ TI, i) ) 

to its left child, if it has one 

to its right child, if it has one 

Tl is the triple that it received from its left child in an AT message, The contents of these 

messages are used by the children in their subsequent calculations. Rule 4 can now be used to 

instantiate FreeMessages3: 

FreeMessages3 = 

( If leaf(k, a, n) then () 

else MSG( k+ 1, DD( Lpb( 0, k-a), i) ) u 

If not IHaveARightChild(k, a, n) then () 

else MSG( RightChild(k, a, n), DD( Lpb( 0, k-a) +++ T1, i )) ) 

) u FreeMessages4 

For the root processor k=a, so the determine destination message contains Lpb( 0, ° ) which is 

the same as triple(Xo ). For the other processors (except the leaves) the calculation of Lpb( 0, k-a ) 

can utilize the DD(Lpb( 0, (k-1) - a), i) message sent to it from its parent (using laws Sa and Sb and 

rule 4) because of the following relationship: 

Lpb( 0, k-a) = Lpb( 0, (k-1) - a) +++ Lpb(k-a, k-a) 

(N1, N2, N3) +++ Lpb(k-a, k-a) 

where MSG(k, DD(N1, N2, N3), i) u Others5 = Othersln4 

Thus FreeMessages3 can handle the root separately from the other processors: 



I 

III .20 

F reeMessages3 = 

if(k=a) 

then let OtherslnS == Othersln4 

In MSG( k+ 1. DD( triple(x) . i) ) u 

If not IHaveARightChild(k. a. n) then () 

else MSG( RightChild(k. a. n). DD( triple(x • pivot) +++ n . i ) ) 
else let MSG( k. DD( (N1 . N2. N3). i » u OtherslnS == Othersln4 

in if leaf(k. a. n) then () 

else if not IHaveARightChild(k. a. n) then () 

else MSG( RightChild(k. a. n). DD( triple(x. pivot) +++ T1. i) 

u FreeMessages4 

There is no longer any reference to X because it has been m-folded out by replacing Lpb 

expressions with the contents of an incoming DD message. Thus a distributed parallel 

algorithm has been synthesized. The remaining free messages (FreeMessages4) can be 

instantiated to {} and the CS message no longer needs its fifth parameter. X. We therefore 

have the fmal algorithm: 

ParSor!( [Xo. Xl . .... Xn-l] ) = [YO. Y1 • ... . Yn-1] 

where 

MSG(k, ANS( Yk ) ) E messages 

messages = { MSG( k, CS( Xk, 0, n-1, 1, X» I O~ n-1 } u 

{ Pk (fi~er(k. messages), 1 ) I ~ n-1 } 

fi~er(k. rns) = { mE rns I rn=MSG(k..J } 

Pk ( Messagesln. i ) = 

let MSG( a+j, CS( x, a, b, i) ) u OtherMessagesln = Messagesln In 

( If k=a then ( MSG(k', PIVOT(x, i» I ~'sb} else {} ) 

u 

let MSG(k, PIVOT(pivot, i» u Othersln2 = OtherMessagesln In 

! FreeMessages2 ! 

(If leaf( k, a, n ) 

then let Othersln3 == Othersln2 In MSG( parent( k. a. n). AT( triple( x. pivot ). k, I) ) 

else If not IHaveARightChild(k. a. n) 

then let MSG(k, AT( T1, _. i )) u Othersln3 == Othersln2 In 

If k .. a then MSG( parent(k. a. n). AT( T1 +++ triple(x. pivot) . k. i) ) 

else {MSG( k·. LENGTHS(T1 +++ triple(x, pivot ), i» lOS; k' S; n-1 } 

else 
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let MSG(k, AT( T1, LeftChild(k, a, n) , i )) u MSG(k, AT(T2, RightChild(k, a, n) , i)) 

u Othersln3 == Othersln2 In 

H k .. a then MSG( parent(k, a, n) , AT( T1 +++ triple(x , pivot) +++ T2, k, i) ) 

else ( MSG( k', LENGTHS(T1 +++ triple(x , pivot) +++ T2, i)) I 0,;; k'';; n·1 ) ) 

