
VII . 23

A PRODUCT LINE ARCHITECTURE
FOR A NETWORK PRODUCT

D E Perry

Rapporteur: Dr Robert Stroud

VII.24

f

•

VII . 25

A Product Line Architecture for a Netw-ork Product

D ewayne E. P erry
Bell Laboratories

600 ~ lountain A \'e
?'vlurray Hill, [\j.] 0797 c! liS."\"

+1908582.2529
dep@research.bell-Iabs.com

AB STRACT
Given a set of related (and existing) network products .
the goal of this architectural exercise was to define ~
generic architecture that was sufficient to encomoass ex
isting and future products in such a way as t~ satisf\,
the following two requirements: 1) represent the rang-e
of products from single board , centralized systems to
multiple board, distributed systems: and 2) support dy
namic reconfigurability.

\Ve first describe the basic system abst ractions and the
typical organization for these kinds of products. We
then describe an instance of the resulting architecture
and show how these two requirements have been met.
Our approach combines the two reauirements neatlv
into an interdependent solution - tho~gh one could ea,;
ily separate them into independent ones .

We use a late binding approach in such a way that it
solves both requirements. The three imoortant archi
tectural components that provide this a~e the system
model and data, the reconfiguration manager and the
command broker. The system model and data enables
the system to evolve itself dynamically via reflection; the
reconfiguration manager uses the system model as the
basis for dynamically reconfiguring the system; and the
command broker is an object request broker mechanism
that provides the necessary indirection and infrastruc
ture to provide location transpareacy.

I then address the ubiquitous problem of how to deal
with the problem of multiple dimensions of oraaniza-

. 0

tlOn. In any type of system there are several competina
ways in which the system might be organized. The is~
sue arises of how to address the other means of oraani-o

zation once the primary dimension has been chosen. I
show how architectu ral styles can be an effective mech
anism for dealing with such issues as initialization and

exception handling in a u ::. : :or~ way across the system
components.

Keywords
Software Architecture Ca;e Stud,'. D"namic Reconfia-

. • . • 0

uratlOn, Distribution-Free Archi tecture , Architecture
Styles, Multiple Dimensions of Organization

1 Introduction
This study represents a 5r:ao~ho(i!'l the orocess of con
structing a generic arch t:e~tu:e for a product line of
network communications Ecuio!I:em - it is not the ar
chitecture for the produc: · Iu:.e. The purpose of this
paper is to present se\'erai cidcal issues relevant to the
architecture for the proecc, lie.e , to discuss the imolica
tions of those issues: a~c. w d25cribe several inte~sting
architectural techniques , ' .at soh"e these issues in inter
esting ways. We pro"ide ee.ough of the domain specific
architecture to give the appropriate context for the part
of the architecture we fOCil::: on.

We first provide the conte~, for the study (the product
line domain, the current and desired states of the prod
uct line, and a basic "'ie'" of the products). We then ex
plore the implications of the prl!nary requirements and
what is needed at the architectural level to satisfy those
requirements. On this basis , lYe the describe our solu
t ion and the motivation behind our choices. Finally, we
summarize what we ha"'e done and lessons we learned
in the process .

2 Context
The product line consists of network communication
products that are hard"'are e"ent-driven, real-time em
bedded systems. They have high reliability and in
tegrity constraints and as such must be fault-tolerant
and fault-recoverable. Since they must operate in a va
riety of environments, they are "hardened" as well.

T he current state of the products in this product line is
that each product is custom built to a customer 's spec
ifications with hard-wired hardware and specially build
software. To evolve one of these products, one must
specify a new instance and ha"e it specifically built .

The basic abstraction for these products is that of a con-

Figure 1: Basic Abstraction: Connect ion. A con
nection consists of an originating port connected via a
switch fabric to a destination pon.

Figure 2: Basic Hardware / Software System: con
sists of three logical elements: connections, controllers
and a control manager.

nection. A connection consists of an originating port
connected through a connection or s"itch fabric to a
destination port. The connections range from static
ones (which once made remain in existence until the
devices attached to the ports are remo\'ed) to dynamic
ones (which range from simple to very complex connec
tions that vary in the duration of their existence) - see
Figure 1.

The typical system structure for these products (see
Figure2) consists of a set of connections such as com
munication lines, switches, other network connections,
and craft and debugging interfaces. These devices have
various appropriate controllers that are handled by a
connection manager which establishes and removes con~
nections according to hardware control events.

Figure 3 shows a typical architecture for such network
communication products layered into service, network
and equipment layers. Within each layer are the appro
priate components for the functionality relevant to that
layer.

3 B as ic R equirem ents
The basic requirements for the product line architecture
we seek are:

VII .2 6

Figure 3: T ypical Domain-Specific Arch itecture :
a structure of three layers c:)r:..::ste~ : ';\" itn the standard
network model.

