VII.23

A PRODUCT LINE ARCHITECTURE
FOR A NETWORK PRODUCT

Rapporteur: Dr Robert Stroud

D E Perry

VII.24

VII.25

A Product Line Architecture for a Network Product

Dewayne E. Perry
Bell Laboratories
600 Mountain Ave
Murray Hill, NJ 07974 USA
+1.908.582.2529
dep@research.bell-labs.com

ABSTRACT

Given a set of related (and existing) network products,
the goal of this architectural exercise was to define a
generic architecture that was sufficient to encompass ex-
isting and future products in such a way as to satisfy
the following two requirements: 1) represent the range
of products from single board, centralized systems to
multiple board, distributed systems: and 2) support dy-
namic reconfigurability.

Ve first describe the basic system abstractions and the
typical organization for these kinds of products. We
then describe an instance of the resulting architecture
and show how these two requirements have been met.
Our approach combines the two requirements neatly
into an interdependent solution - though one could eas-
ily separate them into independent ones.

Ve use a late binding approach in such a way that it
solves both requirements. The three important archi-
tectural components that provide this are the system
model and data, the reconfiguration manager and the
command broker. The system model and data enables
the system to evolve itself dynamically via reflection; the
reconfiguration manager uses the system model as the
basis for dynamically reconfiguring the system; and the
command broker is an object request broker mechanism
that provides the necessary indirection and infrastruc-
ture to provide location transparency.

I then address the ubiquitous problem of how to deal
with the problem of multiple dimensions of organiza-
tion. In any type of system there are several competing
ways in which the system might be organized. The is-
sue arises of how to address the other means of organi-
zation once the primary dimension has been chosen. I
show how architectural styles can be an effective mech-
anism for dealing with such issues as initialization and

exception handling in a uniform way across the system
components.

Keywords

Software Architecture Case Study, Dynamic Reconfig-
uration, Distribution-Frze Architeciure, Architecture
Styles, Multiple Dimensions of Organization

1 Introduction

This study represents a snapshot in the process of con-
structing a generic archizecture for a product line of
network communications equipment — it is not the ar-
chitecture for the produc: line. The purpose of this
paper is to present several critical issues relevant to the
architecture for the procuct line, to discuss the implica-
tions of those issues, and to dascribe several intersting
architectural techniques that solve these issues in inter-
esting ways. We provide enough of the domain specific
architecture to give the appropriate context for the part
of the architecture we focus on.

We first provide the context for the study (the product
line domain, the current and desired states of the prod-
uct line, and a basic view of the products). We then ex-
plore the implications of the primary requirements and
what is needed at the architectural level to satisfy those
requirements. On this basis, we the describe our solu-
tion and the motivation behind our choices. Finally, we
summarize what we have done and lessons we learned
in the process.

2 Context

The product line consists of network communication
products that are hardware event-driven, real-time em-
bedded systems. They have high reliability and in-
tegrity constraints and as such must be fault-tolerant
and fault-recoverable. Since they must operate in a va-
riety of environments, they are “hardened” as well.

The current state of the products in this product line is
that each product is custom built to a customer’s spec-
ifications with hard-wired hardware and specially build
software. To evolve one of these products, one must
specify a new instance and have it specifically built.

The basic abstraction for these products is that of a con-

2

VII.26

I

Figure 1: Basic Abstraction: Connection. A con-
nection consists of an originating port connected via a
switch fabric to a destination port.

Figure 2: Basic Hardware/Software System: con-
sists of three logical elements: connections, controllers
and a control manager.

nection. A connection consists of an originating port
connected through a connection or switch fabric to a
destination port. The connections range from static
ones (which once made remain in existence until the
devices attached to the ports are removed) to dynamic
ones (which range from simple to very complex connec-
tions that vary in the duration of their existence) — see
Figure 1.

The typical system structure for these products (see
Figure2) consists of a set of connections such as com-
munication lines, switches, other network connections,
and craft and debugging interfaces. These devices have
various appropriate controllers that are handled by a
connection manager which establishes and removes con-
nections according to hardware control events.

Figure 3 shows a typical architecture for such network
communication products layered into service, network
and equipment layers. Within each layer are the appro-
priate components for the functionality relevant to that
layer.

