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Abstrac t 
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NR47TJ 

The paper reviews the most important of the so-called , modern heuristic techniques 
- tabu search , sinllllated an neali ng and genet ic algorithms. They are all presented 
as simple extensions to the local seMch pa.radigm. One advantage of viewing them 
in t his way is tha.t furth er variat ions become ap parent together with techniques for 
hybridisat ion . T hese are briefl y explored. . 

The pa per al so includes two case studies : - t he class ic, Steiner tree problem and a 
very practi cal use in Data Min ing. 
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1 Introduction 

Let us assume that we have a universe, [I, of (potential) solutions to a problem. We 
seek solut ions t.hat meet. certain const.raint.s. or, put another way, t hat lie in some 
subset, S, of U. Assuming ea.ch problem call be assigned a value in some totally 
ordered set, W , an opt imi sation problem will seek one or more e lements of S of 
maximum value . Thus, given a. set S C U, a tot.ally ordered set, VV (often the reals, 
R) and an objective function, value : [I ---> IV , an optimisation problem is of the form 

maximise val1le( u) 
such that v. ESC U. 

A common tech nique used in optimisa.tion is to "price out" the const raints . This is 
done by defining value on all elements of U in such a way that any 'u E U\S has such a 
small value that it is guarant.eed not. to provide the maximum value. In the case where 
W = R , thi s is us ua ll y achieved by ensuring value(1I) is a large negat ive number for 
any u E U \ S. This technique can a lso be used to cope with any "soft" constraints, 
i. e . constrai nts that are desirable but not abso lut.ely essent ial. The optimisation can 
then be expressed s imply as 

maximise v([.Iue(tt) 

such t hat It E U. 

As an example, consider the well known , N P-hard, 0-1 Knapsack P7'Oblem, viz . 

0-1 I\ NA P SACl\ ( I":P) 
Given: 11. items, 1,:2, ... ,11., where item i has associated profit, Pi E Z+ and 
weight, 'Wi E Z+, and a knapsack of capacity C E Z+. 
Problem: Fi nd a subset, A C {[ , :2 , ... ,n} to 
111aXI1111Ze 

P1'ofiIIA] = L{ Pi liE A} 

subject to 
WeightlA] = L{Wi liE A} :::: C. 

This problem may be replaced by 

Prpblem: Find a subset, A C {1, 2, ... ,n} to 
maximize 

P,'ofitIA] = L{Pi liE A} - )Ili,a" {L{Wi li E A} - C,O}, 

where), E Z+ is a large positive nu mber. 

A solut ion to th is problem can be represented by a binary st ring tt of length 11., where 
1Ii = 1 if i E A ami 'lli = 0 if i if. A. Any solu[.ion , u, t.hen has 

" n 
value( u) = L l'iUi - ), max{L Wi'lli - C, O}. 

i=! i= l 
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2 Neighbourhood Search 

A neigh bourhood s(,Mch (,' ploil.s 011(' (o r mor( ') Il(,ighbourhood functions of the form 

neig hbour: (l ---> '2Y 

whi ch , gi"C'n a so lul.ion, II. E (I . deli ve rs a 5(,t. o f so lutions "close to" lL. A pool of 
so lu t.ions is ma.illt.aillE'd and , al. each it.e rat.ioll of t.he a lgorithm , one or more element.s 
of the pool are e' r a llded by apply ing t l1f' neighhour funct ion. 

In t.he s implest. forms of neighbourhood s('a rch . t he pool size is maintained a t one. 
The a lgorithm proceeds by continua.!l y rep lac ing I/. by a neighbour of greater value 
than u. In a s im ple greedy hill climbing a lgo ril.hm u will a lways be rep laced by the 
first ne ighbour l' found ill neighbolL1'{U) such t.hat va/ue(v ) > va/ue(u ). In a steepest 
ascent algorit.hm. I.he whole of I)eighbollr{u) is ex plored to find a v E neighboul'(u) 
such t.ha.t 

ua/lle(u) > va/ue{ n) a nd 

l'a/ne(l') > VaLl(e(w) Vw E neighbour(u). 

Between t hese t\\'o C'xt.remes, the algorit.ll111 des igner can opt for a partial exploration 
of neighbou,,(u) t.o find tlH' next so lut.ion . 

It is a lso C011111\On t.o l11aint.ain a pool of solut.ions of size greater t hat 1. One or 
more ne ighbours of any so lut.ion in t.h e pool can be added to the pool replacing the 
solutions whose neighbourhoods have been ex plored or which the a lgor ithm deems will 
no longer be wort.h mai ntai ni ng. 

Crucia.l to t.he success o f' a neighbourhood search algo rit.hm are the following. 

R epr esentat ion The algo ri thm des ig ner must det.e rmine how each u E U is repre
sented . This representation should ensure that the neighbourhood func t ion(s) 
and the e ,·a.lua.tion fun ct ion can be e ffi ciently implemented. 

Initialisat ion The illitial pool of one or more so lu tions must be determined. This 
m ay be achieved using a random generat ing function or by the use of one or 
mo re he uri st.ics . 

In the GRASP a pproa.ch, the genera.tion of an initial poo l of reasonable solutions 
is critical to the success of the a lgorithm. 

Neighbourhood Function (s) T he function neighbour : U ---> 2u must be specified. 
There may be several choices a nd somet. imes more than one is used at each step . 
Al te rnatively, a cho ice is made at each ste p and which one is used will change 
from one st.ep to the other. In a.n adapi'ive neighbourhood search, the algorithm 
monitors th e success rate of the various neighbouhood functions and selects 
(usua ll y probab ili st:ically) the most promising ne ighbourhood function. In a 
vQ.1';able depth $f{/./'ch, t he a.!gorithm uses neighbow', neighbo1<r2 , ... , n eighbourk . 
as neighbour fUllcl.ion s. T ypically I.: < 4 a.nd the higher order neighbours a.re on ly 
brought into play whf'n the lowe r orde r neighbours are failing to find improved 
solu tions. 

Di fferent ne ighbourhood funct ions ca.n be a.pp li ed to various solutions. This may 
ha.ve impli ca.t. ions concerning t he represe llt.a..tions used. It ma.y be the case that 
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one neighbourhood function is far more efficient if representation A is used while 
another requires rep resent.ation 8. In such ca:ies, it is somet imes worthwhile in
corporat ing functio ns to switch representations an d to exp loit t hese with in t he 
algorithm (see figure 1). In t h is diagram, lI'e have just two possible representa
t io ns, rep A and rep 13. 1> .. \ 8 cha.nges the representation of a so lu t ion from rep A 
to rep Band 1>8.-1 vice versa .. We assume n eighbom'J wo rks most effici ently on rep 
A and neighbolt1'2 on rep B. Wh ich re presentat ion to use will t hen be determined 
by the probability of using neighbouT \ ratl,er than neighbO'tt1'2 and t he efficiency 
of comput.ing the eval uation func tio n, valll.(', on the two representations. 

neighbour 1 neighbouf2 

rep B 

Figure 1: Changing representations. 

Pool Size The size of t he main tained pool is often one but, especially in distributed 
and parallel sys t.enls . a larger pool size is common. If the pool size is greater 
than one. a strategy i.; required to select t hose so lutions from t he pool which will 
be expanded. 