• To cover the large Set c f c: ':e:- se product instances
that currently exist a:.c : ~a.t ca.:: be desi red in the
future

• To support dynamic . ecc r.f: '6'..:..:at io r. so that the
products existing in c:".'? ::e:d car: e':oke as demands
change for new and c.: :::r e~ t k..::1ds of communica
tion.

Thus the desired state of t C.2 proccc: line is that prod
ucts can be reconfigured a3 :.e"=c2c 7, i(~ as little disrup
tion as possible (but not re-:::.ui:::!g continuous service).
For the hard\vare, this e~:ai!5 COC.::1on interfaces for
the various communicador.. del:ice s a..'1d plug compati
ble components . For the sof: -:vare. r:-:!s entails a generic
architecture for the comple,e oet of products and and
software support for dynam':c reco r..5gura.tion of the sys
tem.

The first question then is h07,' do ,ce coeate a generic ar
chitecture that covers the e!'.ti:e fJ..nge of products in the
product li ne? These prod\!ct3 range from simple single
board systems to complex. multi-board and distributed
systems. If we address the iss ue of distribution at the
architectural level, then that implies that distribution
is a characteristic of all the instances. What then do we
do with simpler systems? . .1. separate architecture then
defeats the goal of a singie generic architecture fo r the
entire product line.

One answer to this question is to create a distribution
free architecture [31 and thus bury distribution down
into the design and impleme~tation layers of the system
construction process, In this ,vay, dist ribution is not an
architectural issue as such.

However, this decision does ha\'e Significant implications
at the architectural level about how the issues of distri
bution are to be solved. First. the system needs a model

of itself that can be used by the appropriate components
that must deal with issues of di3~ ributio n, For example,
the co mponent handling 3y3te;:~ commands and reques[s
must kno\v where the compon:;::'~5 are in order to sched
ule and in\'oke them, Thus. 3E-cond , we need a com
mand broke r that pro\'ices locat ion transparent com
munication, that is configu rabte: that is priority based
and that is small and fast. The last two requirements
are due to the real-time requi:-emems on the system as
a whole. Finally, the components need to be location
independent in order to be useful across the entire range
of products.

To satisfy the requirement for dynamic reconfiguration,
it is necessary only to minimize down time. vVe do not
need to provide continuous sE[I,'ice, However, we need
to be able to reconfigure the system in situ in any num
ber of ways from merely replacing line cards to adding
significantly to the size and complexity of a system (fo r
example, changing a simple system into a complex dis
tributed one) in the hardware and from changing con
nection types to adding and deleting services in the soft
ware ,

As with the issue of distribution, reconfigurability re
quires a model of the system and its resources, and
obviously, a reconfiguration manager that directs the
entire reconfiguration process both systematically and
reliably. For this to work properly, the components
have to have certain properties akin to location inde
pendence for a distribution-free system. In this case,
we need configurable components. Vie shall see below
that these necessary properties can be concisely describe
in an architectural style [1).

To ensure that any reconfiguration results in an a com
plete and executable state , consistency and completely
analysis must be done to ensure that the resulting sys
tem is not missing anything and that all the pieces work
together properly. The question arises then as to where
this part of reconfiguration manager should be . Given
the space and economic considerations of the systems,
we chose to have the consistency checking done outside
the bounds of the system architecture.

4 Architectural Solution
By and large, a product line architecture is the result of
pulling together various existing systems into a coherent
set of products. It is essentially a legacy endeavor: be
gin with existing systems and generalize into a product
line. There are of course exceptions , but in this case the
products preceded the product line.

The appropriate place to start conSidering the generic
architecture is to look at what had been done before.
In this case we draw on the experience of t\VO teams for
two different products and use their experience to guide
us in our decisions.

VII . 27

Figure 4: Reconfiguration Components : System
Model (SM), System Data (SD j. Reconfiguration).,[an
ager (RM), and Command Broke, (eB).

As in any system of an:: compl~~2:::, t:;ere are multiple
ways of organizing (2] Doth t~le rJ::ctionality and the
various ways of supporti~g ::on::"::!c::or:al properties . In
this case, \ve see two more or les3 ,)~ :~ogonal dimensions
of organization: syste:!l objects 2.::~ 5::3tem functional·
ity. System objects rer: ec~ the b~~:c ~ardware orienta
tion of these systems: pack5, 5 1+')~.: , protection groups.
cables, lines , s\vi tches. s:; st'2 ms, e: c, S:: stem functional
ities reflect the things d'.at the 5~'~ ~2;,:";S does : configu.
ration, connection, fault r.ancE7'.s , protect ion, synchro
nization, initialization~ recovery, e: c.