3 Basic Requirements
The basic requirements for the product line architecture
we seek are:

T3 A R B R S
L oA o 5 5

&5 : 3
R

Figure 3: Typical Domain-Specific Architecture:
a structure of three layers consisten: with the standard
network model.

¢ To cover the large set of diverse product instances
that currently exist and that mayv be desired in the
future

e To support dynamic rsconfiguration so that the
products existing in the Zeld can evolve as demands
change for new and ¢iZzrent kinds of communica-
tion.

Thus the desired state of t=2 procduc: line is that prod-
ucts can be reconfigured as nsecad with as little disrup-
tion as possible (but not rsquiring continuous service).
For the hardware, this enzails common interfaces for
the various communication devices and plug compati-
ble components. For the sofiwars. this entails a generic
architecture for the complete set of products and and
software support for dynamic reconfguration of the sys-
tem.

The first question then is how do we create a generic ar-
chitecture that covers the enzire range of products in the
product line? These produc:s range from simple single
board systems to complex. multi-board and distributed
systems. If we address the issue of distribution at the
architectural level, then that implies that distribution
is a characteristic of all the instances. What then do we
do with simpler systems? A separate architecture then
defeats the goal of a single generic architecture for the
entire product line.

One answer to this question is to create a distribution
free architecture (3] and thus bury distribution down
into the design and implementation layers of the system
construction process. In this way, distribution is not an
architectural issue as such.

However, this decision does have significant implications
at the architectural level about how the issues of distri-
bution are to be solved. First, the system needs a model

of itself that can be used by the appropriate components
that must deal with issues of dis:ribution. For example,
the component handling 5vstem commands and requescs
must know where the componsn:s are in order to sched-
ule and invoke them. Thus, second, we need a com-
mand broker that providss location transparent com-
munication, that is configurable, that is priority based
and that is small and fast. The last two requirements
are due to the real-time requirements on the system as
a whole. Finally, the components need to be location
independent in order to be useful across the entire range
of products.

To satisfy the requirement for dynamic reconfiguration,
it is necessary only to minimize down time. We do not
need to provide continuous service. However, we need
to be able to reconfigure the system in situ in any num-
ber of ways from merely replacing line cards to adding
significantly to the size and complexity of a system (for
example, changing a simple svsiem into a complex dis-
tributed one) in the hardware and from changing con-
nection types to adding and deleting services in the soft-
ware.

As with the issue of distribution, reconfigurability re-
quires a model of the system and its resources, and
obviously, a reconfiguration manager that directs the
entire reconfiguration process both systematically and
reliably. For this to work properly, the components
have to have certain properties akin to location inde-
pendence for a distribution-iree svstem. In this case,
we need configurable components. We shall see below
that these necessary properties can be concisely describe
in an architectural style [1].

To ensure that any reconfiguration results in an a com-
plete and executable state, consistency and completely
analysis must be done to ensure that the resulting sys-
tem is not missing anything and that all the pieces work
together properly. The question arises then as to where
this part of reconfiguration manager should be. Given
the space and economic considerations of the systems,
we chose to have the consistency checking done outside
the bounds of the system architecture.

4 Architectural Solution

By and large, a product line architecture is the result of
pulling together various existing systems into a coherent
set of products. It is essentially a legacy endeavor: be-
gin with existing systems and generalize into a product
line. There are of course exceptions, but in this case the
products preceded the product line.

The appropriate place to start considering the generic
architecture is to look at what had been done before.
In this case we draw on the experience of two teams for
two different products and use their experience to guide
us in our decisions.

VIL.27

Figure 4: Reconfiguration Components: System
Model (SM), System Data (SD). Reconfiguration Man-
ager (RM), and Command Broker (CB).

As in any system of anv complexats. there are multiple
ways of organizing (2| botn the Finctionality and the
various ways of supporting nonfunctional properties. In
this case, we see two more or less srzhogonal dimensions
of organization: system objects and svstem functional-
ity. System objects refiec: the nardware orienta-
tion of these systems: packs, slots. protection groups,
cables, lines, switches. svsiems. etc. Suvstem functional-
ities reflect the things that the svsizms does: configu-
ration, connection, fault handlinz. protection, synchro-
nization, initialization, recovery. 21z,

Given the two dimensions. the siratzgy in the two de-
velopments was to organize alonz one dimension and
distribute the other throuzhout that dimension's com-
ponents. In the one case, thev chose the system object
dimension, in the other thev chese the system function-
ality dimension. Both groups felt their solutions were
unsatisfactory and were going to choose the other di-
mension on their next development.