Selection Criteria If the :i ize of t he pool is greater t han 1, a decision has to be made 
as to which so lutions are to be expanded. This could be all of them, a random 
se lection or a su bset chosen by some heLll'ist ic or expert system. 

Acceptability Criteria Once it is determined that a node should be expanded, the 
a lgorithm needs to have criter ia for det.erm ining when one or more neighbours 
are acceptable. Simple crite ria are 

First Found Th e first neighbour, v E neighboU1·(tt), such that valtte(v) > 
value(tt) is acceptable. 

All Bette r All neighbours '!I E neighbolt"(ll) Stich that value(v) > value(tt) are 
acceptable 

All B es t All neighbours v E lleighbouT(u) such that value(v) > valtte(tt) and 
value(v )?'1'al",·:( tv) 'tlw E neighbo'llr('ll) are acceptable 

B est Any single so lut.ion fro m t he set of a ll best solutions is acceptable 

In the above. we a:iSUllle we always require an improvement in the val ue. This 
can be rela.xed so t ha t. the criteria is val'lle(v) ? value(u) 0 1' even Ivalue(v) -

v(dll.e( II. ) I < ( for SO Ill(' small E-

If t he acceptab ilit.y cri ter ia a. re total ly reloxed, so that any solut ion is acceptable 
we have a I'anriom. search. In t he case where t he pool size is 1 and we simply 
move from one so lut.ion to an arbitrary neighbou r, th is is known as a random 
'tVa/A:. 
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Replacement C ri te ria With it pool size n > 1. the selection cri teria selects m :s: n. 
solutions 1'01' ex pa ns ion . Having dctc rmillf'd t he ne ighbourhood function s and the 
acceptabili ty c riteria to be used. we thell have /.: new sol ut ions to incorporate 
into the pool. T he re are ma ny possiblf' op l iOll s incl uding 

Keep All All acceptab le neighbours are added to the pool a.nd expanded solu
tions <H E' removed. 

m -Best The 1)1 ex pa.nded so lutions a re re moved and , assuming k > m, the m 
new so luI.ions of highest value are used. 

Dive r s ify If k > 111. so mE' he uri st. ic is app lied to se lect m solutions represent ing 
a dive rse co ll ection o f solut.ion types 1.0 replace the expanded nodes . 

In te ns ify If /.. > m, a su bset 01'.,,1 solution s wh ich have common cha racterist ics 
a re used to replace t he ex panded nodes. 

[n pract ice , d iversirication is used a t the beg inning of t he search and intens ifi ca
t io n only a I, the latter sta.ges . 

Halting The a lgor it.hm must incorporate some hal t ing cri t.er ion. This m ight be 

Time-up Some time lim it is im posed for the search. 

Ite ration Limit A limi t on t.h e n1lmber of ite rat ions is imposed . 

No new solutions There are no acceptable so lut ions found in an iteration . 

No s ignifi cant improveme nt The rate of improve ment of solutions is very 
slo\\'. 

Neighbourhood search is often a ve ry successfu l technique to solve difficult, large
scale, commercia.l probl e ms. A common crit.i cism of the me t hod is that, even if t he 
algori t hm is run unt.il there are no more accep table so lutions, t he best solu t ion found 
wi ll no t be close to the opt.imal. The a lgo rithm te nds to get st uck in a local optimum 
- see figure 2. Alt.houg h this cr it. icism is fail' , it is also widely misunderstood and all 

Global Optimum 
- - - - - - - - - - - ---,"--... 

Local Optimum 

Figure 2: Finding a. local opt.imum 
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too often t he a pproach is dismiss('d without adequate ex ploration. 
The first. point. t,o Inil\;" is that, thE' rE'p resent,ilt ion a.nd the ne ighbourhood func

tio n being used are critic .,1 to the topology of the sea.rch space. As an illustra
t io n of th is, consid(' r t he t ilS\; of maxillli zi ng the function f ; X ~ R where X = 
{O. I. 2. 3. ·1. oj . 6. i} ilnd 

,((,,.) = -(.r - -1)2 

As a fun ct ion on th e r<"al s ./' f-+ -(.1' - 4 J" is a smoo t h fun ction wi t h a maximum value 
of :r = 4. !-I OII'(,I'er, if \I 'C rep resent each ,/' E X by a :3- bi t binary st ring, set va lue = f 
in the obvious way. a nd aSsu n1C' t,hc ne igh bourhood func.tion is a simple bit change, we 
find :1' = 3 is a loca I o pt i nl a . ( f( 0 II ) = -I a nd 1'( I II ) = - 9, f( 001) = - 9 and f(010) = 
- ". ) 

Now, let us use t he same rep resentation but, use a ne ighbourhood function obtained 
by simply add ing/subt.ract ing I IIlOd 7 from I he binMY number. In this case, there 
are no loca l optima .. 

1 ote, t here is also scop(' to choose a ne ighbourhood fun ct ion which partit ions the 
search space into di st,inn ]'( 'g iolls. III our exam ple, a neighbourhood function wh ich 
Rips two bits will pil.rtit.ioll I he s('arch spilce inl,o 

{ODO. IIO. OI I , 10l} and {OOI.lll , OlO,OlO} . 

In ge ne ral. i I' we de n n(' 
neighbour" ; U ~ 2u 

rec ursively by 

neigh{)()(L1'" (u.) = llfigh bolLl'(lL) U neighboll'r" (neighbour(u)) 

t hen neighbou.r" part it ions t.he search space into equi valence classes . If a global opti
mum is to be fou nd , we lllUSt search a ll o f these equi valance classes . 

Whe n it a.ppea,rs t hat. t he local search procedure has got stuck in a local optimum, 
the re are vMious steps t hat call be taken if the search is not to be terminated. The 
major tec hniques are 

C h a n ge Topology Selecl a, diffe re nt. neigh bou rhood function (and possib ly represen
tation). 

Star t Again Find a.n unex plo red so lut.ion a nd begin again from that. 

R e lax Acceptability Criteria Allow some 'down hill' moves for a limited t ime in 
a n attemp t to get out. of the 10ca.1 optimum. 

There a.re th ree comll1on varia.nts 01' local sea.rch which have been particularly good 
at escaping from poor qu a.lity local optima a nd are wide ly used to solve real-world 
opt imizat ion problems. Simula.ted Annea.ling is a technique for a controlled relaxation 
of the acceptab ili ty cr ite ria. .. Tabu Sea rch is an adapt ive , const ra ined random walk . 
Genetic Algo ri thms a,lwa.ys have a poo l of more t han one solu tion and extend th~ 
neighbourhood fun ction t.o i\ biliary fun ct ion 

child; [I x U ~ U. 