Given the two dimension3. the 5~:al-:g:; in the twO de
velopments was to organize J.lon'6 o:-:e dimension and
distribute the other throu5~out ~:a(dimension's com
ponents. In the one case. t~ey cco;e tete system object
dimension , in the other (~e:: cho-::e t::e system function
ality dimension. Both groups fe !r ::-:eir solutions \Vere
unsatisfactory and were going (0 (:-:oose the other di
mension on their next de\'e!op!'1:e!1t.

Our strategy then was to take a hybrid approach:
choose the components tc.at are cop.sidered to be cen
tral at the architectural level and then distribute the
other aspects throughout those components - a mix
and match approach. The question then is how to gair.
consistency for the architectural considerations that get
distributed over the architectural components. We il·
lustrate the use of architectu ral ",·les as a solution tc
this problem in two imere5ting cases below.

For the satisfaction of the product line requirements
we hav~ the four components illustrated in Figure 4
the command broker (CB). the reconfiguration manage
(RM), the system model (S ~[) ~nd the system provision
ing data (SD).

The system model and system data provide a logic"
model of the system, the logical to physical mapping c

Figure 5: Domain-Specific Components: Con
nection Manager (C~[), Connection Services (CS), Dy
namic Data (DO, Connection Controller (CC), and
Connection Devices (CD).

the various elements in the system configuration, and
priority and timing constraints that have to be met in
the scheduling and execution of system functions.

The command broker uses the system model to drive
its operation scheduling and i~':ocation. System com
mands are made in terms of logical entities and the log
ical to physical mapping is what determines where the
appropriate component is and how to schedule it and
communicate \vith it .

Reconfiguration is split into two parts: reconfiguration
generation and reconfiguration management. the recon
figuration generator is outside the architecture of the
system and ensures that the reconfiguration constraints
for completeness and consistency of a configuration are
satisfied. It also ensures that the configured system is
minimal [?]. a requirement due to both space and time
limitations.

The reconfiguration manager directs the termination of
components to be removed or replaced, performs the
component deletion, addition or replacement, does the
appropriate registration and mapping in the system
model, and handles startup and reinitialization of new
and existing components. Special care has to be taken
in the construction of the reconfiguration manager so
that it can properly manage self-replacement , just as
special care has to be taken in any major restructuring
of the hardware and software.

For the domain-specific part of the architecture we have
chosen as the basic architectural elements, as shown in
Figure 5, the connection manager (CM), the integrity
manager (1M), the connection services component (CS),
the connection controllers (CC), and the connection de
vices (CD). These components represent our choices for
the archi tectural abstractions of both the critical ob jects

VII. 28

Figure 6: Reconfigurat ion Connections. The recon
figuration manager is connected in arious ways to all
the components in the system, ~.,cluding itself and the
system as a whole.

and the critical functionalit:: necessary fo r our product
line. Of these , the integrity manager is a logical compo~
nent whose functionality is distr,,,u ted throughout the
other components.

The reconfiguration imeracr ions shown in Figure 6 il
lustrate how the reconfiguration manager is intimately
tied to both the system model and the system provi
sioning data. This pa:-t of the reconfiguration has be
handled with care in the right order to result in a con
sistent system. Further, the reconfiguration manager
interacts with itself and the entire configuration as well
as the individual components of the system: terminate
first, preserving data, reconfigure the model and provi
sioning, and then reconfigure the components . There
are integrity constraints on all of these interactions and
connections .

The reconfigurable component architectural style that
must be adherred to by all the reconfigurable compo
nents has the following constraims:

• The component must be location independent

• Initialization must provide facilities for start and ,
restart , rebuilding dynamic data, allocating re~

sources, and initializing the component

• Finalization must provide facilities for preserving
dynamic data, re leasing resources, and terminating
the component

While we have not used the typical network model as
the primary organizing principle for the architecture, it
does come into play in defining the hierarchy or decom
position of several of the basic domain specific system
components: the connection manager I the connection
services, and the connection controller.

•

•

•

. . ~ ~$~ '<> ' ,.. ~.~-::r:!l.~~t"3~~~J ~~

. !,,~~~~::~4~*$1%·~~~~~i~~R~·
!

T

.~:,\~~~~~~~§~~~~iifg&~$:~~~~OO~:·#~
!
I
T

Figure 7: D omain Specific Component D ecom
pos ition . The traditional layt ri:lg forms the basis of
the subarchitect ures several of the basic domain specific
components.

Figure 8: A rchitectural Connections . A software
bus provides the primary control and data connectors
among the system components.

A software bus provides the primary connector amongst
the system components for both control and data access .
There are other connectors as well, but they have not
been necessary for the exposition of the critical aspects
of the generic architecture. There are both performance
and reliability constraints that must be met by this pri
mary connector . The manager of the bus is the com
mand broker .

