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Abstract
The paper reviews the most important of the so-called, modern heuristic techniques
- tabu search, simulated annealing and genetic algorithms. They are all presented
as simple extensions to the local search paradigm. One advantage of viewing them
in this way is that further variations become apparent together with techniques for
hybridisation. These are briefly explored. ’
The paper also includes two case studies: - the classic, Steiner tree problem and a
very practical use in Data Mining.
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1 Introduction

Let us assume that we have a universe, U/, of (potential) solutions to a problem. We
seek solutions that meet certain constraints, or, put another way, that lie in some
subset, S, of U. Assuming each problem can be assigned a value in some totally
ordered set, W, an optimisation problem will seek one or more elements of S of
maximum value. Thus, given a set S C U, a totally ordered set, W (often the reals,
R) and an objective function, value : [/ — W, an optimisation problem is of the form

maximise value(u)
such that v € § C U.

A common technique used in optimisation is to “price out” the constraints. This is
done by defining value on all elements of [/ in such a way that any v € U\ S has such a
small value that it is guaranteed not to provide the maximum value. In the case where
W = R, this is usually achieved by ensuring value(u) is a large negative number for
any u € U\ S. This technique can also be used to cope with any “soft” constraints,
i.e. constraints that are desirable but not absolutely essential. The optimisation can
then be expressed simply as

maximise value(u)
such that u € U.

As an example, consider the well known, N P-hard, 0-1 Knapsack Problem, viz.

0-1 KNAPSACK (KP)
Given: n items, 1,2,...,n, where item ¢ has associated profit, p; € Z+ and
weight, w; € Z*, and a knapsack of capacity C € Z+.
Problem: Find a subset, A C {1,2,...,n} to
maximize
Profit[A] => {p: | i € A}

subject to ' .

Weight[A]=> {w; | i€ A} <C.

This problem may be replaced by

Problem: Find a subset, A C {1,2,...,n} to
maximize

Profit(A] = > {p:i | i € A} —Amax{D_{w: | i€ A} - C,0},
where A € Z7 is a large positive number.

A solution to this problem can be represented by a binary string « of length n, where
w;=1ifie Aand w; =0if i & A. Any solution, u, then has

n n
value(u) = Zp,-m - A ma.x{z wiu; — C,0}.
=1 =1



|

VIII.5

2 Neighbourhood Search

A neighbourhood search exploits one (or more) neighbourhood functions of the form

neighbour : (1 — 2V

which, given a solution, u € U, delivers a set of solutions “close to” u. A pool of
solutions is maintained and, at each iteration of the algorithm, one or more elements
of the pool are expanded by applying the neighbour function.

In the simplest forms of neighbourhood search, the pool size is maintained at one.
The algorithm proceeds by continually replacing u by a neighbour of greater value
than w. In a simple greedy hill climbing algorithm w will always be replaced by the
first neighbour v found in neighbour(u) such that value(v) > value(u). In a steepest
ascent algorithm, the whole of neighbour(u) is explored to find a v € neighbour(u)
such that

value(v) > wvalue(u) and

value(v) 2 value(w)Yw € neighbour(u).

Between these two extremes, the algorithm designer can opt for a partial exploration
of netghbour(u) to find the next solution.

[t is also common to maintain a pool of solutions of size greater that 1. One or
more neighbours of any solution in the pool can be added to the pool replacing the
solutions whose neighbourhoods have been explored or which the algorithm deems will
no longer be worth maintaining.

Crucial to the success of a neighbourhood search algorithm are the following.

Representation The algorithm designer must determine how each uw € U is repre-
sented. This representation should ensure that the neighbourhood function(s)
and the evaluation [unction can be efficiently implemented.

Initialisation The initial pool of one or more solutions must be determined. This
may be achieved using a random generating function or by the use of one or
more heuristics.

In the GRASP approach, the generation of an initial pool of reasonable solutions
is critical to the success of the algorithm.

Neighbourhood Function(s) The function neighbour : U — 2V must be specified.
There may be several choices and sometimes more than one is used at each step.
Alternatively, a choice is made at each step and which one is used will change
from one step to the other. In an adaptive neighbourhood search, the algorithm
monitors the success rate of the various neighbouhood functions and selects
(usually probabilistically) the most promising neighbourhood function. In a
variable depth search, the algorithm uses neighbour, neighbour?, ..., neighbour®
as neighbour [unctions. Typically & < 4 and the higher order neighbours are only
brought into play when the lower order neighbours are failing to find improved
solutions.

Different neighbourhood functions can be applied to various solutions. This may
have implications concerning the representations used. It may be the case that
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one neighbourhood function is far more efficient if representation A is used while
another requires representation B. In such cases, it is sometimes worthwhile in-
corporating functions to switch representations and to exploit these within the
algorithm (see figure 1). In this diagram, we have just two possible representa-
tions, rep A and rep B. ¢.45 changes the representation of a solution from rep A
to rep B and ¢p 4 vice versa. We assume neighbour, works most efficiently on rep
A and nerghbour, on rep B. Which representation to use will then be determined
by the probability of using neighbour, vather than neighbour; and the efficiency
of computing the evaluation function, value, on the two representations.

neighbour neighboury

Figure 1: Changing representations.

Pool Size The size of the maintained pool is often one but, especially in distributed

and parallel systems. a larger pool size is common. If the pool size is greater
than one, a strategy is required to select those solutions from the pool which will
be expanded.

Selection Criteria If the size of the pool is greater than 1, a decision has to be made

as to which solutions are to be expanded. This could be all of them, a random
selection or a subset chosen by some heuristic or expert system.

Acceptability Criteria Once it is determined that a node should be expanded, the

algorithm needs to have criteria for determining when one or more neighbours
are acceptable. Simple criteria are

First Found The first neighbour, v € neighbour(u), such that value(v) >
value(u) is acceptable.