We wil l di scuss these in drt.;l il in t he next sect. ion. 
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(objective is 10 maxinli,,' callLdl') such t.ha.l. I' E U } 
IL : solut. ion E (I; 

Tabll sel. of rules. each rule of t.ype [i -+ {{/,ue , fa'!$e}; 
illi{i(f/i.;c(u): 
illi{i(f/i .' c( 7'(fbll ): {very oft.en to <p} 
whil e not ./'illi.,I>(u.) do 

begin 
IL := .,e/ecl(,v) 
\l'here N = (II I'll IS a neighbour of IL and f(u) =false 'rIu E Tabu}; 
1I.i'd(f Ie T(fbu. 
e nd 

end {Tabu Scarch} 

Figure :3 : The Tabu S('arch Para.digm 

3 Tabu Search 

In tabu search. thf' ",'<Heh .moves from one solution to a neighbouring solu tion but 
om its t hose s pecified 1.0 be "'t.ab u". The "t.a.bu list" is a dynamic set of user-defined 
ru les which dennes those nf' ighbours which a re t.a.bu. A good in troduct ion to this 
paradigm can 1)(' found in [:3:2, :3:3, :36). Represent. ing this tabu list by Tabu, tabu 
search met hod ca.n bE' sumi llari sed as in figure :3. 

In its simplest. a pplication, ~elccl may simp ly deliver a random element from N. 
The move is t.hen not n<'('('ssMily 1.0 a bet.t.er so lnt.ion. Alte\'l1atively, in an attempt 
to mOl'e 1.0 a bet.t.er SOIIlI.i'lI1, a s m a ll "prom is ing" part of the neighbourhood can 
be explor('d: if t.his docs 1,,,1. y ield a n reasonable va.lued solut ion then a next , most 
promising subneighbourhood can be ex plored , etc. 

In practice, we may work with more than one element and maintain a pool of 50-

lu tions , dec id i ng at. each i t.ei·al:ion, II' h ich one( s) to expand. A I though there is consid
e ra.ble scope for consl;rucl.ing vMia.n ts o f t.he basic t.abu search paradigm, the essential 
featu re' is the exploita.t. ion a.nd upda.t.ing of t he tabu li st. 

The so rt of rul es we might. nnd in t he tabu list include the following. 

l. 'U is tabu if u was t.he predecesso r of '\t. 

2. 'U is tabu if u has been vis it.ed recent.ly. 

:3 . .Assuming a binary re presentation , u is tabu if II is obtained by changing a bit 
changed in the previous itera.t io n. 

4. Ass lIming a bin".ry r<'presentation . (J IS I.abu if t> is obtained by changing a bit 
chilnged re('cnt. ly . 

. 5. v is tabu if l'o/lIe(<'l = ualue(u) . 

6. u is ta.bu if Ndlle(1') = 1'Cdue(w) for SOI11E' '" \l'h ich has recently been visited. 

Wit.hin tabu search. thcre is ·then plent.y of scope to ex periment. with the options 
for defining "recelll.l y·' and this hilS been an act. ive area of research. There is also 
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enormous scope for df'n.'lopillg \'<Hious t.il.bu rules both of a genera l nature and of 
a very problem depend(,llt. lIil l.l!I'C'. Two t.ypes of general rule have been identified; 
divtl'sificatioll ilttf'm[ll.s 1.0 Ilroilc\('11 I.he seMch Spi1('e whil st intensification narrows the 
search space. 

Til.bu ru\cs specify which 1ll00'C, call1lOt. be IIlildc. It. may also be useful to have rules 
to specify which so lutions MC desirable . . -I.<pil'lltioll rules are used to override the tabu 
rules but t. hi s idea Ciln bc gcnerillised. W" Cilll f'1l\·isa.ge an expert system, defined by a 
set of rules. guiding t.he search. C""'h rule hilS all associated weight, negative if tabu, 
positive if an ilspiral.ioll. The cOlllbilled set of rules t hus associates a weight to each 
neighbour. A Iil\'gc pos il in.' wcight. suggests it. is a desira.b le move, a large negative 
weight s uggests it can be discounted. The difficu lty is then constructing th is set of 
ru les - considerable expertise is required. However, if this is avai la.b le, t he resulting 
search can be \'('ry clTiciC'llt. evclI if only limited expertise is available, it wou ld seem 
highly des irable to include it. in allY search illgorithm. Thus alt hough we m ight not 
be able to fully rely on a rule based a.pproilch. it is desirable to incorporate some such 
expert ise in a search algorithm. 

Tabu search is in il.s infanc.\·: most impl"nwnl.il.t ions concentrate on the tabu aspects 
and ha ve yet to ('xploit. the IllNe gellcral rule based approach . Nevertheless, some 
excellent, res ults hil\'(' I)('ell obl,il.ined. T hese include t. he fo llowi ng applicat ion areas, 

• Pa.cking and Sciledlililig Probl e ms [2, Ii, :20. :30, :3·1, 55, 81, 91, 92] . 

• Travelling Saleslllan and Ve hic le \louting [.~S , 68, 79] . 

• Telecommunicat ions [:3, 66], 

• Graph Pl'Oblems [ IG, :1I. :3:3, -\:3]. 

• Quadratic Assignme nt. [11. 22. SO, 82J. 

A rule based a.pproach t,o scarching can be \'ery effective and researchers in the field 
often claim that. tabu sCMch out.per fo rms t he other techn iques we will be discuss ing, 
The diHiculty with t he t.ec hnique is that consic\c'rable expertise a nd experimentation is 
requi red to construct the rules a.nd to ensure its dynam ic nat ure is correct ly controlled . 
Surely t he best way forward is to incorporate some ru le based search into other search 
tech niques combin ing the best of a ll the techniques. 

4 Simulate d Annealing 

Simula.t."d anlwa.ling. as a n1E'cilanism for sea.rch ing the feas ible search space of an opti
misat ion problem, WilS fi rst. proposed by I\i rk pa.t.rick [:32] and. independent ly, by Cerny 
[10], Their algorithms \\'cre basE'd on that of 1I [E'tropo lis et al [60] which simulated the 
cont.rolled cooling of a nliltl'riil.1 by a process now known as anneaIing. T he sim ulated 
an nealing technique is essellt.ially local s('Mch in which a. move to a n infer io r solution 
is a llowed with a proba.bi lit.y wh ich decreases, as t h" process progresses, according to 
some Bolt.zmann-t.ype dist.ribut.ion, \I"search involvi ng simu lat.ed an nealing invariably 
concerns it.self wit.h sonic aspect of t.he proof of convergence of the algorithm, or with 
t he applicat.ion of t. hc 1.('cllll iquC' t.o a part,icular problem, and t he s ubsequent search for 
the optimum set of pi\l'illnct.ers t.o use wil.h in the algorithm. Recently, a large number 
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o f papers ha\'e appeMC'd ,ka ling wil h lhe s" ccf'"f,,1 appl ication of SA to a wide variety 
of opti misa.t io n proble,llS. 

T he inspiral iOIl for I I, e SA approac h t.o o p timisat ion is t he law of thermodyna m
ics whic h s tates tllil.t a.l tenlperal.ure, I, t he probabi lity of an inc rease ill energy of 
lll(lgnit.udf'. ~r: . is gin-' ll by 

('[.IE) = exp( -f,EjU), ( I ) 

where},. is the phys ica l constant know n as 8011:1I1I1I1I1. ·S conslanl .. This equatio n can be 
used in a. s imulal io n of a system that is coo ling ulll.iI it ca ll ve rges to a s teady, " frozen" 
state. ['[aving gene ral.ed a. per t urba tion from t he current state, t he resu lt ing e ne rgy 
cha nge is C<l.lcu lated . If the ene rgy has decreascd , the syst.em moves to t hi s new state; 
othe rw ise , t he new sta te is o n ly acce pted wit.h p robab ility give n by equat ion J. T h is 
cycle can be re peated for a. fixed number of iterat ions at each temperature. Then 
t he temperature call be reduced a.lld t he> same numbe r o f cycles re peat ed for the new 

lower tem pera.ture. This lI'hole process is then repea.ted until the system freezes into 
its steady sl.al·e. 