Our strategy then was to take a hybrid approach:
choose the components that are considered to be cen-
tral at the architectural level and then distribute the
other aspects throughout those components — a mix
and match approach. The question then is how to gair
consistency for the architectural considerations that get
distributed over the architectural components. We il
lustrate the use of architectural styles as a solution tc
this problem in two interesting cases below.

For the satisfaction of the product line requirements
we havg the four components illustrated in Figure 4
the command broker (CB). the reconfiguration manage
(RM), the system model (SM) and the system provision
ing data (SD).

The system model and system data provide a logice
model of the system, the logical to physical mapping ¢

e

VII.Z28

Figure 5: Domain-Specific Components: Con-
nection Manager (CM), Connection Services (CS), Dy-
namic Data (DD, Connection Controller (CC), and
Connection Devices (CD).

Figure 6: Reconfiguration Connections. The recon-
figuration manager is connected in various ways to all
the components in the system, including itself and the
system as a whole.

the various elements in the svstem configuration, and
priority and timing constraints that have to be met in
the scheduling and execution of system functions.

The command broker uses the system model to drive
its operation scheduling and invocation. System com-
mands are made in terms of logical entities and the log-
ical to physical mapping is what determines where the
appropriate component is and how to schedule it and
communicate with it.

Reconfiguration is split into two parts: reconfiguration
generation and reconfiguration management. the recon-
figuration generator is outside the architecture of the
system and ensures that the reconfiguration constraints
for completeness and consistency of a configuration are
satisfied. It also ensures that the configured system is

minimal (?], a requirement due to both space and time
limitations.

The reconfiguration manager directs the termination of
components to be removed or replaced, performs the
component deletion, addition or replacement, does the
appropriate registration and mapping in the system
model, and handles startup and reinitialization of new
and existing components. Special care has to be taken
in the construction of the reconfiguration manager so
that it can properly manage self-replacement, just as
special care has to be taken in any major restructuring
of the hardware and software.

For the domain-specific part of the architecture we have
chosen as the basic architectural elements, as shown in
Figure 3, the connection manager (CM), the integrity
manager (IM), the connection services component (CS),
the connection controllers (CC), and the connection de-
vices (CD). These components represent our choices for
the architectural abstractions of both the critical objects

and the critical functionality necessarv for our product
line. Of these, the integrity manager is a logical compo-
nent whose functionality is distributed throughout the
other components.

The reconfiguration interactions shown in Figure 6 il-
lustrate how the reconfiguration manager is intimately
tied to both the system model and the system provi-
sioning data. This part of the reconfiguration has be
handled with care in the right order to result in a con-
sistent system. Further, the reconfiguration manager
interacts with itself and the entire configuration as well
as the individual components of the svstem: terminate
first, preserving data, reconfigure the model and provi-
sioning, and then reconfigure the components. There
are integrity constraints on all of these interactions and
connections.

The reconfigurable component architectural style that
must be adherred to by all the reconfigurable compo-
nents has the following constraints:

e The component must be location independent

o Initialization must provide facilities for start and ¢
restart, rebuilding dynamic data, allocating re-
sources, and initializing the component

e Finalization must provide facilities for preserving
dynamic data, releasing resources, and terminating
the component o
While we have not used the typical network model as
the primary organizing principle for the architecture, it
does come into play in defining the hierarchy or decom-
position of several of the basic domain specific system
components: the connection manager, the connection
services, and the connection controller.

IETRL SYSITY

et b4

£t

4

Figure 7: Domain Specific Component Decom-
position. The traditional lavering forms the basis of
the subarchitectures several of the basic domain specific
components.

Figure 8 Architectural Connections. A software
bus provides the primary control and data connectors
among the system components.

A software bus provides the primary connector amongst
the system components for both control and data access.
There are other connectors as well, but they have not
been necessary for the exposition of the critical aspects
of the generic architecture. There are both performance
and reliability constraints that must be met by this pri-
mary connector. The manager of the bus is the com-
mand broker.