All Better All neighbours v € neighbour(u) such that value(v) > value(u) are
acceptable

All Best All neighbours v € neighbour(w) such that value(v) > value(u) and
value(v)>valuc{w) Yw € neighbour(u) are acceptable

Best Any single solution from the set of all best solutions is acceptable

In the above, we assume we always require an improvement in the value. This
can be relaxed so that the criteria is value(v) > value(u) or even |value(v) —
value(u)| < e for some small e.

If the acceptability criteria are totally relaxed, so that any solution is acceptable
we have a random search. In the case where the pool size is 1 and we simply
move from one solution to an arbitrary neighbour, this is known as a random
walk.
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Replacement Criteria With a pool size n > 1. the selection criteria selects m < n

solutions for expansion. Having determined the neighbourhood functions and the
acceptability criteria to be used. we then have & new solutions to incorporate
into the pool. There are many possible options including

Keep All All acceptable neighbours are added to the pool and expanded solu-
LiOHS are l'(:‘l'l]()\'(,‘(l.

m-Best The m expanded solutions are removed and, assuming k£ > m, the m
new solutions of highest value are used.

Diversify If & > m, some heuristic is applied to select m solutions representing
a diverse collection of solution types to replace the expanded nodes.

Intensify If & > i, a subset of m solutions which have common characteristics

are used to replace the expanded nodes.

[n practice, diversification is used at the beginning of the search and intensifica-
tion only at the latter stages.

Halting The algorithm must incorporate some halting criterion. This might be

Time-up Some time limit is imposed for the search.

Iteration Limit A limit on the number of iterations is imposed.

No new solutions There are no acceptable solutions found in an iteration.
No significant improvement The rate ol improvement of solutions is very

slow.

Neighbourhood search is often a very successful teclnﬁque to solve difficult, large-

scale, commercial problems. A common criticism of the method is that, even if the
algorithm is run until there are no more acceptable solutions, the best solution found
will not be close to the optimal. The algorithm tends to get stuck in a local optimum
- see figure 2. Although this criticism is fair, it is also widely misunderstood and all

% Global Optimum

Local Optimum

[ligure 2: Finding a local optimum
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too often the approach is dismissed without adequate exploration.

The first point to make is that the representation and the neighbourhood func-
tion being used are critical to the topology of the search space. As an illustra-
tion of this, consider the task of maximizing the function f : X — R where X =
{0,1,2,8.4,5,8,7} and

fle) = =(z = 1)
As a function on the reals @ +— —(& —4)? is a smooth function with a maximum value
of w = 4. However, il we represent cach @ € X by a 3-bit binary string, set value = f
in the obvious way, and assume the neighbourhood function is a simple bit change, we
find @ = 3 is a local optima. ([(011) = -1 and {(111) = -9, f(001) = - 9 and £(010) =
- 4.)

Now, let us use the same representation but use a neighbourhood function obtained
by simply adding/subtracting 1 mod 7 from the binary number. In this case, there
are no local optima.

Note, there is also scope to choose a neighbourhood function which partitions the
search space into distinct regions. In our example, a neighbourhood function which
flips two bits will partition vhe search space into

{000, 110,011,101} and {001.111,010,010}.

[n general, if we define
neighbour™ : 1 — 2Y

recursively by
netghbour™(u) = neighbour(u) U neighbour™(neighbour(u))

then nerghbour® partitions the search space into equivalence classes. If a global opti-
mum is to be found, we must search all of these equivalance classes.

When it appears that the local search procedure has got stuck in a local optimum,
there are various steps that can be taken if the search is not to be terminated. The
major techniques are '

Change Topology Select a different neighbourhood function (and possibly represen-
tation).

Start Again Find an unexplored solution and begin again from that.

Relax Acceptability Criteria Allow some ‘down hill’ moves for a limited time in
an attempt to get out of the local optimum.

There are three common variants of local search which have been particularly good
at escaping from poor quality local optima and are widely used to solve real-world
optimization problems. Simulated Annealing is a technique for a controlled relaxation
of the acceptability criteria. Tabu Search is an adaptive, constrained random walk.
Genetic Algorithms always have a pool of more than one solution and extend the
neighbourhood function to a binary [unction

child : U x U — (.

We will discuss these in detail in the next section.



VIII.9

{objective is to maximise value(p) such that p € U}
u : solution € [/;
Tabu : set of rules, each rule of type U7 — {frue, false};
initialise(u):
inttialise(Tabu): {very often to @}
while not finish(u) do
begin
u = select(N)
where N = {n | n is a neighbour of « and f(u) =false Vu € Tabu};
update T'abu
end
end {Tabu Secarch}

Figure 3: The Tabu Search Paradigm

3 Tabu Search

In tabu search. the search.moves [rom one solution to a neighbouring solution but
omits those specified to be “tabu”. The “tabu list” is a dynamic set of user-defined
rules which defines those neighbours which are tabu. A good introduction to this
paradigm can be found in [32, 33, 36]. Representing this tabu list by Tabu, tabu
search method can be summarised as in figure 3.

In its simplest application, select may simply deliver a random element from N.
The move is then not necessarily to a better solution. Alternatively, in an attempt
to move to a better solution, a small “promising” part of the neighbourhood can
be explored; if this does not yield an reasonable valued solution then a next, most
promising subneighbourhood can be explored, etc.

In practice, we may work with more than one element and maintain a pool of so-
lutions, deciding at each iteration, which one(s) to expand. Although there is consid-
erable scope for constructing variants of the basic tabu search paradigm, the essential
feature is the exploitation and updating of the tabu list.

The sort of rules we might find in the tabu list include the following.

1. v is tabu if v was the predecessor of wu.
2. v is tabu if v has been visited recently.

3. Assuming a binary representation, v is tabu if v is obtained by changing a bit
changed in the previous iteration.

4. Assuming a binary representation, v is tabu if v is obtained by changing a bit
changed recently.

5. vis tabu if value(v) = value(u).
6. v is tabu if value(v) = value(w) for some w which has recently been visited.