Now . let us associal." so lu t ions of all opt illlisat. ion pro ble m with t he system states. 
The cost of a. solul io n cO I.,..,sponds to the concept of energy and moving to any neigh
bour co rresponds 1.0 a rllilnge of st.ate . Th is is how both [~irkpatri ck [52) and Cerny 

[ (0) deve loped the SA a pproach for optim isation prob lems. 
A s imple sequcnl.ia.1 ve rsion of t he SA pa.radiglll for optimisat ion problems ca.n be 

descr ibed as in figure .1. A de tail ed oven'iew of SA can be found in [24). 

U := (10 wll('re (10 is sOllle initi a.1 so lut. ioll: 
lenl·7J := l enll'o whp l'P lenlp o is some ini t. ial · t:<?I1l])E' l'at: ure; 

while nOI. /i'llish( II) d o 
fo r i := I to 1/ do 

b egi n 
rand oll1'!y select It', a ne ig hbour o f It; 

i1ll1'1'01'e11lt''II1 := value(u') - va/'II.e(u); 
if -im)!J'oo C'lIlt"1r/; > 0 t h en Il := ,,' 

e lse 

b egin 
ge ne rat.E'.r EU[O,I); 
if .r < exp(-i1ll1'I'ooe1ll.w l / l e1ll1') t h e n u .- u' 
e nd {els('} 

e n d {for}: 

:= l't'd".et(l) 
end {wh ile} 

Fig ur(' ·1: c\ Si ,l1l,[e Version o f the Si nllda ted Annealing Paradigm 

Conside r'l.I)I " "rrort is e" i'l'nded in s im ulat.ed a nnealing a lgorithms to get the cooli ng 
rate correct so tha-l. thl' degree o f randolllness in l rocluced into hill climbing is beneficial. 
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Nearly a.11 tlw r<'scarch r('port('d 011 S,\ has used the sequential version of the 
algorithm although t her" is sOllle research illio pa.rallf'1 SA, e .g. [93] . Successful 
appl ica t ion s of SA hal'c illciud"d the folloll'illg. 

• g rap h algorithms [1:2, :2:l, ,16, ,II]. 

• packing and sch('dul ill g problems [I , S. 9. 'i ,1, 6·1, 61i, 69, S·), 87]. 

• travelling salPsma ll a nd veh icle routing [6. 68. 78]. 

• quadratic assignmf'llt. p roblems [I!)]. 

Sssentially, simulated alln<'al ing has ta.ught us that t he inclusion of "downhill" 
moves ill a ne ighhourhood search a lgo ri thm is it good idea provided that the probability 
of making such nlOI'es is suita.bly reduced duri ng the execut ion of the algorithm. There 
is obvious scopc for it hybrid algorit.hm which uses t.he· tabu li st to limit possible 
moves together with sinlltla.t.ed annealing techniques. A s imi lar concept is used in 
the rmostatistical Iwrsistcncy (13]. 

In the si mplf' v(' rsion o f SA descr ibed above, the cooli ng sched ule was monotonic, 
that is it nel'e r incrf'as('cl. · n ecent research has cons idered non-monotonic cooling 
st rateg ies or reann('alillg. One common method is to in crease the temperature to half 
its o ri gin al va lue whenel'",r it a.ppears t he algorit hm has got st uck in a local optimum. 

5 Genetic Algorithms 

The genetic a lgorithm (GA) para.digm was first, conceived by John Holland (University 
of Michigan) in t,he late [960s. It was here that the techll ique was developed and t he 
foundation s of the theory la id for others to build on, see [37, -I-I] . Genetic algorithms 
are search techn iq uC"s, based 011 an a.bstract,ed nwdel of Da.rwi nian evolut ion. Solu tions 
are re presC"nted hy fixpd le ngt h st rings ove r some al ph a,het (the "gene" a lphabet) 
and each such st.ring is t.hought o r as a. ·'chromosome" . The value of the solution 
then represents t.he "fit. ncss" o f t he chromosome. 'We then ap ply the "survival of the 
fitt est" principle to a pool o f chromosomes a nd allow the better solutions to combine 
to produce (hopefully fit.) offsp ring. 

The genetic a lgori t.h m (G A) parad igm is gi ve n in figure .5 . T he a lgo ri thm ini tialises 
some pool, or popu lat io n , of so lu t.ions. Then , at. each iteration, a su bpopulation is 
selected for "breeding". From t. hi s subpopulaJion. children are generated according to 
genetic operat.ors. 'I'll(' chi ldren Me t.h en me rged int.o the original population and the 
process is repcated. The I'ilrious genet.ic algorit.hms wi ll vary in the precise definition 
of the five runct.ions . initialise. fi1lish . select . creale and merge but to be a genetic 
algorithm, it is essential t.hilL 

• populations have cil.rdinality > :2 , 

• create uses gcnet ic opera to rs such as crossove r a.nd mutation (see below), and 

• select and "'tTge depend on the evaluation or sol ut.ions a nd toget he r favour the 
presel'l·o.t.ion of solutions wit.h highe r /laille . 
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{objectil"!" is 10 nlaxinlis(' ('olu.<'(/I) sllch thill, It E (I ) 

P. Q. R : ll1ul t iset of solul ions C 1'; 
initialisc( P); 
while not j'illi"h(P) do 

begin 

end 

Q := 8citcl( P): 
Ii.:= ('r co/dQ); 
p := 1111 /'(/c( p, Q, !I) 
e nd 

Pigure :j: T he Genet ic A Igori t hm Paradigm 

The initial pOPlilittioll is often generated ra.ndoml y but sometimes it is "seeded" 
wit.h kllown good so llll,iotts, perhaps gel10ra.ted by so me heut'isti c. The GA will gener
a.lly fin is h after SOIl1<' gi\'('n nlttllber of it.erations or after some given time has e lapsed or 
when sign ifica.nt itllprO\'(,IllC'llts in t he best, sol ution seen to date a,re no longer appareilt , 

Wa.ys of defining ,«/ref used in CAs include: 

1. HOli lette \V lwel (stocha.stic sampl ing with rcpla.cement ) 
This repei1.tcdly s('l('cts it so lution from P and adds it to Q with probabili ty equal 
to its relative fit.ness, High value sol ut ions will tend to be rep licated, 

2 , Handom 
This selec l,s Si ri ngs cn t.irel y at random from p, 

3. Ranking i\'\cchallisJ11s 
P is ordered by fil,ness and Q is selected acccording to some cri teria which favours 
thosE' eiem('nl.s o f P highest in the ranking, POI' example, 

(a) Tendency 
A su b-population is defined as an upper pe rcentage of P ordered by fitness, 
The mechanism t. he n select.s randomlv from P. bu t in such a way as to 
favour select ions from this sub-population , 

(b) Exclusive 
T hi s nsE'S the sanle sub-popn la.t.ion defi ned in t he tendency mechanism, but 
select.s so lul.ions at random onl y from t.his s ub-population , 

(c) Exponcnt ial 
Solutions in P ill'C' ordered by thei r \'alues, hig hest val ues first. The mecha
nism t.hell sci"CI,s from t.his ordered li st usillg ralldom Ilumbers d rawll from 
an expon(' nl.ii11 distribut ion, 

(d) Pibolli1cc i 
This se lpcts solutiolls from the ordcred list of solut ions accordi ng to the 
Pibonacci S<"(jll{'nrc>, Thus , Ihe bE'sl.. 2nd .. 1rd" 5t. h" 8th " etc, is selected. 