YWe had mentioned earlier that the integrity manager
was a logical component that was distributed across all
the architectural components. As such there is an in-
tegrity connector that hooks all the integrity manage-
ment components together in handling exceptions and
recovering from faults. We had also indicated that the
part of the integrity management would be defined as
an architectural style that all the system components
had to adher to. This style is defined as follows:

VII.29

e Recover when possible,
around the fault

otherwise reconfigure

e Isolate a fauls without impacting other components

e Avoid false dispatches

» Provide mechanisms for inhibiting any action

¢ Do not leave workingz components unavailable

e Enable working in the presence of faults
e Recover from single faults

e Protect agains rolling recoveries

e Collect and log appropriate information
* Map exceptions to faults

e Enable sequencing of recovery actions

5 Summary and Lessons

We have explored several interesting techniques to
achieve a generic architecture that satisfled both the
domain-specific requirements and the product-line ar-
chitecture requirements.

To achieve an appropriate domain-specific architecture,
we chose a hybrid approach in which we selected what
we considered to be the critical elements from two or-
thogonal dimensions of organization. We then defined
architectural stvles to ensure the consistency of the sec-
ondary components distributed throughout the primary
components. We defined a software bus as a general
connector among the components subject to both per-
formance and reliability constraints. This latter is espe-
cially important where the underlying implementation
and organization is distributed across several indepen-
dent physical components.

To achieve the appropriate goals of the product line
generic architecture and enable dynamic reconfigura-
tion, we chose a data-driven, late binding and reflective
approach. This enabled us to solve both the problem of
centralized and distributed systems and the problem of
reconfiguration with essentially the same mechanisms.

As to lessons learned:

e To quote an old saying “there are many ways to skin
a cat”. So too there are many ways to organize an

architecture, even a domain specific one. Because _

there are multiple possible dimensions of organiza-
tion, some orthogonal, some interdependent, expe-
rience is a critical factor in the selection of criti-
cal architectural elements, even when considering
only functional, much less when considering non-
functional, properties.

o It is extremely important for any architecture, de-
sign or implementation to have appropriate and rel-
evant abstractions to help in the organizing of a
system. An example in this study is that of a con-
nection as the central abstraction. Concentration
on the concepts and abstractions from the problem
domain rather than the solution domain is helpful
in this respect.

e Properties such distribution-independence
or platform-independence are extremely useful in
creating a generic product line architecture. They
do, however, come at a cost in terms of requiring
appropriate architectural components that enable
those particular properties.

o Architectural styles are an extremely useful mecha-
nism in ensuring uniform properties across architec-
tural elements, especially for such considerations as
initialization, exception handling and fault recovery
where local knowledge is critical and separated by
various kinds of logical and physical boundaries.

Acknowledgements

Nancy Lee was my liaison with the architectural group
on this project. She helped in many ways, not the least
of which was making project data and documents avail-
able for me to write up this case study. The system
architects on the project as a whole were very toler-
ant of an outsider working with them. However, we
achieved a good working relationship combining their
domain expertize with my research investigations and
together with a willingness to explore alternative

possibilities.
REFERENCES

(1] Dewayne E. Perry and Alexander L Wolf. Founda-
tions for the Study of Software Architecture. ACM
SIGSOFT Software Engineering Notes, 17:4 (Octo-
ber 1992)

(2] Dewayne E. Perry. Shared Dependencies. In Pro-
ceedings of the 6th Software Configuration Manage-
ment Workshop, Berlin, Germany, March 1996.

(3] Dewayne E. Perry. Maintaining Minimal Consistent
Configurations. Position paper for the Tth Software
Configuration Management Workshop, Boston Mas-
sachusetts, May 1997.

(4] Dewayne E. Perry. Generic Architecture Descrip-
tions. In ARES II Product Line Architecture Work-
shop Proceedings, Los Palmas, Spain, February 1998.