Within tabu search, there is-then plenty of scope to experiment with the options
for defining “recently™ and this has been an active area of research. There is also



Tmepere—y ey

e Ssrei:_aa

VIII.10

enormous scope for developing various tabu rules both of a general nature and of
a very problem dependent nature. Two types of general rule have been identified;
diversification attempts to broaden the scarch space whilst intensification narrows the
search space. '

Tabu rules specify which moves cannot be made. It may also be useful to have rules
to specify which solutions are desivable. Aspiration rules are used to override the tabu
rules but this idea can be generalised. We can envisage an expert system, defined by a
set of rules, guiding the search. Each rule has an associated weight, negative if tabu,
positive if an aspiration. The combined set of rules thus associates a weight to each
neighbour. A large positive weight suggests it is a desivrable move, a large negative
weight suggests it can be discounted. The difficulty is then constructing this set of
rules — considerable expertise is required. However, if this is available, the resulting
search can be very efficient. Even if only limited expertise is available, it would seem
highly desirable to include it in any search algorithm. Thus although we might not
be able to fully rely on a rule based approach, it is desirable to incorporate some such
expertise in a search algorithm.

Tabu search is in its infancy: most implementations concentrate on the tabu aspects
and have yet to exploit the more general rule based approach. Nevertheless, some
excellent results have been obtained. These include the following application areas.

o Packing and Scheduling Problems [2, 17, 20, 30, 34, 55, 81, 91, 92].
e Travelling Salesman and Vehicle Routing [38, 68, 79].

e Telecommunications 3, G6].

o Graph Problems [16, 31, 35, 43].

e Quadratic Assignment [11, 22, 30, 32].

A rule based approach to searching can be very effective and researchers in the field
often claim that tabu search outperforms the other techniques we will be discussing.
The difficulty with the technique is that considerable expertise and experimentation is
required to construct the rules and to ensure its dynamic nature is correctly controlled.
Surely the best way forward is to incorporate some rule based search into other search
techniques combining the best of all the technicues.

4 Simulated Annealing

Simulated annealing, as a mechanism for searching the feasible search space of an opti-
misation problem, was first proposed by Kirkpatrick [52] and, independently, by Cerny
(10]. Their algorithms were based on that of Metropolis et al. [60] which simulated the
controlled cooling of a material by a process now known as annealing. The simulated
annealing technique is essentially local search in which a move to an inferior solution
is allowed with a probability which decreases. as the process progresses, according to
some Boltzmann-type distribution. Research involving simulated annealing invariably
concerns itself with some aspect ol the proof of convergence of the algorithm, or with
the application of the technique to a particular problem, and the subsequent search for
the optimum set of parameters to use within the algorithm. Recently, a large number
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of papers have appeared dealing with the successful application of SA to a wide variety
of optimisation problems.

The inspiration for the SA approach to optimisation is the law of thermodynam-
ies which states that at temperature, {, the probability of an increase in energy of
magnitude, 6 L. is given by

P[6E] = exp(=6 1 [kt), (1)

where k is the physical constant known as Bollzmann's constant. This equation can be
used in a simulation of a system that is cooling until it converges to a steady, “frozen”
state. Having generated a perturbation from the current state, the resulting energy
change is calculated. If the energy has decreased, the system moves to this new state;
otherwise, the new state is only accepted with probability given by equation 1. This
cycle can be repeated [or a fixed number ol iterations at each temperature. Then
the temperature can be reduced and the same number of cycles repeated for the new
lower temperature. This whole process is then repeated until the system freezes into
its steady state.

Now, let us associate solutions of an optimisation problem with the system states.
The cost ol a solution corresponds to the concept of energy and moving to any neigh-
bour corresponds to a change of state. This is how both Kirkpatrick [52] and Cerny
[10] developed the SA approach [or optimisation problems.

A simple sequential version of the SA paradigm for optimisation problems can be
described as in figure 4. A detailed overview ol SA can be found in [24].

w = ug where ug is some initial solution;
temp = tempy where tempg is some initial temperature;
while not finish(u) do
for: := 1 to n do

begin

randomly select u’, a neighbour of w;

improvement = value(u') — value(u);

if improvement > 0 then w := o'

else

begin

generate @ €U[0,1];
if » < exp(improvement/temp) then u := u
end {else}
end {for};
t := reduce(t)

end {while}

!

Figure 4: A Simple Version of the Simulated Annealing Paradigm

Considerable effort is expended in simulated annealing algorithms to get the cooling
rate correct so that the degree of randomness introduced into hill climbing is beneficial.
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Nearly all the rescarch reported on SA has used the sequential version of the
algorithm although there is some rescarch into parallel SA, e.g. [93]. Successful
applications of SA have included the following.

e graph algorithms [12, 23, 16, 47].

e packing and ‘sch(-‘cluling problems [1, 8, 9. 51, 61, 65, 69, 85, 87].
e travelling salesman and vehicle routing [6. 63, 78].

e quadratic assignment problems [15].

Essentially, simulated annealing has taught us that the inclusion of “downhill”
moves in a neighbourhood search algorithm is a good idea provided that the probability
of making such moves is suitably reduced during the execution of the algorithm. There
is obvious scope for a hybrid algorithm which uses the: tabu list to limit possible
moves together with simulated annealing techniques. A similar concept is used in
thermostatistical persistency [13].

In the simple version of SA described above, the cooling schedule was monotonic,
that is it never increased. Recent research has considered non-monotonic cooling
strategies or reanncaling. One common method is to increase the temperature to half
its original value whenever it appears the algorithm has got stuck in a local optimum.

5 Genetic Algorithms

The genetic algorithm (GA) paradigm was first conceived by John Holland (University
of Michigan) in the late 1960s. It was here that the technique was developed and the
foundations of the theory laid for others to build on, see [37, 44]. Genetic algorithms
are search techniques, based on an abstracted model of Darwinian evolution. Solutions
are represented by fixed length strings over some alphabet (the “gene” alphabet)
and each such string is thought of as a “chromosome”. The value of the solution
then represents the “fitness” of the chromosome. We then apply the “survival of the
fittest” principle to a pool of chromosomes and allow the better solutions to combine
to produce (hopefully fit) offspring.