U ! FreeMessages3 I 

If k = a 

t hen let Othersln5 == Othersln4 

In MSG( k+ 1, DD( triple(x, pivot), i) ) u 

if not IHaveARightChild(k, a, n) then () 

else MSG( RightChild(k, a, n), DD( triple(x, pivot) +++ T1, i ) ) 

else let MSG( k, DD( (N1, N2, N3), i)) u OtherslnS == Othersln4 

in if leaf(k, a, n) then () 

else if not IHaveARightChild(k, a, n) then () 

else MSG( RightChild(k, a, n), DD( triple(x , pivot) +++ T1, i) 

u 

(If x < pivot then MSG( a + PL, CS(x, a, a+ NL-1, i+1)) else 

if x = pivot then MSG( a + NL + PE, ANS(x)) else 

MSG(a + NL + NE + PG, CS(x, a+NL+NE, i+ 1) 

u Pk ( OtherslnS, i+ 1 ) 

triple(x, pivot) = n x< pivot then (1, 0, 0) else n X= pivot then (0, 1, 0) else (0, 0, 1) 

The stages in the synthesized program are illustrated in Fig. 3 and the operation of the 

synthesized algorithm on a worked example is given in section 4. 
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Fig. 3 Parallel Quicksort 

4. The Synthesized Parallel Quicksort Algorithm 

We now summarise the operation of the synthesised quicksort algorithm. Initially the items are 

distributed one per processor as shown in Fig. 4. Suppose item d on processor 6 is chosen as 

the pivot. The pivot is broadcast to all the processors using a binary tree connection in O(log n) 

time and each processor compares its item with the pivot in 0(1) time. The number of items 

less than, equal to and greater than the pivot is added up in O(log n) time using the same tree 

connection of the processors as before. 
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Item g e b a c d f 
Processor 1 2 3 4 5 6 7 

(1,4,5) + (0,0,1) = (1,4,~ (3,1,3) ~,4,6) + (2,0,1) = (3,4,7) 
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S 

Fig. 4 Massively Parallel Quicksort 
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The number of items in each group is broadcast to all the processors using the tree connections 

in the opposite direction in O(log n) time. The processors are split so that lower numbered 

processors (i .e. processors 1 to 3) sort items less than the pivot and higher numbered 

processors (i.e. processors 5 to 7) sort items greater than the pivot However, the items need to 

be moved to new processors. For example, processor 1 (which will sort items less than the 

pivot) contains g which is greater than the pivot. The g needs to be sent to one of processors 5, 

6 or 7. Ordinarily a load balancing and scheduling system would be used to map the new 

sorting processes to processors, however, these systems tend to dominate the performance of 

the algorithm. Our algorithm self-schedules in O(1og n) time: processor I gets first choice and 

chooses the lowest numbered available processor in the appropriate group. Thus processor 1 

will send the g to processor 5. Processor 1 can now calculates that processors (1,4,5)+(0,0,1) 

= (1 , 4,6) are available to processor two for sorting items less than, equal to, and greater than 

the pivot respectively. Now processor one knows the number of items in each group that 

processor two and its descendents have because this is the information it received during the 

tree addition in Fig. 4. As processor two and its descendents will be using the lower numbered 

processors up first, processor one can calculate the lowest numbered processors available for 

processor three and its descendents . Thus processor one sends to processor three a message 

(2,0, 1) + (1, 4, 6) = (3, 4, 7) which takes into consideration that the left subtree of processor 

1 contains two items less than the pivot and one item greater than the pivot. Processors two 

and three can then inform their descendants which processors are still available to be used. 

Each processor then knows where to send its item and, after the items have been redistributed 

the same algorithm can be used again on the subgroups until the list is sorted. The whole 

algorithm thus has an expected execution time of O(log n) iterations each taking O(log n) time, 

i.e.0( (log n) * (log n) ). 
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5. Execution Time On Connection Machine 

The quicksort has been executed on 8192 processors of a Thinking Machines Connection 

Machine CM2 and gives excellent results in comparison with enumeration sort and bubble sort 

(Fig. 5). 

1 2 0 
Bubble 

, 
• 

1 0 Sort --.... 0 , 
• , 

8 
, 
• .. , 

.... , 
Enumeration 9 • 

6 
, 

41 
Sort --... I !> Ei 

.~ 

I- 4 

2 
QUiCD 

• 
0 

1 1 0 100 1000 10000 

No Of Items 

Fig. 5 Quicksort, Bubble Sort and Enumeration Sort on 

The Connection Machine. (No of Items = No of Processors Used) 

The theoretical complexity of our parallel quicksort is time = k (log n)P where p is 2. This is 

because we expect O(log n) recursions of each partitioning about the pivot and the 

communications to choose a pivot and then redistribute the items take O(log n) time. In 

practise we would expect there to be some constant set-up time c; time = k (log n)P + c, 

however, on the Connection Machine c=O.OOO6 seconds and is thus insignificant compared 

with k (log n)P which is three orders of magnitude bigger than c. We therefore ignore c in 

the following analysis. 