\Ve had mentioned earlier that the integrity manager
was a logical component that was distributed across all
the architectural components. As such there is an in
tegrity connector that hooks all the integrity manage
ment components together in handling exceptions and
recovering from faults. \Ve had also indicated that the
part of the integrity management would be defined as
an architectural style that all the system components
had to adher to. This style is defined as follows:

VII .29

• Recover \vh en possible, otherw"ise reconfigure
around the fault

• Isolate a fault witb.ou~ i:npacting other components

• A \"oid false dispar.d:es

• Provide mechanisms fo r inhibiting any action

• Do not lea\"e working co~ponents unavailable

• Enable working in the prese nce of faults

• Recover from single fa ults

• Protect agains ro lling recoveries

• Collect and log appropriate information

• wrap exceptions to faults

• Enable sequencing of reco\"ery actions

5 Sum m ary and Lessons
Vie have explored sO"eral interesting techniques to
achieve a generic architecture that satisfied both the
domain-specific requirements and the product-line ar
chitecture requirements"

To achieve an appropriate domain-specific architecture!
we chose a hybrid approach in which we selected what
we considered to be the critical elements from two or
thogonal dimensions of organization. We then defined
architectural styles to ensure the consistency of the sec
ondary components distributed throughout the primary
components. \Ve defined a software bus as a general
connector among the components subject to both per
formance and reliability constraints. This latter is espe
cially important where the underlying implementation
and organization is distributed across several indepen
dent physical components.

To achieve the appropriate goals of the product line
generic architecture and enable dynamic reconfigura
tion, we chose a data-driven, late binding and reflective
approach . This enabled us to solve both the problem of
centralized and distributed systems and the problem of
reconfiguration with essentially the same mechanisms.

As to lessons learned:

• To quote an old saying "there are many ways to skin
a catll " So too there are many ways to organize an
architecture, even a domain specific one. Because_
there are multiple possible dimensions of organiza
tion! some orthogonal! some interdependent! expe
rience is a critical factor in the selection of criti
cal architectural elements, even when considering
only functional, much less ~·hen considering non
funct ional, properties"

• It is extremely important for any architecture, de
sign or implementation to have appropriate and rel
evant abstractions to help in the organizing of a
system. An example in this study is that of a con
nection as the central abst raction. Concentration
on the concepts and abstractions from the problem
domain rathe r than the solution domain is helpful
in this respect.

• Properties such distribution-independence
or platform-independence are extremely useful in
creating a generic product line architecture. They
do, however, come at a cost in terms of requiring
appropriate architectural components that enable
those particular properties.

• Architectural styles are an extremely useful mecha
nism in ensuring uniform properties across architec
tural elements, especially for such considerations as
initialization, exception handling and fault recovery
"'here local knowledge is critical and separated by
various kinds of logical and physical boundaries.

Acknowledgements
Nancy Lee was my liaison with the architectural group
on this project. She helped in many ways, not the least
of which was making project data and documents avail
able for me to write up this case study. The system
architects on the project as a whole were very toler
ant of an outsider working with them. However, we
achieved a good working relationship combining their
domain expertize with my research investigations and
together with a willingness to explore alternative

possibilities.

REFERENCES

[IJ Dewayne E. Perry and Alexander L Wolf. Founda
tions for the Study of Software Architecture. ACM
SIGSOFT Software Engineering Notes, 17:4 (Octo
ber 1992)

[2J Dewayne E. Perry. Shared Dependencies. In Pro
ceedings of the 6th Software Configuration Manage
ment Workshop, Berlin, Germany, March 1996.

[3J Dewayne E. Perry. Maintaining Minimal Consistent
Configurations. Position paper for the 7th Software
Configuration Management Workshop, Boston Mas
sachusetts, May 1997.

[4J Dewayne E. Perry. Generic Architecture Descrip
tions. In ARES II Product Line Architecture Work
shop Proceedings, Los Paimas , Spain, February 1998.

VI I. 30

(

f

• •

A Case Study in Product Line
Architectures

Scpcemba 1991I

Dewayne E. Perry

Bell Laboratories
Room 2A-429

600 Mountain Ave
Murray Hill NJ 07974

dl:p@research.bdl.labs.com
www.bell-Iabs.conv-depl

Newcastle '98

Outline

* Background and context

* Satisfying the basic requirements

*Our architectural solution

* Summary

September 1993 Newcastle '98

t.ooc.r-.J:2:::'!li:: 0

~' • .!I!!"""" 0

Context

* A snapshot during the architectural process
for this product line (ie, not THE final
product line architecture)