The genetic algorithm (GA) paradigm is given in figure 5. The algorithm initialises
some pool, or population, of solutions. Then, at each iteration, a subpopulation is
selected for “breeding”. From this subpopulation, children are generated according to
genetic operators. The children are then merged into the original population and the
process is repeated. The various genetic algorithms will vary in the precise definition
of the five functions., initialise, finish, select. create and merge but to be a genetic
algorithm, it is essential that

e populations have cardinality > 2,
e create uses genetic operators such as crossover and mutation (see below), and

e select and merge depend on the evaluation of solutions and together favour the
preservation of solutions with higher value.
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{objective is to maximise valuc(u) such that « € (7}

PQ,

R : multiset of solutions C (/;

inttialise( P);
while not [inish(P) do

end

begin

Q = select( P);

R = create(Q):

P := merge(P.Q, R)
end

FFigure 5: The Genetic Algorithm Paradigm

The initial population is often generated randomly but sometimes it is “seeded”
with known good solutions. perhaps generated by some heuristic. The GA will gener-
ally finish after some given number ol iterations or alter some given time has elapsed or
when significant improvements in the best solution seen to date are no longer appareit.

Ways of defining seleel used in GAs include:

1. Roulette Wheel (stochastic sampling with replacement )
This repeatedly selects a solution from P and adds it to @ with probability equal
to its relative fitness. High value solutions will tend to be replicated.

o

Random

This selects strings entirely at random [rom P.

3. Ranking Mechanisms
P is ordered by fitness and @Q is selected acccording to some criteria which favours
those elements of P highest in the ranking. For example,

(a)

(d)

Tendency

A sub-population is defined as an upper percentage of P ordered by fitness.
The mechanism then selects randomly from P, but in such a way as to
favour selections from this sub-population.

Exclusive
This uses the same sub-population defined in the tendency mechanism, but
selects solutions at random only from this sub-population.

Exponential .
Solutions in P are ordered by their values, highest values first. The mecha-
nism then selects from this ordered list using random numbers drawn from
an exponential distribution.

IFibonacci
This selects solutions from the ordered list of solutions according to the
Fibonacci sequence. Thus, the best, 2nd., 3rd., 5th., 8th., etc. is selected.

The multiset. Q. lormed using select, represents a multiset of “fit” solutions which
form the "mating™ pool. The [unction ereate applies genetic operators to this pool to
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generate the offspring. The most fundamental operator is crossover which is applied to
two parent solutions to generate two offspring solutions. One point crossover proceeds

in two stages:

Stepl A crossover site is selected, usually at random. This determines the point
in each string at which all subsequent characters further along the string are
swapped with characters at the same positions within the ‘mate’ string. For a
string of length [ characters, there are [ -1 possible crossover points.

Step2 The strings then interchange all characters which occur after the selected
crossover point. For example, using two binary strings of length six characters
with a crossover point of two (shown as |’ ):

L1]0101
01]1001

After crossover, these strings become:

111001
010101

Multiple point crossover introduces a new parameter C'P, which represents the number
of crossover points. Single point crossover is then equivalent to multiple point crossover
with CPset to 1. With even values of C'P, the two strings are treated as rings; crossover
points are then selected at random from around the ring. Odd values of CP result in
a default crossing point at the start of the string being assumed.

In uniform crossover, a third, random bit string, rand, is generated. Let the two
parent strings be Pl and P2. The two children, C'l and C2 are then constructed as
follows.

Gl = Pl ifrand; =1,
= P2; otherwise.

and

G2 = Pl il wandi=1,

= P1; otherwise.

Although crossover is an essential component of any GA, it is not necessarily performed
between all pairs of strings in the mating pool, Q; two other genetic operators are also
used. One is replication, which merely generates a copy of a string and the other
is mutation in which a copy is made except [or some minor random change. If the
solutions are represented as bit strings, this is merely obtained by randomly resetting
some bit in the string. Generally, a small degree of mutation can help to avoid a GA
getting trapped in a local optimum.

Finally, we need to describe how merge is used in a GA to combine the old popu-
lation, P, the population of solutions in the mating pool, @ and the new population,
R. of solutions produced by ereate. The following mechanisms are some of those
commonly exploited by the merge phase of GAs:
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1. Replace all
The new P is simply .

2. Best fit
The best solution in R is used to replace the worst solution in P, until either
R = & or all solutions in P are hetter than those left in R.

3. New solutions
This is the same as best fit, except that all strings in R that exist in P are
discarded beforehand, since they are not new.

4. Replace
This allows specification of a pressure parameter, so that only strings in R with
fitness greater than that of the worst solution in P multiplied by pressure replace
strings in P,

5. Random

P and R are merged: strings from the new population which are not members
of (2 are then removed at random until the population size is equal to that of P
before the merge.

There has been considerable progress in developing theories to explain why genetic
algorithms work [63. 83]. Essentially, the theory establishes that the average fitness of
the solution pool must slowly increase. Certainly. there is now a large number of case
studies which support the efficacy of the GA approach. Moreover, it is a fairly robust
technique: for many applications, the parameter settings are not nearly so critical as in
either simulated annealing or tabu search. For a quick and effective way of obtaining
reasonable solutions, GAs have much to offer. They have been used successfully in a
wide variety of applications including the following.

e Packing and Scheduling [5, 39, 72, 76. 90].

e Graph Problems (18, 49].

Neural Networks (7, 42, 59, 77].

Travelling salesman 38, 10, 84, 90].

GAs may fail to yield satisfactory solutions to problems for many reasons. One com-
mon cause is that the problem representation may be inconsistent with the crossover
operation. This results in the crossover operation producing offspring which no longer
represent viable solutions. ,

This failure can be addressed by revising the problem representation. However,
in situations where this is not easily achieved. an alternative crossover scheme may
be devised. Unfortunately, the theory does not allow such an alternative crossover
scheme and therelore such a scheme may result in an algorithm which is not, strictly
speaking, genetic. However, in practice such an approach can still work satisfactorily
and this highlights the need to keep a flexible approach when dealing with GAs.