VII.30

A Case Study in Product Line f Context \

Architectures _ .
* A snapshot during the architectural process
for this product line (ie, not THE final

Dewayne E. Perry product line architecture)
Bell Laboratories *# Basic requirements
Room 2A-429 Jae 2T SR e :
600 Mountain Ave @ Cover a large class of diverse instances in the
Murray Hill NJ 07974

same application domain

dep@research.bell-labs.com 1 1o 1
K3 i ® Support dynamic reconfiguration

\ / (ESimpliﬁcation of non-relevant issues /
Sepiember 1998 Newcastle *98 P — 6 Scpiember 1998 Newcastle ‘98 ptogis O

Lucent Tech:
e

4) r A

Outline Product Line Domain
¥ Background and context # Network Communication Product
% Satisfying the basic requirements * Real time, embedded system
% Our architectural solution #HW event driven
Summary # High reliability, high integrity
Fault-tolerant, fault-recoverable
% Hardened - to operate in a variety of

\ / \ environments)

stle ¢ astle 4
Seplember 1998 Newcastle ‘98 LacengTeshoo O September 1998 Newcastle ‘98 Lucen; Technsiogs O

1€ 1IA

"

(Current State of Product Line \ / EaRIE ASHEIGG \
Connection
3 Custom built to customer specification R g
% Hard-wired hardware o ikt (N (e
‘Originating’ “USwiteh DeStination
*Hard/hand-coded software e e e e
) PO i =P e Fabric womec S S
#To evolve: build new hardware and B S e s
S— i i v N L
Sepicmber 1998 Newecastle ‘98 e —— 0 Sepiember 1998 Newcastle *98 Locens Techloges O

e

Target State of the Product Line Basic Abstraction: Connections

*# Dynamic reconfiguration of both HW and SW
* Hardware

@ common interfaces
@ plug compatible components

Variety of connections from
® relatively static to
® dynamic, simple to complex

* Variety of connection machines from
® simple one board, centralized systems to
@ multiple board, distributed systems

* Software
@ generic architecture
@ common platform

K @ plug and play) k j
=3 !

September 1998 Newcastle ‘98

e IIA

~ A

‘Y

-

Basic HW/SW System
e —— - : i e e——
LConneclionsiel e ~Connection™

e LineSenensit «~Controller- e MERSEE™
T | <> "*Manager
e N EEW O T K sl L groniy v~ g D_ =
e S Ch e Smemmmra]

~Crafi/Debug=) DU s

September 1998 Newcastle ‘98

i

Basic System

* Devices of various sorts that are used for
connections to various kinds of network
components

Controllers for those devices

% A connection manage to establish and
remove connections

e

Sepiember 1998 Newcastle ‘98

Typical Architecture \

P st L - S
e SEiCE Lage T

A
Y

LT TN

A

Y

et e Nt A % ot 8 M 2 s VAR 2 AL b B P 1

Lmismmisiquipment Layer, 0

RS

September 1998 Newcastle ‘98

4 e

QOutline

Background and context

* Satisfying the basic requirements
% Our architectural solution

% Summary

RS

Scptember 1993 Newcastle ‘98

£e IIA

Whither Dynamic Reconfiguration

Do not need continuous availability

*Do need to minimize downtime

* Ability to change in situ
@ overall organization: centralized to distributed
® change connections
® add, replace, delete services

_

-

Whither Distribution

* Part of architecture?
® then all instances must be distributed
@ but some are single processor systems
* Distribution Independence
® emphasis on components and interactions
® bury distribution in supporting platform

September 1998 Newcastle ‘98 6
e Trhpotogies

Implications of Reconfigurability

#Model of system and resources
* Configuration Manager
* Configurable component style

*loci of reconfigured system
@ generation
@ analysis

\ ® linking

N

_/

g as !
Scpiember 1998 Newcastle *98 Luceny Technologics O

Implications of Distribution Free

*Need an object request broker
@ location transparent communication
@ configurable
@ priority-based
@ small and fast

*Location independent components

September 1998 Newcastle ‘98 Lucent Technalogie O
% Teshnolo

@Model of the system

/

& e “
September 1998 Newcastle ‘98 Lucent Technologis O

T

7e IIA

r A e)

Outline Two Possible Dimensions
Background and context # System Objects:
* Satisfying the basic requirements ® pack, slot, protection group, cable, line, switch,
#* Qur architectural solution system

*# System Functionality:

® configuration, connection, fault, protection,
synchronization, initialization, recovery

Seprember 1993 Newcastle ‘98 — O September 1998 Newecastle *98 o Tashmiiiga o

* Summary

e N 4 D

Initial Considerations Experience
What are the possibilities? # Organize on one dimension, distribute the
* What was past experience? other
*Initial strategies *Previous product architecture experience