* Basic requirements
• Cover a large class of diverse instances in the

same application domain

• Support dynamic reconfiguration

*Simplification of non-relevant issues

" "'- .
t...ro .. r .. ·~O Sc:ptembo:' lY9~ Newcast le '98

Product Line Domain

* Network Communication Product

*Real time, embedded system

*HW event driven

* High reliability, high integrity

* Fault-tolerant, fault-recoverable

* Hardened - to operate in a variety of
environments

Scp<crnb<. 199~ Newcastle '9t)
l.oo<w ... r«h~O

<
H
H

w
~

Current State of Product Line

*Custom built to customer specification

* Hard-wired hardware

* Hard/hand-coded software

*To evolve: build new hardware and
software

Sqmml>ct 1m Newcastle '98 ~ . ..r~O

Target State of the Product Line

* Dynamic reconfiguration of both HW and SW

*Hardware

• common interfaces

• plug compatible components

*Software
• generic architecture

• common platform

• plug and play

S<:I'ICnJbef 19911 Newcastle '98 L-",T«~""""';'" 0 ... '-;.;.;.;.;~ .

-

Basic Abstraction:
Connection

-.-.. -.-... _.- -~ ... -.----.. ~-. -- . .

"()i!aiiiiilinul .1- · · .. f'-·Tii·-"'--WDeS-tiriatiOn ~ ~.~ ~l 9. ___ ~ ,.,p
I--:-. ...?Q~~ "~~Fabric !'~ _ ,-:. •. ,ort

- -----,

~
•. : . ..

~. . ~ _. -
--. -.- -.--~ -,- --

'--'~'~~'-

xpocmbcr 1998 Newcastle ' 9$
l T"'~"'>I~ O

Basic Abstraction: Connections

* Variety of connections fro m

• re latively static to

• dynamic. simple to complex

* Variety of connection machines from
• simple one board. ce ntralized systems to

• multiple board, distributed systems

Scp'''mbo:r 1Y9~ Newcas tle '9~ L""""' r h ... ~.!':2::: 0

- -

<
H
H

W
N

• •

Basic HW/SW System

r.--"",,,,,,,,,,,,,,,,,,,,,,,

~'·~ · l~ '- ~ . t·"~~~ I-=-Lille$~ _ ColltrolIer.--:- '~~aOager"?" '

~~!:c;; _,:~-_~ -::~~ ~:.,'. ~~;- ~~:~_ .
";"GraftlDebug _ .., ~ _ ~ _ ~

,.s:: --, . . --.---.. -..

Scp,effibc' 1 ?9~ Nt:wcastle '98 ~"!1"-""""" 0

Basic System

*Deyices of various sorts that are used for
connections to various kinds of network
components

* Controllers for those devices

* A connec tion manage to establish and
remove connections

Scp!clT\bc. 1 9'1~ Newcastle ' 98 ~.!1~~O

Typical Architecture

c¢----.-'s~~ i-ce-CafeT --~·~~7 _ ___ _ _ _ _ A ______ _ _

t
-NetworK"1:ayer . .,---"""_ ---...--.

._,",.:.:::;~p;,~-;.i-n;-y;;:;;:::.-:;--

ScpiC,nbcr 1998 Nc wcasll.: -98

Outline

* Background and context

*Satisfyillg the basic requirements

* Our architectural solution

* Summary

S<IMCrnbcf I W~ Newcastle '98

L ... "~' r ... hf>CII~ 0

lv< • • , r ... -..~ 0

<
H
H

w
w

Whither Dynamic Reconfiguration

* Do not need continuous availability

*00 need to minimize downtime

* Ability to change in situ

• overall organization: centralized to distributed

• change connections

• add, replace, delete services

s.:p,embc:r 19911 Newcastle '98 t...<o"'.!:!..~O

Implications of Reconfigurability

* Model of system and resources

* Configuration Manager

*Configurable component style

* loci of reconfigured system
• generation

• analysis

• linking

Scplc mber 1998 Nt:wcastle '98
l ~!l~~ 0

-

Whither Distribution

* Part of architec ture?
.then all instances must be di stributed

• but some are single processor systems

* Distribution Independence
• emphasis on components and interactions

• bury distribution in supporting plarform

Scplcmbcr 1998 Newcastle '98
~

L..ccn, r«h ~ 0

Implications of Distribution Free

* Need an object request broker
• location transparent communication

• configurable

• priority-based

• small and fast

* Location independent components

* Model of the system

Sc:p!Cmbcr 1998 Newcastle '98 L.o"'"!1'~~~O

- -

<
H
H

eN
po

• •

Outline

* Background and context

* Satisfying the basic requirements

*Our architectural solution

*Summary

s..p."mbo:f 1993 Newcastle '98

Initial Considerations

*What are the possibilities?

*What was past experience?