The travelling salesman problem provides such an example of inconsistency be-
tween representation and crossover. Let us define a solution to the n city problem
by a string of n distinct elements of {1,2,....n}. Thus, if n = 6, two possible solu-
tions might be 163125 and 261435, If these undergo crossover at the third site, the
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strings 463435 and 261125 are produced. neither of which represent possible solutions.
Rather than give an alternative representation. an alternative crossover scheme, par-
tially mapped crossover (PMX) was devised. This selects two crossover points and, for
each character position which these encompass. characters from both parents at that
position are swapped. For each pair of characters v [rom parent a and y from parent
b, a second pair (y [rom parent a and & from parvent b) is swapped. For example, if
the two strings shown below undergo PMX with sites 3.5 (indicated by | ):

Stringa: 163|125
String b: 26 1| 43]5

then 1 in a, 4 in b and vice versa are swapped. together with 2 in ¢ and 3 in b and
vice versa, vielding:

Offspring 1:

% 4 3
Offspring 2: 3 1€

6 2 5
6 4 5

6 Case Study: Steiner Tree

Steiner’s Problem in Graphs (SPG) is a classic combinatorial optimisation problem
which involves connecting a given subset of a graph’s vertices as cheaply as possible.
More precisely, given a graph G' = (V| ) with vertices V, edges E. a cost function ¢:
E — Z*, and a set of special vertices, N’ C V, a Steiner tree is a connected subgraph,
T = (Vp, Er). such that N C Vp C V', and |Er| = |Vp| — 1. The SPG problem is to
find a Steiner tree T which minimises the cost function, ¢(T) = ¥ ¢p, c(e). Such a
tree is referred to as a minimal Steiner tree. A minimal Steiner tree is not normally
a minimum spanning tree on just the special vertices, it also spans some non-special
vertices; the vertices Vo \ /i are referred to as Steiner vertices.

All Steiner vertices must have degree > 2; it is clear that any Steiner vertex with
degree one can be removed from T, resulting in a Steiner tree T with ¢(T") < ¢(T).

The vertices Vo can be partitioned into two sets, the key and non-key vertices. We
define the set of key vertices Vi, (7') in Steiner tree T to be

Viey(T)={veVr|ve N V dp(v) >3}

where dr(v) is the number of edges incident to vertex v in subgraph 7. Key vertices
are either special vertices or Steiner vertices acting as junctions where two or more
paths meet. A key path in Steiner tree T is a simple path

Pp= <0, V2.0, > s.t.
(viyvig1) € Erforl <i<n,
v, Uy € Viey(T') and
v; € Viey(T) lor 1 < 3 < n.

In other words. a key path connects two key verlices via zero or more intermediate
non-key vertices. The set ol key paths Q = Ap(T') consists of all key paths in T'.
In Figure 6. special vertices are shaded. The minimum Steiner tree consists of the
four paths
Q={<10,2>,<23>,<2,4><3,6>}
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The vertices, 0 and 2, are Steiner vertices and 2 is the only key vertex g K.

All feasible Steiner trees can be uniquely represented by their set @ of key paths:
the Steiner tree is trivially constructed from @ by taking the union of the paths, let
T'(Q) denote such a tree. A minimal Steiner tree will have a key paths that are the
shortest paths between its key vertices. It is straightforward to show that a Steiner
tree contains at most 2|A’| — 2 key vertices, and therelore at most 2|R'| — 3 key paths.

.

Iligure 6: The Steiner problem in graphs

The Steiner problem in graphs is NP-hard [51]. Despite this result there exist
special cases solvable in polynomial time. Of particular relevance in a Local Search
context are those distinguished by the number ol special vertices, |A|.

|| =2 With only two special vertices the SPG reduces to finding the shortest path
between the two vertices, a problem solvable in O(]V|?) time using Dijkstra’s
algorithm [21], or O(|E|lg|V]) time using a modified version of the algorithm.

|| =3 The tree will consist of two paths linking the special vertices, or three paths
linking the special vertices and a [urther intersection vertex. Given the inter-
section vertex, the solution is simply the union of the three shortest paths from
this vertex to the special vertices. As there are a maximum of |V| choices of
intersection vertex, and the shortest paths can be found in O(|E|lg|V]) time,
an SPG instance with || = 3 can be solved in O(|V|(|£]1g|V])) time using this
technique.

|\

= |V| Where all vertices are special the SPG coincides with the Minimum Span-
ning Tree (MST) problem, solved in O(|E|lg|E|) or better time by variants on
Prim’s or Nruskal’s algorithms [61].

Since first formulated [11], the SPG has been the subject of a great deal of re-
search effort. A number of exact techniques have been applied to SPG, e.g. Branch
and Bound [1], Branch and Cut [14], Spanning Tree Enumeration [41], and Dynamic
Programming [26G]. Despite their success these techniques all suffer from exponential
worst case running time. Hence there is interest in heuristic approaches, generally aim-
ing to reduce computational effort at the expense of guaranteed optimal solutions. A
number of heuristies fall into three main categories, reduction techniques, constructive
algorithms, and local search variants.
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Reduction methods are applied to instances of combinatorial optimisation problems
in an effort to reduce problem size. SPG provides ample scope for devising methods
for reducing the values |V7| and |£]. The general approach is to identify edges or
vertices guaranteed not to belong to a minimal Steiner tree; eliminating these from G
results in an equivalent but smaller instance. Conversely, identifying edges or vertices

guaranteed to form part of a minimal Steiner tree allows a partial solution to be
generated. The reduced instance will have fewer candidate solutions than the original,
and hence is easier to solve. Indeed, for some small instances based on sparse graphs
or with high special vertex density, applying a combination of reduction techniques
may be sufficient to find optimal solutions [27].