® one group: system objects
@ another: system functionality

* Evaluation of both groups 7
® neither solution satisfactory
\) k‘ coino to do rthe other dimension /

.
Seprember 1998 Newecastle *98 Lucen Technutoge O
2 P

September 1998 Newcastle ‘98

C

Lucent Techs

CE'IIA

r D

Initial Strategy

*Choose some components in each
dimension as the primary architectural
components

Define the distributed components as SW
Architectural Styles
@ e g, constraints on initialization

m common across all components
m consistent across all components j

"G, TaUll delection, recovery, eic..
&p-cmﬁ"m I l?ewcasue ‘98 1Y Y O

Distr/Reconfig Components

CB - Command Broker
#SM - System Model

% SD - System Data

#RM - Reconfigure Manager

- o

Scpiember 1993 Newcastle *98 Luceni Tesointoges O

(Distr/Reconfig Components \

— -

Sepiember 1998 Newcastle ‘98 g L O
soen} Tochasiops

Domain-Specific Components

#CM - Connection Manager
*IM - Integrity Manager

#CS - Connection Services

CC - Connection Controllers

% CD - Connection Devices (HW)

o /

—
g N o
Septeniber |48 Newcastle *98 T S O
L rchosiopus

9e " IIA

H

e v Sy i AP IS TR I SR e—

-

S

TT—— e Bt e

o ..._..‘7-_.CD______._-_.:;;

September 1993 Newcastle ‘98

Luees Teshoslogs C

(

#* System Model/Data (SM/SD)
® Logical Model
@ Logical to Physical Mapping

Distribution Components

® Priority/Timing constraints
#* Command Broker (CB)
@ Operation invocation

\ @ Operation scheduling

\

Reconfiguration Components

* Reconfiguration Generation (RG)
® QOutside the fielded system
@ Component generation
@ Completeness/consistency analysis
® Configuration minimality

N

September 1993 Newcastle ‘98

Reconfiguration Components

*#Reconfiguration Manager (RM)
® Termination of components
® SM, SD, Component update
® Registration/Linking
@ [nitialization
@ Reflection to be able to replace self

September 1998 Newcastle *98

L=
Loewnt Tt O

-

Scpiember 148 Newcastle *98

Luun.|

LETIIA

(Configuration Connections \
° Style for Reconfigurable Comp’s

—
O f T % 7
RM.- G “CM~| | —CSen * Location independent
— ;-----‘-'-—--q-_:'---: T .] * Initialize:
® start/restart, rebuild dynamic data, allocate

e B S resources, initialize operation
- * Finalize:
—— _ fD“ TR ® preserve dynamic data, release resources,

\ : - s) \ terminate operation)

September 1998 Newcastle ‘98 T — O September 1998 Newcastle *98 i Tochied O
PRt LIl

A s A

Reconfiguration Connections Reconfiguration Generation (RG)

#RM to self - in case of RM replacement *Problem: maintaining a minimum

*RM to entire configuration configuration in the access/transport boxes

#RM to individual components
@ termination first, preserve data
@ reconfigure model and provisioning

@ reconfigure components

*Integrity constraints on connections j \ /

.
k q e .
Sepiember 1998 Newcastle ‘98 Laserg Toshpaigis O September 1993 Newcastle ‘98 N g O

@ rypically limited space
@ avoid clutter of unused software components

@ minimize reconfiguration time and expense

8 1IA

/ Minimal Reconfiguration Solution \

AED is the set of architectural elements and
their dependencies

#CC is the current architectural element

DS Component Decomposition

s 4

T T Service Layer T
P RO Lo o SR

A
configuration “,_.m_h,_m[ﬁé.r;_(_ﬁy&.,,_._.ﬂ,,_w_...,.
#D(X) is the transitive closure of X in AED =S s
¥ ADD(AE) = D(AE) - D(CC) I —
#*DELETE(AE) = D(AE) - D(CC - AE) /4"::""5‘(;”15&]65':&;“':":“ ’
@Do ADD:s first j \ /
Sepecmber 1998 Newcastle ‘98 S O Sepuember 1938 Hewcssile <96 T 0