The multiset., Q. fOI'lll<'d using "eleel, represent.s a mult iset of "fit" solutions which 
form the "mat.ing" poo l. TltE' funci.ion acu/e a.ppli ("s genet ic operators to th is pool to 
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genera I.e the on'spring. TIl(' IllOSt fundaIlH'nl.al ol)('ralo r is crossover whi ch is app lied to 
two parent. so lut.iolJ' 1.0 gCII('rale 1.\\'0 offsp rin g so lul.ions . One poin t crossover proceeds 
ill l\\'o st<lgcs : 

Stepl t\ crosson'r s il<' is s('\C;'ctcd, usuall y ill r'lIldolli . T hi s dete rmines t he poin t 
in caclr s l.ri ng at. whi clr all subseque nt. clrMa.cters further alo ng t he string a re 
swapped wit.h clrar<1c l.crs a.l t he same posi tions wi t. hin t he 'mate ' st ring. For a 
st r ing o f length / cl"Hacte rs , the re a. rc /-1 poss ibl e crossove r po ints. 

Step2 Tire st.rings I he n inl,C'rcha.nge a.II ch<1r<1cte rs whi ch occur a fter t he select.ed 
crosson' r point.. Fo r ex" mple, us ing two binary st r ings of length six cha racters 
with a crossO\'Cr po in t o f two (s hown as 'I' ): 

111 010 1 
011100 I 

Aft.er (I'ossO\'('r. these st. l' ings become: 

111001 
010101 

Mul t,iple point. crosSO\'f' r introdu ces a. new param ete r CP, which re presents the number 
o f cro"O\'e r points. Single poin t. crossover is t he n equ iva.le nt to mul t iple point crossover 
with CP set to I. Wil,h (;'\'('n va.\ues of CP, I.he t.wo stri ngs Me treated as rings; crossover 
poi nts are t he n selected at random frolll a rou nd t he ring. Odd va lues of CP resu lt in 
a default. cross ing point <1.t I.he sl:ar l, of t. he st. ring being assumed. 

[II uniform (I'OSso\,(,' 1' , <1 t hird , randolll bi t st ring, 1'and, is generated . Let the two 
parent st rings be PI <1.nd P 2. T he two children, Cl and C2 are then const ructed as 
follows. 

C l ; PI ; if ra.n d; = 1. 

= p .) -, otherw ise. 

and 

C 2; = p.) - , if rand; = 1, 

PI ; ot he rwi se , 

Although crossover is an ess(' nl.ia l component of a.ny GA , it is not necessarily performed 
between all pairs of st.rings in t he mat.ing pool. Q; two ot.he r genet ic operators a re also 
used. O ne is replica/iol/ , whi ch Illerely gellera t.es a. copy o f a st ring and t he ot her 
is -m 'lI la/ i oll in which a COI' \' is made except for some minor rando m change , If the 
solu tions are repr(',,' nl.(·'d as bit st. rillgs , this is nlf'rely o btained by randomly resett ing 
some bit, in t he st ring. GenNa ll y. a sma.II deg ree of Illu t.at. io n can help to avoid a GA 
getting t.rap ped in a. loca l o pt.imum , 

Fina.ll l', we need t.o describe how mage is used in a G A to combine the old popu
latio ll , P, t.he popu la.t ion of so lu t io ns in I,he ma.t.ing pool , Q ".nd t.he new population, 
R, of solu tiolls p rod uced by c)'eate , The following mechan isms are some of those 
commonly ex plo il.cd by I.he nlf'rge phase of GAs: 
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l. Repla.ce a II 
The new P is si III 1'1\' R. 

2. Bcsl. fit. 
The best. sol ul.ion in R is used t.o replace I.he worst. solu t. ion ,n P, until either 
If. = <I> or all solul.ion s in Pare be\.lcr t.ha ll I hose left in R. 

:3. Ncw sol ul ions 
This is I h" saille as best. fit, except t.hill. all strings In R that exist III P are 
discarded bcforphalld, si nce t.hf'Y <He nOI. new. 

4. H('place 

This illiows sp('cificat. ion of il. !}/·'.'.';lIre Pilrilillct.c r, so that onl y st rings in R with 
fitness grC'aler lIliln t. hilt o f the worst solut. ion in P mult.iplied by I'TeSSU're replace 
51 rings ill p, 

O. Randol11 
P iwd R ilr(' nlf'rgpd : st. rings frol11 I.he ncw popula.tion whi ch are not members 
of Cd are t.11<' 1I rr'lllO\ '('d ill. randolll un t.il I.he popul atio ll s ize is equal to that of P 
before lhe lllC'rge. 

T here has becn cO lIsid<'rablp progress in (if'v('loping theories to expla in why genetic 
algorithms work [G:L 88j. I::ss('nl. ia.lly, t.he lIwory esl.a.blishC'" that. the average fitness of 
the so lutio n pool lllllSI. s low ly inc reasc. Certaillly. t.here is now a la rge number of case 
st udies wh ich slIpporl. I.he efficacy of I. he GA approil ch. tVloreover , it is a fairly robust 
tec hnique : for Illilny applicat.ions, t. he pa.rame ter sC'l.t ings are not nearly so cri t ical as in 
either simu la ted anllealing or tabu search. For a quick and effect ive way of obtaining 
reasonable so lutions, GAs havc much to o ffe r. T hey have been used successfully in a. 
wiele vari el.y of applical.ions including t:he foll owi ng. 

• Packing and Schpduling [:j, :39 . i2, i6. ~)Oj. 

• Graph Probl('llls [18, '19 j. 

• Neu ral Netwo rks [i, -12. 59 . 77j . 

• Tr~.ve lli ng salesnlil.ll [:l8, ·10, ::\,1, 90j. 

GAs may fa.il to yie ld sati,facto ry sol u t ions to problems for many reasons . One com
mon cause is that. t.he problem re present.atio n Illay be inconsistent with t he crossover 
operat ion . Th is resu lts in the crossover operation producing offspr ing wh ich no longer 
represent viable so lu I.io\ls. 

This failure CMI 1)(' ad d ressed by re visi ng t.he problem representation. However, 
in situat.ions ",11<'r(' this is \lot easi ly ach ieved. iUl alterna.tive crossover scheme may 
be dev ised . l Tnfort.u\lalel y, t.he t.heory doC's not allow such a.n a lternat ive crossove r 
scheme a.nd t.lwreforc sudl a. sc lwme may res ult. in a.n algorithm which is not, st ri ct ly 
speaking, genet ic. However. in pra.ctice such an ilpp roach can st ill wo rk sat isfacto ril y 
and th is highlight.s the n('ed to keep a Oex ibl(' approa.ch when dea.ling with GAs . 