Constructive algorithms for SPG are based on connecting vertices in A by inserting
paths between subtrees. An algorithm starts with {7 consisting of a forest of disjoint
single element trees covering A, and at each iteration selecting two trees in U and
joins them via a path. After |[A'| — | iterations the algorithm terminates with U
consisting of a single Steiner tree. One ol the first such algorithms proposed was the
Shortest Path heuristic (SPII) [83]. In SPH all components of U remain singleton,
apart from the tree Ty, containing the arbitrarily chosen starting vertex vgars. For
each constructive step the shortest paths from Tyga, to all vertices in K\ Vr,,,.,, are
calculated using Dijkstra’s algorithm, and the vertex having the shortest such path is

connected to Tge by that path.

The Average Distance [euristic, [T4], improves on SPH’s straightforward greedy
algorithm by including a form of heuristic lookahead. At each step, a function identifies
a vertex, v € ¥\ 1. such that the average distance to at least two trees in U is
minimised: v is considered to be the vertex heuristically closest to the forest /. With
v identified. the two vertices vy, vy in Vi with the shortest paths to v are found, and
the trees T, . T, and vertex v connected via these shortest paths.

The Local Search approach of Dowsland [25] is based on the key path Steiner tree
representation. The initial solution is generated using the SPH algorithm, or a ran-
domised SPH variant. Local Search is applied to this solution using a neighbourhood
function based on the exchange of key paths. If the solution is represented by its key
paths, @ = Ap(7T). and an arbitrary key path, p, is removed from @, then the resulting
graph consists of two disconnected trees. The trees can be optimally reconnected by
considering each component as a single vertex and using Dijkstra’s algorithm to find
the shortest path between them. Dowsland uses O(V'?) shortest path algorithm.

The removal of p and the reconnection of the two trees by the shortest path be-
tween them is described by Dowsland as a l-opt move. Dowsland uses this 1-opt
neighbourhood in a Steepest Descent Local Search algorithm. An extended key path
neighbourhood is also presented, referred to as 2-opt. Two paths are removed from @),
disconnecting the tree into three sub-trees. These can be optimally reconnected, in a
similar manner to the l-opt case, by treating each sub-tree as a single special vertex
forming a new SPQG instance with || = 3. As we showed previously this is solvable in
O(IVI(|V]1g | £])) time. although Dowsland used a O(|V[|?) implementation. Testing
Steepest Descent with L-opt and 2-opt neighbourhoods on a set of 100 vertex prob-
lems showed 2-opt consistently found better solutions, but with significantly longer

execution times.

Verhoeven. in [36G], uses the same representation and l-opt neighbourhood for his
SPG neighbourhood search algorithm. A Random Descent algorithm is used, with ini-
tial solutions generated by the SPH algorithm. Verhoeven's implementation includes
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an efficient O(|£|1g|V]) shortest path algorithm which is better than Dowsland’s
O(|V]?) for relatively sparse graphs. This makes it feasible to apply the algorithm to
much larger SPG instances.

A Genetic Algorithm for SPG is presented in [50]. In this paper, the representation
and neighbourhood [unction are based on the identification of Steiner vertices. A
solution is represented by a bitstring of length |V], with each bit ¢ corresponding to
a vertex ¢; € V. A 17 in position ¢+ means vertex v; is present in the Steiner tree
represented, and conversely a 0" indicates v; is excluded. Note that to represent a
valid Steiner tree it is necessary for bit ¢ to he "1 for all v; € I\', hence the bitstring
identifies a set. 17, ol Steiner vertices. A new SPG instance (G' = (V', E'), k') can
be generated from G/ H and i thus:

G = sg(GL R U W)
R' =RKUW

Il

where the [unction " = s¢(G. V) defines the subgraph induced in graph G by the
vertices V i.e.

=
L' = {(vi.ve) € £ | 01,02 € V],

The generated SPG instance has the property that all vertices are special and hence
can be solved to optimality in O(|E|lg|FE]) time using Kruskal's MST algorithm. Let
T (W) denote the solution of the generated instance. This Steiner vertex representation
does not ensure T'(117) is a Steiner tree for the original SPG instance. There are two
possibilities for representing invalid Steiner trees. First, the subgraph ' may consist
of more than one component, and il A" is not spanned by a single such component
then no Steiner tree exists in (/. Second, and less crucially, (W) may contain Steiner
vertices of degree one.

A pool of Steiner vertex representation solutions is maintained. GA search is
applied to the population: child solutions are generated by standard crossover and
mutation operators. Solutions representing infeasible Steiner trees due to disconnec-
tion are priced out of the search; a large penalty is applied to the fitness function of
any such solution. Solutions with Steiner vertices of degree one are tolerated on the
assumption that the GA search will discourage such solutions. Good quality results
are presented for the Beasley B set but the algorithm is rather less successful on the
larger instances (C' and D sets).

Another genetic algorithm with a vertex based representation is presented in [28].
Although the bitstring used is similar to [50], the velationship between a bitstring and
resulting tree is different. The vertices specified by the bitstring are used as parameters
for the heuristic algorithm of [33]. Good quality results are presented for the Beasley
C, D, and E sets. Execution time is several hours for the larger instances, despite
all instances being pre-processed with a SPG reduction algorithm. Furthermore, the
technique requires calculation and storage of the all pairs shortest paths, resulting in
a O(|V[?) memory requirement which limits scalability.

A simulated annealing algorithm for a related problem, the directed Steiner prob-
lem on networks, is presented in [67). A similar representation and cost function to [50]
is used. The neighbourhood function is based on adding or removing single vertices
from the set ol Steiner vertices. Results are presented for small instances with at most
80 vertices. '
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Currently, the best heuristic algorithm for SPG uses both the key path represen-
tation and the Steiner vertex representation. The algorithm is essentially a simulated
annealing algorithm which regularly changes topology by changing representation and
neighbourhood f[unction. Details are given in [39]: this approach can solve successfully
all the Beasley instances and, in most cases, solutions are ound in under 10 minutes.