Taking logs we have log time = log k + p log( log n). Thus plotting log time 

against log log n should yield a straight line of slope p . Fig. 6 shows that, for the 

Connection Machine, p=2.7. This is good agreement with the theoretical prediction: the 

hypercube hardware and routing software of the Connection Machine has added an extra 

O(log n)0.7 factor onto the execution time of the O(log n)2 algorithm. 
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6. Conclusions 

We have applied a methodology for systematically synthesising algorithms for message 

passing parallel machines to the formal derivation of a novel parallel sorting algorithm based on 

Quicksort. We have demonstrated that communication can be used beneficially and that 

efficient algorithms can be synthesized from high level specifications. The decomposition of 

the algorithm into processor-specific tasks has played an integral part in the creation of the 

novel algorithm with its run-time data dependent interprocessor commuclcation scheme. 

Despite the success of other parallel sorting algorithms [Alcl 85, Bitton 84, Gibbons 88, 

Hirschberg 78, Lakshmivarahan 84, Preparata 78], previous attempts to parallelize quicksort 

[Moller-Nilesen 63, Evans 85, Deminet 82] have not achieved a speedup greater than six 

[Francis 88]. This is because they did not use a communication-intensive strategy and thus 

were crippled by the overheads of fme grain dynamic task allocation and load balancing. 

A O(log n) time quicksort could theoretically be achieved [Martel 89] but it requires a 

nonexistent concurrent-write machine to execute it Thus the O(log2 n) quicksort synthesized 

here, and related algorithms [Sharp 89] have the lowest complexity and fastest execution speed 

for parallel quicksort on commercially available parallel hardware. The quicksort program is 

effectively finding the fixpoint of a list of elements when a partial sorting function is repeatedly 

applied. Fixpoint methods arise in many branches of science and engineering and so the 

communication-intensive massively-parallel approach is a promising technique for solving 

large problems of this type. 



7. References 

[AkI85] 

[BittDn 84] 

[Clark 80] 

[Deminet 82] 

[Evans 85] 

[Francis 88] 

[Gibbons 88] 

[Hillis 85] 

[Hirschberg 78] 

[Hoare 62] 

[Knuth 73] 

[Lakshmivarahan 84] 

[Martel 89] 

[Moller-Nilesen 87] 

[Preparata 78] 

[Sedgewick 78] 

[Sharp 89] 

[Sharp 90] 

[Sharp 91] 

[Thinking 87] 

III . 26 

S. G. AkI, "Parallel Sorting Algorithms," Academic Press, 1985. 

D. Bitton, D. Dewitt, D. Hsiao, J. Menon, "A Taxonomy of Parallel Sorting 
Algorithms," Computing Surveys, Vol. 16, No.3, 1984, p.287. 

K. L. Clark, J. Darlington, "Algorithm Classification Through Synthesis," The 
Computer Journal, Vol. 23, No. I., 1980, pp.61-65. 

J. Demine~ "Experience With Multiprocessor Algorithms," IEEE Trans. Compu't, 
vol C-31, pp. 278-288, Apr. 1982 

D. J. Evans and Y. Yousif, "Analysis Of The Performance Of The Parallel 
Quicksort Method," BIT, vol. 25, pp. 106-112, 1985 

R. S. Francis,!. D. Mathieson, "A Benchmark Parallel Sort For Shared Memory 
Multiprocessors," IEEE Trans. Comput., Vol. 37, No. 12, Dec. 1988, pp.1619-
1626. 

A. Gibbons, W. Rytter, "Efficient Parallel Algorithms," Cambridge University 
Press, 1988. 

W. D. Hillis, "The Connection Machine," MIT Press 1985. 

D. S. Hirschberg, "Fast Parallel Sorting Algorithms," Commun. ACM Vol. 21, 
No.8, Aug. 1978, pp.657-666. 

C. A. R. Hoare, "Quickso~" The Computer Journal vol. 5, pp.10-15, 1962. 

D.E. Knuth, "The Art Of Computer Programming Volume 3 : Sorting and 
Searching," Reading, MA: Addison-Wesley, 1973. 