The travelling sa.l<'slllan problem provides such an eX~.\llp le of inconsistency be
t·ween r<'presenl.ation ilnd crossove r. Let us denne a so lution to the 11. city problem 
by a. string o f 11 distinct. ('I('m('nt.s of {I, 2, ... . II} . Thus, if 11. = 6, two possible so lu
\.ions m ighl. be -1(;:11 2,-) and 2GI ' I:3:i. If thesc·' undergo crossover at the t hird site, t he 
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st rings '16:J.I.:3!i ilnd :2(;11:2:) ilre I'rodnccd. neil.l,,'r of which rCl'rpsent possible solutions. 
I\ather tha.1l giv(' (l ,11 fllt.rl"nal"i,'c n: pr(':-iC'lItatiOll. (lll att.erllal.jve crossover schellle l par· 
t.ially mil.pped crosso,'('r (P~IX) lVilS dc,·iscd. Thi s selccts two crosso,'er po ints and, for 
eilch chill' il.cter posil.ion \\'hich I.hes(' cn compi"S. cililractcrs from both parents at t hat 
pos il ion im' s\\·ilPlwd . For each I'ilir of chil.rilelers .1' from pa.ren t a and y from parent 
Ii, a secolld Ilair (.'I frolll parent a ilild .1' froll' parCo' ll t b) is swapped . For example , if 
the two st.rings s holVn bc low ulldcrgo P ~ [ X \\'il.h sil.es :3,!j ( ind icated by I ): 

St.r ing a: ~ 6 :3 I I :1 I 5 
Siring b : :2 G I I -I :3 I .5 

t.hen 1 in (1 . ·1 in Ii and vice versa ore swal'ped. toge t. he r with :2 in a and :3 in band 
vice versa., yielding: 

Offspring 1: 1 6 243 5 
Offspring 2: 3 6 4 1 2 5 

6 Case Study: Steiner Tree 

Steiner's Problem in C:raphs (S PC: ) is a classic combi natorial opt imisation problem 
wh ich i nvol\'(~s connf'c l.ing a given s ubset of a graph 's vertices as cheaply as possible . 
iV[ore prec ise ly, gi\'(' n a graph G' = (Ii, E) with ,·eri.ices 1/, edges E. a cost function c: 
E -; Z+, and il s('t. of slwcial vcrt. ices, f,' <:;:: \I, a Steiner tree is a. connected subgrap h , 
T = (1 .. ,1'. Dr). wch t.llil1. f,' <:;:: VI' <:;:: 1/, and IETI = IVrl - 1. The SPG problem is to 
find a Steincr 1.1' ('(' T \\'hich min imises the cost fu nction, c( T) = L eEEr c(e). Such a 
t ree is rf'fc r rcd to as a. minimal SI.e inCJ' t.ree. A mi nima l Stei ner tree is not normally 
a minimum spil.nning trec' on just. the specia.1 ve rt. ices, it a lso span's some non-special 
vert ices; the vert. ices VI' \ ,.- are referred to a.s SI.e iner ver t ices . 

All SI.einer ve rt.ices IllUSt. have degree:::: 2; it is clear that any Steine r vertex with 
degree one can be removed from T, resulting in il St.ei ner t.ree T' with c(T') < crT). 

Th e vertices Vr Cill1 he partit ioned int.o two sets, t he key and non-key vertices. We 
defin e the set of key ve rt. ices \'!'ey(T) in Stei ner t.ree T t.o be 

where dT(v) is the numbe r of edges in cident t.o \·e ,'l.ex v in subgraph T. Key vert ices 
are eithe r s pecial vert ices or Ste iner vert.ices ac l.ing as junct.ions where two or more 
paths meet . A key [la.t.h in Steiner t ree T is a siml' le path 

/' = < V, ,,"2 , .. ., v" > s . t.. 
(Vi,t'i+ ' ) E Ey for 1:::; i < n , 

"" V" E II,. ,,(T) a.nd 
Vi tt \ 'ke,,(T) for 1 < j < n . 

In ot.her wo rd s . il key pal h connects two key w'rt.ices via zero or 1110re intermediate 
non-key vert.ices. 1'1 ", s('l. of kf'Y [la.lils Cd = 1.-1'(1') consist.s of all key pa.ths in T. 

In Figme G. s pecial 1'(' 1'1 ices i\.l'P s ha.ded. The minimu111 St.ei ner t ree consists of the 
fom paths 

Cd = {< 1, 0,:2 >,< 2,3 >,< :2 , 4 >,< :3,6 >}. 
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T he vertices . 0 a nd :2. arc Ste'itH'r "('rtices and :2 is t he only kcy 'Trtex rf. f,'. 
"II fe~s ib le SIf'i ne'r t rees ca n 1)(' nniqnciy r('I"'(''''nled by their set Q of key paths: 

the Ste iner I.ree is t. ri, ·ia ll y consl rncl<'d [1"0111 q by laking 1.1)(> union of t he paths, let 
T(q) denote such a t ree. A Illininlid Sl<' inN Iree lI"il l hil\'e a key paths that are the 
shorl.est. paths bet.lI"een its key "erl ices. It is sl.raightfol"lvard 1.0 s how t hat a Ste iner 
tree COlli a i ns a I. l11osl. 21 f,'1 - 2 key "crl ices . a.nd I Il('r<'1'ore a t. most :211\ I - 3 key paths . 

Figure' 6: The Stei nf'r prob le m in graphs 

The Steiner pl"Obl(,1I1 ill graphs is N P-h ard ['il]. Des pit.e t hi s result there ex ist 
specia l cilses soh'able in pol y nomi a.l I:inl(? Of parl,icu la.r relevance in a Local Sea.rch 
contex i. Me t.hoS(· dist.inguisl led by the Illlllllwr of s pec ia.! ve rt ices, I "'I-
IXI = 2 Wit.h only t.wo spf'cial "e rtices t he SPC: reduces to finding the shortest path 

bet.ween t.he t. wo ve rt. ices, a. probl('m so l"able in O(WI 2
) t ime using Dijkstra's 

a. lgori t h m [:21], o r 0(1 Ellg I VI) I.i Ill e usi ng a mod ifi ed version of t he algorithm, 

11,'1 =:3 T he tree will .cons ist of two pat hs linking the special ve rti ces, or three paths 
linking the s pec ial vert.i ces a nd a further intersect ion vertex. Given the inter
section vert.ex . the solu t. ion . is simply th(' nnion of th (' three shortes t paths from 
th is ve rtex to t he special ve rtices. "s Ihe re are a ma.xilllum of 1111 choices of 
in tersection vertex, imd the short.esi. pil t hs Cil.n be found in O(IEllg 1111) time, 
il.n S PG inst.ance wit.h If" 1 =:3 Ciln be so lved in O(WI(IE l lg WI )) time using this 
technique. 

I[{I = WI Where a ll ve rt.ices arc spec ial the S PC: co inc ides with the Minimum Span
ning T ree (~ [ ST) problem, so lved in O(lEl lg lEI) 01' better t ime by variants on 
Prim 's or [,rus kal's ,tl go rit.hms [61]. 