* Initial strategies

Scpccmb<r 1993 Newcasth: '98

~ . .!~O

~,]"--= 0

,-.,

Two Possible Dimensions

* System Objects:

• pack, slot, protection group, cable, line, switch,
system

*System Functionality:
• configuration, connec tion, fau lt, protection,

synchronization, initializat ion, recovery

xptcmber 1998 Newcastle '98 lMn"T«~~O

Experience

*Organize on one dimension, distribute the
other

* Previous product arch itecture experience
• one group: system objects

• another: system fu nctionality

*Evaluation of both groups
• nei ther solution satisfactory

~ " • ° D'D ° tq CIa tnt' O' oee QIWeps ,oo 0
Loonnt T«h !S:!: s.:ptc L99~ Ne wC:lSlle '~8

<
H
H

W
VI

Initial Strategy

*Choose some components in each
dimension as the primary architectural
components

* Define the distributed components as SW
Architectural Styles
• e .g., constraints on initialization

• common across all components

• consiste nt across all components

e.g" rault oetec.:uorf, -reCQvery. dC ..
S.p,cmbc. l998 Newcastle '98 '-"!1~O

DistriReconfig Components

*CB - Command Broker

*SM - System Model

*SD - System Data

*RM - Reconfigure Manager

s.:p'cn>bo:' 1'I'IlI Ne wcastle .y~ ,~ ... '"'= 0

-

/ DistriReconfig Components "\

a FCB~~\
.-~.,.

r-SNC\ .. '

tsf8

" ./
Scp",mbcr J99H Newcas tle '98 '"""""._""" 0

Domain-Specific Components

*CM - Connection Manager

* IM - Integrity Manager

*CS - Connection Services

* CC - Connection Controllers

* CD - Connec tion Devices (HW)

" ~

l.v< r «"M • • ~O S<p'~ n oD<' lon' Ne wc;.ls tlc '98

- -

<
H
H

W
a-

•

I

"

• o

Domain-Specific Components

beg l ;;c~1 --_. E~ ~.-•.

~ - _L ._- -. ec. _ .. _:.._1
I~.---.---------:~--· __

r'~ -0- CD . -:. 1
~ ... ~.~ .. -. . - -

""""

~

SepICmbcr 1998 Newcastle '9H ~"I.!~~O

Distribution Components

*System M odellDa ta (SM/SD)

• Logical Model

• Logical to Physical Mapping

• PriorityfTiming constraints

*Command Broker (CB)

• OperJlion invocation

• Operation schedul ing

Scp!cml)cr 19'1g Newcastle '~H
L""1::..~O

Reconfiguration Components

* Reconfiguration Ge neration (RG)

• Outside the fie lded system

• Component generation

• Completeness/consistency analysis

• Configuration minimality

Scplc~r 199~ Ne wcaslle '98 L...,.n!1.'!!~.i:: O

Reconfiguration Components

* Reconfiguration M a nager (RM)

• Termination of components

• SM, SD, Component update

• Regis trationlLinking

• Initialization

• Reflection to be able to replace self

Xl"e.no.:r I,,,,g Newca!>l lc "98 L""~lt!:::'~ 0

<
H
H

W
-.J

r Configuration Connections """
,-------.

alaa~~ . . _ _ _._w ••. _ _ _ ~ __ ~ . ~. ~ 0-
~:St.rJ

1 . ·c~- I .:::':::'--~'::: ' - '-" ~-- -- --'-~.

(~S~J
- ---- -ep;:; -- :-'l

. -,--" . . - .- .. - -. .

1
I .J

September 199$ Newcastle '98
l.uar~::.":S!2 0

Reconfiguration Connections

* RM to self - in case of RM replacement

* RM to entire configuration

*RM to individual components
• termination first, preserve data

• reconfigure model and provisioning

• reconfigure components

* Integrity constraints on connections

September 1998 Nl!wcastle '98 '-.J~""",, 0

Style for Reconfigurable Comp's

* Location independent

* Initialize:
• start/restart , rebuild dynamic data, allocate

resources, in itialize operation

*Finalize:
• preserve dynamic data, re lease resources,

terminate operation

September 1998 Ne wc:lSlle -98
luc.n, T<cn",~~ 0

Reconfiguration Generation (RG)

* Problem: maintaining a minimum
configuration in the access/transport boxes

• typically limited space

• avoid clutter of unused software components

• minimize reconfiguration time and expense

s.:plcmb.:r 1998 Newcastle -98 LO><'O~, f«n,-..I~ 0

<
H
H

W
ro

• •

Minimal Reconfiguration Solution

* AED is the set of architectural elements and
their dependencies

*CC is the current architectural element
configuration

* D(X) is the transitive closure of X in AED

* ADD(AE) = D(AE) - D(CC)

*DELETE(AE) = D(AE) - D(CC - AE)