S. Lakshmivarahan, S. K. Dhall, L. L. Miller, "Parallel Sorting Algorithms," 
Advances in Computers, Vol. 13. New York: Academic, 1984, pp.295-354. 

C. U. Martel, D. Gusfield, "A Fast Parallel Quicksort Algorithm," Information 
Processing Letters, Jan. 1989, pp97-102. 

P. Moller-Nilesen and J. Staunstrup, "Problem-heap: A Paradigm For 
Multiprocessor Algorithms," Parallel Computing 4 (1987), pp 63-74. 

F. P. Preparata, "New Parallel Sorting Schemes," IEEE Trans. Comput, Vol. C-
27, No.7, July 1978, pp.669·673. 

R. Sedgewick, "Implementing Quicksort Programs," Comm. ACM, vol. 21, 
pp.847-856, Oct. 78. 

D. W. N. Sharp, M. D. Cripps, "A Parallel Implementation Strategy For 
Quickso~" Proc. 1989 International Symposium on Computer Architecture and 
Digital Signal Processing, Vol. I, Hong Kong, Oct. 89, pp.305-309. 

D.W.N. Sharp, "Functional Language Program Transformation For Parallel 
Computer Architectures," Ph.D. thesis, Dept. of Computing, Imperial College, 
London Univ., 1990. 

D.W.N. Sharp, M.D. Cripps, "Parallel Algorithms That Solve Problems by 
Communication," Internal Report DoC 91/23, Imperial College, May '91. (Also to 
appear in Proc. Third IEEE Symposium on Parallel and Distributed Processing, 
Dallas, Texas, Dec 91.) 

Thinking Machines, "Connection Machine Model CM-2 Technical Summary," 
Thinking Machines Corporation Technical Report Series, HA87 -4, 1987. 



III . 27 

DISCUSSION 

Rapporteur: Daniel McCue 

Professor Randell observed that one technique for generating one-liners in APL, using 
the iota operator, was considered bad form because it generated huge amounts of 
temporary data. These constructs expose much parallelism but at a great cost in space. 
He went on to ask, "How does your transformation system compare to optimized APL with 
respect to space utilisation?" 

Dr. Harrison acknowledged that it is true that the price of referential transparency in 
functional programming is that lots of data is generated and lots of copying occurs. He 
explained that this is generally true in all functional programming languages - not 
particular to parallel systems. Initial implementations of the program transformation 
system will not be concerned with optimising space although clearly more work is 
needed here. Initial approaches to addressing this problem in functional languages relied 
on garbage collection (in sequential implementations) . More sophisticated techniques are 
used now in conjunction with GC. 

Professor A. J . Cole remarked that In the example given [a graphics application 
averaging intensity over a set of neighboring pointsj, Dr. Harrison had ignored the 
boundary points. "Isn't that a serious oversimplification?", he asked. 

Dr. Harrison agreed that the example was somewhat simplified for presentation 
purposes, but argued that as in any language, boundary conditions can be addressed at a 
cost in program clarity. He claimed that functional programming provides a significant 
improvement in clarity over other programming styles not only in the main, simpler 
parts of the application, but in addressing boundary problems as well . For example, 
higher-order functions could be used to address the boundary problem here. 

Professor B. Randell asked, "Have you tried this technique on an algorithm that would 
interest a real user?" 

Dr. Harrison replied that he has applied it to ray tracing - the most complicated 
problem he have attempted. 

Professor Dr. D. Swierstra quipped, "This approach to program construction carries 
with it a proof of correctness - a very great benefit - but th is necessarily excludes 
"interesting" problems I" 

Professor W. D. Shepherd asked, "Have you thought of applying this technique to 
Programmable Gate Arrays?" 

Dr. Harrison replied that PGAs look interesting, but have not been attempted yet. 

Professor Drs. C. Bron asked, "What happens if the transformation maps onto a nesting 
of skeletons? One cannot nest the hardware I" 

Dr. Harrison responded by saying that there is no problem with nesting . If all of the 
skeletons that result from the transformation can be efficiently mapped onto the target 
hardware, there is no problem. Otherwise , some inefficiencies may result. 
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