Since first rorillulilt.ed [-Il], the SPG has been the subj ect or a great deal of re
sea.rch e/To rt. " nlllnlwr or exact techniqucs hill'e been applied to SPG, e.g. Branch 
and Bound [-I]. Bral1 ch and C ut [1 .1] , S pa.nning Tree I~numera.tion [41], and Dynamic 
Prograllll11 i ng [26]. D('spi I.c t hei I' success I.h<"sc t.cch n iq ues all suffe r from exponent ial 
worst case runn ing I.illl('. Iknee I.here is int.c res t in heuristic a pproaches, generally aim
ing to redu ce comp ul a l ional efrort a t. the expense o r gua rant.eed opt imal solu tions. A 
number or he misl ics rail int.o t.hrf'f' ma.in calego ri es. reduction t.ech niques, constructive 
algorithms, a nd loca l s<"arch '·il.l'iant.s . 
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II ed u cl. ion nwt h ods Me "P I) I icd to ins t "n ces 0 I' com bin "tori a I op ti m isation prob lems 
in an errort to re<lnce prohl,'nl size. SPG IHo"ides ample scope for devising methods 
for reducing the "alu('s 1\ '1 i"ld lEI . The gcneral approach is to identify edges or 
,·ert.iccs gUiHantced not. 1.0 belong 1.0 ". minimal Steiner t.rec; el iminating these from C; 
result.s in iln equi'·idcnt. bnt. snlililer instance. C'on"crsely, identifying edges or vertices 
gua["(Hl\C'('cI to r01'1ll pa.rl or a minimal Stei ner tree a.llows a. partia.l so lu tion to be 

gencl'ill.ed. The reduced install(,(' will have fewer Cil.n<lida.t,e so lu t.ions than the or iginal, 
a.nd hen ce is easier to solve. Indeed , for sonIc slllall instances based on sparse graphs 
or wil h high spccial vertex dcnsit.y, applying a combinat.ion of reduction techniques 
may be sumcient 1.0 Gnd opt.illlill sol utions [21]. 

Constructive algorit.hms for SPG i"T based on connect ing vertices in f( by inserting 
pat.hs betll'een subt.rees . An algorit.hm st.a.rt.s wit.h U consist.ing of a forest of disjoint 
single element. Irees covering /,' , ·and at eil.ch it.eration selecting two trees in U and 
joins t. hem ,·ia. it pa.l,h. Aft.r'r 1[,' 1 - I iteration s t.he algorithm terminates with U 
consisl ing of it single SI('iner t.ree. One of t.he first. such a lgorithms proposed was the 
Shortest. Palh h(,lll'isl.ic (S PII ) [in], In Sp fl all components of U remain singleton , 
apa.rt from t.llc 1.1'('(' T'/ '81f11'1 (Ontaillillg the arbitrar il y chosen sta.rt ing vertex V.start. For 
each const.rucl.i,·(' st'('I) t.l".. ,;I ,ort.('st. paths fro m Tv." .,,,·t t.o all vert ices in I( \ VT,,,.,, are 
calculated using Dijksl.ra's a.lgorit.hm,.and t.he vert.ex having the shortest such path. is 
connected t.o 1'""",., by 1.lla.l. pat. h, 

The A"erage Di st.iHlce Il curist. ic, [74]. improves on SlOWs straightforward greedy 
algor it.hm by including i\ 1'0),)11 or hc,'ur ist.ic looka.head. At. each st.ep, a function identifies 
a vert.ex, " E Ii \ \-I ;. snch t. hat, the average distance to a.t, least t.wo trees in U is 
minimised: " is consid,'red t.o be I,he '·el'!.C'x heurisl.ically closest to t.he forest U. With 
" iden t.i fi ed , I.h(' t.II'O ,'('l'I ices "I , "'1 in \"[1 wit.h t.he short.est paths t.o v are found , and 
the trees Tv" T"" and \'(.'rt.('x " connected via t.hrsc short.est. paths, 

T he Local Search approach of Dowsland [25] is based on t he key path Steiner tree 
representat. ion. The init.ial so lut.ion is generated using t.he SPH algorithm, or a ran
dOlllised Sp il ,·arii1nl.. Local Sei1.rch is i\.pplied to t.his so lution using a neighbourhood 
fun ction ba.sed on t.he excl lange of key paths. II' the solut ion is represented by its key 
paths, Q = /.:p(1'), i\wl an iI.rbit.rary key path, 1', is removed rrom Q, then the resulti ng 
graph consist.s or 1.11'0 disconnect.ed trees. The t.rees can be optimally reconnected by 
cons idering each componenl as a single vert.ex and usi ng Dijkstra's algorithm to find 
the shortest path between I.hem, Dowsla.nd uses O( \1 2 ) shor test path algorithm. 

The remova l of I' iwd I.he reconnect. ion or Ihe t.~1'0 trces by the shortest path be
tween them is descr ibed by DOlVsla.nd as a I-opt move, Dowsland uses this I-opt 
neighbourhood in a SI.e",ws!. Descent. Loca.l Search algorithm, An extended key path 
neighbourhood is also presented , referred to as 2-opt. Two paths are removed from Q, 
disconnecting t.he tree in t.o t.hree su b-trees. These can be opt imally reconnected, in a 
similar mil.nner t.o the I-opt. case, by treat ing ea.ch sub-tree as a si ngle special vertex 
forming a nell' SlOG inst.i1nce lI'it.h If,'1 =:1. As we showed previously t hi s is solvable in 
O(IVI(I\/llg lEi)) t in1/;, alt.hough DOII'slilnd used a 0(1111 3

) implementation. Testing 
Stecpest. Descen t. wit.h I-OI)t. a.nd 2-01' \ neighbourhoods on it scI. of 100 vertex prob
lems showed 2-opt. consistenlly ronnd 1)(' I,te r solut.ions, but with sign ificant ly longer 
execution t irnes. 

Verhoe"en, in [86], us('s t.he same represent.at.ion and I-opt neighbourhood for his 
SlOG neighbourhood St'ilrell a lgor it.hm. A l1i11Hlom Descent a.lgorithm is used, with ini
t ial solu t. iolls g(,ll('rat.f'd hy Ihe Sp H algorit.hm, VNhoeven's implementat ion includes 
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a n effi c ic nt O(IEllg 11" 1) shorlest. pil l.h ill gori l.hlll which is better t han Dowsland 's 
0( 11/12) 1'01' relal;"el)' Spill'S" grilphs. This Illilk,'s il fri1Sihlf' to app ly t he a lgori thm to 
much l<Hgf'r s r c: insl ilnc('s. 

A Cenel ic .-\lgoril Ilin for S I' e: is pre'Sf"nt('d ill [.-,0]. In I.his paver, t he re p resen tat ion 
and Ileigilholll'hood fli lldion arc bas('d 011 I I", idcnt.ifi cat ion of Ste ine r ve rt ices. A 
so lulion is r('pr('s('nlcd by il bit.st. ring of lengt.h III with each bit i corres ponding to 
(l \'crlex (' i E k . . ~\ 'I" ill position i 1lH'(l. Il !-5 ,'('rtC':\ Uj is present in the Steiner t ree 

r('p res('nt('d. il nd cOII"crs('ly a. '0' indica l es 1', is <"Xcilldcd. Note t hat to represent a 
"alid Slcill ('r trce il is lI ecessilry fo r b it i t.o I", '1' for all 't', E 1\, hence t he bitstring 
ident. ilks il. sc I. I·V. of St.e ill e r vert. ices . r\ lI ew S I'C: inst.ance ((;' = (V',E'),1\") can 
be generatcd fron l (;, IY, all.! 1\' thus: 

(;' = "fJ(r;. I,' u 1+') 
I," = I,' u 1·1' 

whe re the funct.ion r;' = '<'1 ( (;. V ) dcfill(,s 1.11<.' sllbgraph induced In g raph (; by the 
ve rtices V i.e. 