*Do ADDs first

Scpoe-mbcr 199$ Newcastle '98 ~ . .r,,-~O

DS Architectural Structure

*CMlCS - use typical architecture for
decomposition/layering

• service layer

• network layer

• equipment layer

* IM/CC - distribute using styles

Scplcmbct IWlI Newc~t1e '98 ~ . .r,,-,= 0

DS Component Decomposition

L--- '~--Service 'L'ayer .- ~ .. -. 7 _.' -., .. -~. '- "" ' .. . -""""''''"''--- ' ,-

t
c:.:::..-- -""':""·N-et:.:vO·fKTa·er----~ · . 7 . ___ .. _. _ _ ,~_ •.• >x... ______ _

t
k~~~i-p~~_~~~y·~~·~7

/ ~

u... .. T ~~ 0 Scpcembcr . 'XIS No;:wcastle '98

DS Architectural Connections

* Software bus for
• Control of interactions

• access to dynamic and system data

* Performance constraints

* Reliability constraints

xplClTlbc,l99l1 Newcastle ' 9$
l T.<.~O

<
H
H

W

'"

Architectural Connections

Sq>ocmbcr 1\1911 Ntwcaslle '98 ~ • .!"'''''''' 0

1M Exception Handling Style

* Recover when can, else reconfigure around fau lt

* Isolate fault without impacting other components

* A void false dispatches

* Provide mechanisms for inhibiting any action

* Do not leave working components unavailable

* Enable working in the presents of faults

Scplcmbcr 1998 Newcastle '98
lut< ... ~~~O

1M Exception Handling Style

* Recover from si ngle faults

* Protect against folling recoveries

* collect, log appropriate information

* map exceptions to fau lts

* enable sequencing of recovery actions

Xp<cmbc< 19'il8 Newcasllc '98

Outline

* Background and context

*Satisfying the basic requirements

*Our architectural solution

*Summary

xplcmbcr 19911 Newcastle '9S

~'!"-~o

l~«"'T«n~ 0

- ...

<
H
H

P
O

• • •

Summary

*Techniques for distribution-free and
dynamically reconfigurable architecture

• Data-driven

• Late dynamic binding

• Reflection

s..pwnl>cr 1998 Newcastle '98

Summary

*Techniques for Domain Specific
Organization

...... .1'"'~ 0

• Primary components - architectural elements

• secondary components - architectural styles

• classes of interactions
• different connectors
• with different constraints

Scpcembcr 1998 Newcastle '98 "'.!~~O

<
H
H

j>
~

VII . 42

DISCUSSION

Rapporteur : Dr Robert St roud

Lecture Two

Professor Brooks asked why a small O RB had been used. Dr Perry explained that thi s had
been for econo mic reasons to keep things tight and inexpens ive to produce.

Mr Hutt asked if there we re an y num bers fo r the reconfiguration req uirements. No - but
some numbers had been emerging just as the proj ect was cancelled. Professor Randell
expressed surpri se that the abs tract deta ils of the des ign hadn't been dri ven by some sort of
quantitati ve data from the fie ld, even j ust ball park figures or ratios. Dr Perry repl ied tha t
perhaps the numbers had been implicit and simply hadn ' t ente red into di scuss ions abo ut
the bas ic organisation o f the sys tem.

Professor Henderson wa nted to know how they knew that off the shelf components wo uld
no t be good enough. Because they 'd tried them, Dr Perry replied. Professor Henderson
replied that this sounded like an academic so lution but Dr Perry sa id defi ni te ly not. He had C
been work ing with real arch itec ts and had built a lot of large systems himself in any case
so he'd certainly paid his implementation dues.

Mr Hutt said that the who le reason for chas ing metrics was because they drove decisions
and influenced the cost. Dr Perry replied that cost had ce rtainly been an iss ue and had led
to the requirement for a minimum configuration. The system arc hitects, who knew the
requirements and had built several such systems before, had not objec ted to the proposed
structure .

Professor Shaw argued that there were three poss ibilities: they kne w the numbers but
couldn't pub li sh them, the numbers were known implicitly but the d iscuss ions had been
qualitative, or the numbers had not been thought of. Dr Perry di sagreed but said that the
first two poss ibilities certainly didn ' t apply.

Professor Randell thought that perhaps there had been no need to write down requirements
that were obv ious to everybody and Mr Jackson argued that the requirement fo r metrics
everywhere was somewhat exaggerated. There was no need to study opt io ns that obviously
weren't sensible such as a cheap method of connec tion that involved a loss of service for
s ix hours.

Professor Shaw asked abo ut the cost of acquiring information and Dr Perry replied that the
cost always comes out of something else.

Professor Turski asked whe ther Dr Perry was try ing to do something analogous to
transporting a whale in a car but was told that this was definitely not the case. Because the
fa mily of systems bei ng des igned covered a wide span, there needed to be a wide span in
performance and several versions o f each component were required in order to ac hieve
this.