4) 4 A

DS Architectural Structure DS Architectural Connections

#CM/CS - use typical architecture for
decomposition/layering

* Software bus for
@ Control of interactions

@ service layer @ access to dynamic and system data
® network layer * Performance constraints
® equipment layer

#IM/CC - distribute using styles

O Sepiember 1998 Newcastle *98 Lucent Technoloy O
Lucent Technologiey g Bt =

* Reliability constraints

September 1998 Newcastle ‘98

6C " TIA

SEeede. - 0 ;- 4 SIS - —_ —_=

- -

(Architectural Connections \

RM\ :.ag:jg] L @
i e =

September 1998 Newcastle ‘93

f

% Recover when can, else reconfigure around fault

IM Exception Handling Style

% Isolate fault without impacting other components
* Avoid false dispatches

% Provide mechanisms for inhibiting any action

% Do not leave working components unavailable
% Enable working in the presents of faults

\-

\

f

* Recover from single faults

IM Exception Handling Style

* Protect against rolling recoveries

* collect, log appropriate information

* map exceptions to faults

* enable sequencing of recovery actions

v

Scpiember 1998 Newcastle ‘98

—
Luceng Techotogies O

\

—
Scpiember 1998 Newcastle ‘98 0
Luc!n:‘l"r_(_l\ndﬁlt\

-

QOutline

* Background and context

Satisfying the basic requirements
Our architectural solution
*Summary

N

September 1998 Newcastle *98

o
Lucent Technologies O

0% " 1IA

s

{

Summary

#Techniques for distribution-free and
dynamically reconfigurable architecture
@ Data-driven
® Late dynamic binding
® Reflection

\

4)

J

September 1998 Newcastle ‘98

Loccny Tochologies O

(

#Techniques for Domain Specific
Organization

Summary

® Primary components - architectural elements
@ secondary components - architectural styles
® classes of interactions

m different connectors
m with different constraints

\

~

w7

Scptember 1998 Newcastle ‘98

—
Lucent Teshpologies O

-

17 1IA

R S—

ST—— —_

T

=

VII.42

DISCUSSION
Rapporteur: Dr Robert Stroud
Lecture Two

Professor Brooks asked why a small ORB had been used. Dr Perry explained that this had
been for economic reasons to keep things tight and inexpensive to produce.

Mr Hutt asked if there were any numbers for the reconfiguration requirements. No - but
some numbers had been emerging just as the project was cancelled. Professor Randell
expressed surprise that the abstract details of the design hadn’t been driven by some sort of
quantitative data from the field, even just ball park figures or ratios. Dr Perry replied that
perhaps the numbers had been implicit and simply hadn’t entered into discussions about
the basic organisation of the system.

Professor Henderson wanted to know how they knew that off the shelf components would
not be good enough. Because they’d tried them, Dr Perry replied. Professor Henderson
replied that this sounded like an academic solution but Dr Perry said definitely not. He had
been working with real architects and had built a lot of large systems himself in any case
so he’d certainly paid his implementation dues.

Mr Hutt said that the whole reason for chasing metrics was because they drove decisions
and influenced the cost. Dr Perry replied that cost had certainly been an issue and had led
to the requirement for a minimum configuration. The system architects, who knew the
requirements and had built several such systems before, had not objected to the proposed
structure.

Professor Shaw argued that there were three possibilities: they knew the numbers but
couldn’t publish them, the numbers were known implicitly but the discussions had been
qualitative, or the numbers had not been thought of. Dr Perry disagreed but said that the
first two possibilities certainly didn’t apply.

Professor Randell thought that perhaps there had been no need to write down requirements
that were obvious to everybody and Mr Jackson argued that the requirement for metrics
everywhere was somewhat exaggerated. There was no need to study options that obviously
weren’t sensible such as a cheap method of connection that involved a loss of service for
six hours.

Professor Shaw asked about the cost of acquiring information and Dr Perry replied that the
cost always comes out of something else.

Professor Turski asked whether Dr Perry was trying to do something analogous to
transporting a whale in a car but was told that this was definitely not the case. Because the
family of systems being designed covered a wide span, there needed to be a wide span in
performance and several versions of each component were required in order to achieve
this.

Referring to a function box in one of the architecture diagrams, Professor Randell asked in
what sense faults could be considered to be part of the functionality of the system. Dr
Perry explained that this part of the system was concerned with fault handling but Mr
Jackson joked that faults were a main part of the functionality of many systems!