7 Case Study: Data Mining

Let us assume we have a relational database, ), of d records in the form of a flat file
and that all fields have known values for each 1 € D. [ consists of a set of records
specifying values for the sequence of attributes

A=< .‘1[.,4-2,. AL

where 4; is defined over the over the domain Dom;, 1 <i < n.
We are asked to find a rule of the form

o= 8

which appears to hold for some records in this database.

Let r denote a particular vecord in the database and ¥ denote some predicate
defined in terms of the n attributes. () will then be true if the record r satisfies the
predicate 4.

A rule expressed as above represents knowledge extracted from D and the process
ol determining such rules is often known as Anowledge Discovery in Databases. For a
good introduction to this subject see [15, 56].

Associated with any rule

a=p

are three sets of records,

A = {r|air)},

B = {r]80n}
and

C {r|alr)AB()}
AN B.

We can then define the integer values a,b and ¢ by
a=|A|, b=|B]| and ¢ = |C]|.

Figure T illustrates the situation. Remembering that d denotes the size of the database,
one can define various ratios between these values which measure properties of the rule.
We will use

Appla = 3) =5 APPLICABILITY of the rule, and
Accla = 3) = £ ACCURACY of the rule.
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d-a-b+c

IFigure 7: Venn diagram for a rule in a database of defined records.

In general, we will be searching for one or more rules which meet certain predefined
criteria. These criteria are designed to determine how well the rule describes (some
part of) the database. So. for example, we might be required to search for a rule that
has at least 90% accuracy and has as high applicability as possible.

In order to reduce the size ol the search space, it might be necessary to restrict
the format of the rules we seek. For example, a, the precondition of the rule might be
restricted to be a conjunction of the form

(Ax, € vy ) A (AN, Evn) AL A(Ay, € vy,)
where | < A < Ay < ... < N €<n and where
va, © Domy,,vn, © Domy,,..., vy, © Domy,.
The predictive part ol the rule, 3, might then be.similarly restricted take the form of
(A€ vg)y

for some j & {A1, Aa,... A} and v; € Domy;.

Assuming that the domains are meaningfully ordered, such rules can than be rep-
resented as an array of suitably encoded upper and lower limits (one pair for each of
the input fields and one pair for the output field).

Once the format of the rule is determined together with its representation, we
need to define a fitness (or value) function. Given a rule, this function determines how
well that rule meets the given criteria. Several suggestions for defining these criteria
have been proposed in the literature, see for example [45, 75]. These can be quite
complex involving fuzzy sets, information gain and rule simplicity measures as well as
expressions in «, b, ¢ and d. Nevertheless, there have been cases where very simple
value functions have proved remarkably successful. In [75], a case study was described
where the predictive field was a preset Boolean value and the value function was just

Ae—a, AER

vet useful rules were extracted.

Once this fitness value is determined. data mining then becomes an optimisation
problem - we seek the “hest™ rule, according to our measure, within the space of all
rules. We have used simulated annealing and genetic algorithms to find such rules and
our recent research is reported in [19)].
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8 Hybridisation

In this section, we will suggest a unifying framework for the various search strategies
that we have considered. Other attempts to do this have been presented in [29, 71, 73].

Our key observation is that it is possible to view GAs as yet another type of
neighbourhood search. Rather than view neighbour as a function U/ — 2V, we can
extend the concept and define

. ¥ 13 .r
neighboury : U x 7 — 2Y,

The crossover operation merely defines a neighbourhood of twoe solutions in U, taken
together.

Given a submultiset of solutions, Q C P, we can define create so that it generates
some submultiset of Ny U NV, where

Ny = U{neighhom'(u) lue @} -

and

Ny = |J{neighboury(u,v) | u,v € Q}.

Ny corresponds to mutants and Ny to children. The neighbour, function may not be
pure crossover but, may be defined in a more complex manner.

Viewed in this way. the GA paradigm is merely a simple extension of neighbour-
hood search. Currently, most GAs only randomly select at most one solution from
neighbour;(u, v) for any w,v € Q. It may well be worthwhile investigating variants
of this technique whereby the fitter children are more likely to be generated. This
could be achieved by either generating more children in a single mating cycle and
then culling weaker offspring and/or by restricting crossover points according to some
(possibly dynamically changing) rules.

[n simulated annealing, the essential idea is to allow weak mutants to survive pro-
viding it is warm enough. GAs also have this lacility of allowing some weak members
to survive in the solution pool but always have mechanisms for favouring fitter solu-
tions. The GA paradigm might be strengthened with the inclusion of a temperature
parameter or at least some dynamic control ol its parameters. The GAmeter package
allows such control but only by human intervention.

The GA paradigm can also be considerably enhanced by learning some of the
lessons of tabu search. By maintaining a dynamic list of rules, both N; and N; can
be pruned and/or ranked by desirability. Rather than simply use value as the value
measure, we can also use such a ranking as an additional or replacement measure.
The use of such expert guidance need not be restricted to create. We must have
definitions for each of the functions, initialise, finish, select, neighbour, create and
merge; we can envisage algorithms where these definitions are quite sophisticated.
Tabu search suggests that the inclusion of an expert system to define some of these
definitions may be appropriate. Moreover, il such an expert system is given as a set
of rules, these can be updated during the running of the program. This could exploit
the temperature coefficient used by simulated annealing.

The general search method in nearly all of its many variations has considerable
scope for parallelism [11, 43, 57,62, 70, 93]. The evaluation ol the solutions, generation,
evaluation and selection of neighbours together with much of the merging can be
performed in parallel.



VIII.23

9 UEA Toolkits

At UEA, we have developed a GA toolkit, GAmeter [48], which supports all of the
above options [or sclect, ereate and merge as well as some others. The toolkit can run
on UNIX or Macintosh workstations and there is a parallel version running on a Meiko
transputer rack and a distributed version using PVM on a network of UNIX worksta-
tions. [t enables very fast implementation ol GAs and allows easy experimentation
with parameter settings.

Similarly, we have developed a toolkit, SANSON, supporting Simulated Annealing.
[t supports a wide range of SA options and both UNIX and Macintosh versions are
available. The distributed version is about to be released for trial.