Referring to a function box in one of the arch itecture diagrams, Professor Randell asked in
what sense faults could be considered to be part of the functionality of the system. Dr
Perry explained that thi s part of the sys tem was concerned with fault hand ling but Mr
Jackson joked that fault s were a main part of the funct ionality of many sys tems!

Mr Jackson asked w hy the Command Broker only appeared in one part of the sys tem. It
wasn ' t c lear that this was an architectural issue - couldn ' t the Command Broker just be
hardwi red as ajump table? Apparently it was needed for distributed recovery.

o

•

VII .43

Professor Brooks asked how the teams of people working on the project had bee n
organised. There had been two distinct groups wit h experience of building such sys tems in
two different ways - had they deliberately been mixed up? No - each group was fai rl y
small and tightly knit and the groups had been kept together.

Professor Shaw asked about the difference between the t\VO kinds of arrow (single and
double headed) used in the diagrams. A doub le headed arrow between two components
meant that there was interac tion in both directions - the same li ne was used to mean both
communicat ion and reconfiguration. Converse ly, a single headed arrow meant that one
component was responsible for replaci ng another and didn't represent an interaction.

Professor Shaw also asked whether configuration meant changing parameters or replacing
components. It could apparently mean both.

Another member of the audience asked about the meaning of the CD component whic h
was completely di sconnected from the rest of the sys tem. This was because devices got
changed from outside the system although it was still necessary to change the appropriate
device controllers.

Mr Jackson asked what was meant by preserving dynamic data. This was something that
had to be done across reconfiguration to preserve the state of the sys tem. Although the
semantics would remai n the same, rebuilding the state might involve some transformation
and this was done by each component as appropriate using local knowledge. Professor
Shaw asked about changes in globa l data - these were dealt with by the reconfiguration
data.

Professo r Shaw observed that Dr Perry had made an interesting shi ft between two
success ive diagrams. The first diagram showed the information relationsh ip whilst the
second diagram made visible the piece of the infrastructure that carried the information.
This was the topological equivalent of a software bus. But all the connections were
mediated by the Command Broker. The relationship between parts of the system had
become hidden - she d idn 't like using the Command Broker as a connecto r because it
buried important detail. Dr PetTY argued that it wasn't being used in this way because all
the interactions had been combined.

Mr Hutt thought that the diagram missed out layering issues, in particular the
intercomponent communication layer. Dr Perry di sagreed , say ing that the diagram was an
extreme simplification and in fact components interacted at each level. There was a basic
problem trying to get everything into one diagram and provide a reasonable overview.

Professor Johnson wanted to discuss what the best view of the system was . He argued that
there were two possible views - reconfiguration and execution - but he claimed that
execution was the wrong model. Instead of mak ing a connector into an object. wasn't it
better to represent it as an arrow? The internal structure didn ' t affect how the system
worked and it was only important to understand how the components interacted.

Professor Shaw asked whether the primary objective of the diagrams was to explain the
functionality of the systems or to show their family character. She felt that which slide was
most appropriate depended on the answer to this question. The first slide exp lained the
interactions during reconfiguration and how the reconfiguration manager related to the rest
of the system. Thus, it was explaining the commonality between the sys tems which was
better for describing the product family.

Professor Randell asked how consistency could be ensured when the same thing was
presented from several different viewpoints. For example, the viewpoints might involve
the same objects but show different relationships between them. But Mr Jackson pointed
out that this didn ' t apply in this case - the diagrams had different objects in them such as
additional connectors .

VII . 44

Professo r Joh nson argued ·that di stri bu ti o n was pa rt of the solu ti on doma in and tha t
arch itectural desig ns should concen trate on the prob le m do ma in, There had to be a balance
between the two but he always taug ht hi s students to conce ntrate on the prob lem domain
because he knew the solu tio n domain wou ld sneak in anyway' However, Dr Perry believed
that it had been essenti a l to start fro m the basic abstracti on of a "connec ti on mach ine" (i,e.
a mach ine for managi ng connecti ons) and that the final' outcome wo uld not have been as
good o therwise.

Ano ther me mber of the audience complained abo ut the s lide in which all the boxes were
connected to each o ther in a CORBA-like fas hion. This was jus t the underlying techno logy
used to imple ment the architecture - why should it form part of the diagram? Nobody ever
put the programming language (e.g. C++ or Smalltalk) into such d iagrams. It should be
im plicit that yo u needed a mechan ism for communication, just as it was implicit that yo u
needed a programming la nguage. Dr Pe rry agreed - he didn't like including thi s de tail
either but it was a matter of " truth in advertis ing".

Professor Balzer sa id that the question could be as ked in a differe nt way - was there a
software bus and if so, why did yo u choose to draw it? However, Mr Jackson observed that
there was some value in the diagram because it showed that the Cc/CD connection did not
go through the bus. Dr Perry agreed and said that the diagram conflated seve ral different
re lat ionships.

f