Mr Jackson asked why the Command Broker only appeared in one part of the system. It
wasn’t clear that this was an architectural issue - couldn’t the Command Broker just be
hardwired as a jump table? Apparently it was needed for distributed recovery.

g

y

VII.43

Professor Brooks asked how the teams of people working on the project had been
organised. There had been two distinct groups with experience of building such systems in
two different ways - had they deliberately been mixed up? No - each group was fairly
small and tightly knit and the groups had been kept together.

Professor Shaw asked about the difference between the two kinds of arrow (single and
double headed) used in the diagrams. A double headed arrow between two components
meant that there was interaction in both directions - the same line was used to mean both
communication and reconfiguration. Conversely, a single headed arrow meant that one
component was responsible for replacing another and didn’t represent an interaction.

Professor Shaw also asked whether configuration meant changing parameters or replacing
components. [t could apparently mean both.

Another member of the audience asked about the meaning of the CD component which
was completely disconnected from the rest of the system. This was because devices got
changed from outside the system although it was still necessary to change the appropriate
device controllers.

Mr Jackson asked what was meant by preserving dynamic data. This was something that
had to be done across reconfiguration to preserve the state of the system. Although the
semantics would remain the same, rebuilding the state might involve some transformation
and this was done by each component as appropriate using local knowledge. Professor
Shaw asked about changes in global data - these were dealt with by the reconfiguration
data.

Professor Shaw observed that Dr Perry had made an interesting shift between two
successive diagrams. The first diagram showed the information relationship whilst the
second diagram made visible the piece of the infrastructure that carried the information.
This was the topological equivalent of a software bus. But all the connections were
mediated by the Command Broker. The relationship between parts of the system had
become hidden - she didn’t like using the Command Broker as a connector because it
buried important detail. Dr Perry argued that it wasn’t being used in this way because all
the interactions had been combined.

Mr Hutt thought that the diagram missed out layering issues, in particular the
intercomponent communication layer. Dr Perry disagreed, saying that the diagram was an
extreme simplification and in fact components interacted at each level. There was a basic
problem trying to get everything into one diagram and provide a reasonable overview.

Professor Johnson wanted to discuss what the best view of the system was. He argued that
there were two possible views - reconfiguration and execution - but he claimed that
execution was the wrong model. Instead of making a connector into an object. wasn’t it
better to represent it as an arrow? The internal structure didn’t affect how the system
worked and it was only important to understand how the components interacted.

Professor Shaw asked whether the primary objective of the diagrams was to explain the
functionality of the systems or to show their family character. She felt that which slide was
most appropriate depended on the answer to this question. The first slide explained the
interactions during reconfiguration and how the reconfiguration manager related to the rest
of the system. Thus, it was explaining the commonality between the systems which was
better for describing the product family.

Professor Randell asked how consistency could be ensured when the same thing was
presented from several different viewpoints. For example, the viewpoints might involve
the same objects but show different relationships between them. But Mr Jackson pointed
out that this didn’t apply in this case - the diagrams had different objects in them such as
additional connectors.

VII.44

Professor Johnson argued ‘that distribution was part of the solution domain and that
architectural designs should concentrate on the problem domain. There had to be a balance
between the two but he always taught his students to concentrate on the problem domain
because he knew the solution domain would sneak in anyway! However, Dr Perry believed
that it had been essential to start from the basic abstraction of a “‘connection machine” (i.e.
a machine for managing connections) and that the final outcome would not have been as
good otherwise.

Another member of the audience complained about the slide in which all the boxes were
connected to each other in a CORBA-like fashion. This was just the underlying technology
used to implement the architecture - why should it form part of the diagram? Nobody ever
put the programming language (e.g. C++ or Smalltalk) into such diagrams. It should be
implicit that you needed a mechanism for communication, just as it was implicit that you
needed a programming language. Dr Perry agreed - he didn’t like including this detail
either but it was a matter of “truth in advertising”.

Professor Balzer said that the question could be asked in a different way - was there a
software bus and if so, why did you choose to draw it? However, Mr Jackson observed that
there was some value in the diagram because it showed that the CC/CD connection did not
go through the bus. Dr Perry agreed and said that the diagram conflated several different
relationships.