The toolkit for Tabu Search, TAbasco, is less developed but a preliminary version
is being used in our department. We intend to develop this further and to implement
a distributed version. Qur next step is to build an adaptive, distributed search engine.

GAmeter and SAMSON are available [ree to academic researchers and copies can
be obtained by emailing me at vjrs@sys.uea.ac.uk. Further details of the toolkits and
of the research activities of the Mathematical Algorithms Group is available on our
web page

(http://www.sys.uca.ac.uk/Rescarch/ResGroups/MAG/).
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DISCUSSION
Rapporteur: Dr Rogério de Lemos
Lecture One

During the talk Professor Randell enquired whether during a search that starts at multiple
starting points there was a danger of overlapping while searching in the same area.
Professor Rayward-Smith replied that that was the kind of problems raised in the selection
and replacement; the wish was either to diversify or to intensify the search around a certain
area, because all the solutions are bound to have the same features.

Professor Randell made the remark that if the specific modifications in the searching
techniques discussed in the talk were likely to be more appropriate for the various
particular types of problems, then the difficulty would become the identification of the
different types of problems. Professor Rayward-Smith agreed with the statement and added
that it was hard to try and one had to be an expert in the field. Professor Randell continued
by asking whether instead of selecting the appropriate techniques for selected problems
one could have general rules about problems. Professor Rayward-Smith replied that
although it was possible to diversify and intensify, it was not so easy to apply general rules
to unseen problems.

Professor Henderson asked if genetic algorithms could work without mutation. Professor
Rayward-Smith answered that it would work occasionally, but in practice in all the
problems that he had encountered the genetic algorithms work much better with a bit of
mutation. Professor Hesselink made the comment that if the initial pool was too small then
there was the need for mutation.

Professor Randell asked if there was in the community a satisfactory set of tests cases.
Professor Rayward-Smith replied that the community had set up libraries of test cases,
however these represented very classic academic problems which were quite different from
the single problems that were found in the real world.

After the talk Professor Burns asked the speaker to comment about neural nets. Professor
Rayward-Smith said that neural networks were effective in data mining, in other words, to
clean up the data, otherwise there was tremendous hostility on its use from industry
because they were essentially a black box technology. On the other hand, genetic
algorithms were easier to explain and to make sense out of them.

Dr Larcombe made the comment that in her opinion while heuristics were a violence,
genetic algorithms were a mindless violence because while one could prove something
with heuristics, with genetic algorithms it was difficult to obtain a relevant proof. Professor
Rayward-Smith agreed, and said that it was a fair comment to be made.

Professor Nievergelt made the comment that if one was able to abstract from a specific
problem, then there was not any reason to say that a particular algorithm was better than
the other, because in search all cleverness was related with the identification of a specific
problem and its mathematical structure. Professor Rayward-Smith replied that there were
principles that one could learn at every application of a genetic algorithm, however at the
end, it really depended on the understanding that one had of the problem.

Dr Bird asked whether from the results presented one could conclude that one class of
techniques was much broader than another class, for instance, could one say that simulated
annealing could be formally represented by genetic algorithms. Professor Rayward-Smith
replied that simulated annealing could be considered a subclass of tabu, depending on the
rule set, however he would prefer to see the techniques as intercepting variants of local
search. Instead of fitting one technique into another and finding a general one, he would
prefer to generalise local search to encompass all the techniques.
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Lecture Two

During the talk, while commenting on the difficulties of convincing industrial managers
about the efficiency and accuracy in the utilisation of certain rules, Professor Randell
enquired whether it would not be easier if the managers could convince themselves about a
rule that they did not follow beforehand, if that rule had been applied in retrospect.
Professor Rayward-Smith replied that he did not know of any rule introduced to these
managers that they had to convince themselves that was right beforehand; he continued by
saying that the reason managers were not interested in neural nets was because they would
not be able to justify to their senior managers about the accuracy and efficiency of neural
nets in taking dramatic decisions.

After the talk, Dr Andersson asked the speaker to comment on the relation between
thinking and hacking, in the sense that in this field there is no need to prove what is done,
except through benchmarks. Professor Rayward-Smith answered that there were standard
techniques that hackers use, moreover there was an early training element which provided
the educational value. He continued by saying that there were some underlying principles
in the material he had presented that could be used in an algorithm course; these principles
would not be adequate for a course at the undergraduate level, which should deal with
classical algorithms, but perhaps at the postgraduate level. He also emphasised that there
was a great demand in industry for these skills, and universities should be providing the
technical training.

Dr Bird asked the speaker to make a broad distinction between genetic algorithms and
neural nets. Professor Rayward-Smith answered that essentially genetic algorithms come
up with a rule which provided the basis for understanding them, however neural nets are
essentially black boxes from which it is difficult to extract a rule. Dr Bird also asked
whether in neural nets a rule could be an output. Professor Rayward-Smith replied that a
rule could be considered an output if there were enough outputs to cover all possible
settings.

Professor Randell felt that several of the speakers had made the point of bringing together
what he thought to be separate topics, and asked whether the belief in the communality and
the belief in the potential value of hybridisation of different techniques was something that
was generally accepted or it was restricted in the choice of speakers. Professor Rayward-
Smith answered that there was already a fair proportion of hybrid algorithms.

Professor Randell also commented that he had heard many people giving talks on data
mining, and these talks usually appeared to him to have little in common because of the
different techniques that were applied in different sorts of problems, he wondered whether
the data mining community was really a community. Professor Rayward-Smith replied that
there were a lot of issues in the data mining field, and that although there were a lot of
toolkits for the individual bits, there was not really an adequate toolkit that could deal with
all the different issues. Dr Andersson agreed with the speaker, and added that in his
opinion the problem in these communities was essentially the lack of common benchmarks
which would allow comparison of the different approaches, and this was sometimes
frustrating. Professor Rayward-Smith made the remark that the area was growing fast, and
there was an increasing number of academics who were getting involved.