V' = V 
E' = {(PI. /'2) EE l 1' ,. 1'2 E V} . 

The gcnerated sre: ilistillW" has t he prope rty that. a ll ve rti ces are spec ial and hence 
can be so ll'(xl t.o opt.in lill il . .\' in O(IEllg lEI) tillie using I';ruskal's MST a lgori t hm . Let 
T( W) de not.e t.ll e solli l ion of t.he gc neral.cd insl.illice. This Steiner vertex representat ion 
does not. enS llrf' T( \J.' ) is a Skiner t ree for I.h, ' original S P G instan·ce. There are two 
possi bili t ics 1'01' rf' I" ',',,'n l illg in villid Stf' ilwr t rees. foir st, the subg rap h (;' may cons ist 
of more t.llill l olle compoIH'nt, a nd if I,' is 11 01. s panned by a sing le s uch component 
I.he n no St.eincr trE'e ex ists ill C;' . Second. amllcss Cl'llc ia.II),. T(\v) may contain Steiner 
"ertices of deg ree o ll e . 

A pool o f S tei ner I'f'rt ex rep rescn t.a.l.ion soilit ions is m a i ntai ned. G A search is 
app li ed t.o t.he populat.i on: child so lut.ion s MC g('lwral.ed by standard crossover and 
mutatioll ollf'rat.o rs. So lu t. ions represe nti ng illfcilsihle Ste ine r t rees due t o disconnec
t ion Me priced Ollt. o f the sf"ilrch; a large pena lt.y is applied to the fitness funct ion of 
a ny such solut. ion. Solut.ions with St.eincr ' T ltices of degree one are tolerated on t he 
assumption that the GA search wi ll di scou rage such so lut.ions . Good quality resul ts 
a re present.ed fo r I.he Beasley 13 set b ill. I.he aJgo rit.hm is rat.he r less successful on the 
larger inst.ances (C ami D S('\.5). 

Another genct. ic algoril.hm with a vcr l·ex based representa.t ion is presented in [28] . 
Alt ho ug h t he bilsl.rill g uSf'd is sim il ar 10 [!'iO], t he rf'lations hip between a bitstring and 
resu lting t ree is difTcrf'n!.. The ve rticcs o.p('c ilie(1 by t.he bitst rin g are used as parameters 
for t he heu rist.ic algorit.hm of [:):3]. C:ood q ua.lil y results a re presented fo r the Beasley 
C, D, a nd C sets. ExC'cution !.inle is seve ral hours for t he larger instan ces, desp ite 
all instances being prc'-processed wit h a S r G reduction a lgor ithm. Furthermore, t he 
technique requires ca.lc ula.1 ion and st.o rage of t. he all pai rs shor test paths, resulting in 
a 0(1 1.''1'') memory l'('(luircl]) (" nl. which lim it.s scal a bi li t.y. 

A simu lal.ed anlH'a ling algo rit. hm for a. relal.cd problem , t.he d irected Steiner prob
lem on networks . is presC'III.('(1 in [67] . r\ si l])ilar rcpresent.ation and cost function to [50] 
is used. The l1f'ighbourhood fun ct. ion is bas(:'d 011 adding or removing s ingle ve rtices 
1'1'0111 the sel of SI.e inC'r ,·('rt icf's. Hesults are p r,'S('nted for s ma.1I instances with at most 
SO vert.ices. 
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Cu rre nt.l y, I.he besl. heurist.ic algoril I"n fo r S PC: uses bot. h the key path represen
tation ilnd t l1(' Stein('\' ,'crtex re prr'scnla tio n. Thc algorit.hm is essent ia ll y a simulated 
anneill ing a lgorit.h m which regn lariy changes I.opolog), by changing rep resentati on and 
ne ig hbourhood fnnction. rkl.il.il s M e g i"cn in [~D]: th is approach can so lve successfull y 
illl tht' n easley instances a lld, in most CilSf'S. sol utions iHP found in under 10 minu tes . 

7 Case Study: Data Mining 

Let us assunl<' we hilYC a re lat.ional database, f) , of d reco rds in the form o f a fla t file 
il nd that a ll fields have known values for each /. E D. D consists of a set of records 
spccify in g values for I.he sequence o f al.tr ibu tes 

A = < .'1 1 , ,11, .... .4 ,, > 

whe rc A ; is dC-'fined OI-cr t.he o'-er t.he domai n DOI>1 ; . I ::; i ::; 1L 

We are asked 10 fin d a. rule of t.he form 

which a ppei1-rS 1.0 ho ld fo r .'0111(' reco rds in t.hi s da.\.a.base. 
Le t /. dcnot.e a parti Cl II".r rcco rd in t he dat.abase and , denote some predicate 

de fined in terms o f t.he /I a.t.t.ribu t.es . ,(/.) will t.h en be true if the record,. satisfies t he 
predi cilte , . 

A ru le ex pressed as il.bOl-'- re prese nt.s knowledge ext. racted from D and the process 
of det.ermining snch rul ps is o ft.e n known ilS [,' /low/edgf Di8covery in Databases. For a 
good in t.roduc t.ion 1.0 t.hi s subjec l. SC-'E' [-I'j , 56]. 

Assoc iilt.ed wit. h il.n)' nil,> 

are t.h ree sets of rl-'cords , 

A = ( '/'lo(I')), 

B {1' I ~,(/)), 
a nd 

C = (1' 10(/ ) /I d( I' )} 

= A n B. 

V,ie can the n define t. he int.cger "a lues (I., hand c by 

a = IAI, b = IBI an d c = ICI · 

Figure I i Ilust rM.es t.he si t.uat.ion. l1 e lll e m ber ing t. ha.t d denotes the size of t he data base, 
one can denn", various rat.ios between lIwse va.lues wh ich meaSllre properti es of the rule. 
We will use 

;\)'1'(0 =;. /3) = J 
A cc(o =;. 13) = £ . (/. 

AP PLI CABI LITY of t he rul e, and 
ACC lI IL\CY of t.he rul e. 
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D 
d·a·b+c 

A 
a·c 

F igure 7: Ven n d iag ril nl fo r il. rul e in il database of defi ned records. 

[n genera \. we will be s("iliThin g fo r o n(" or n1(lr" rules which m eet certa in predefined 
cr ite ri a. These crit.er ia aI'''' des igned t.o detel'll1i ll e how \\'1"1\ t he rule describes (some 
pa rt of ) t he d a l.abase . So. for ("x"m pl ,,, we migi li. be required to search fo r a rule t ha t 
has at Icas l 90% acc lII'ac.\' a lld has as high a ppli ca bili ty as poss ible . 

In o rder t.o rC'd ll c(' I.h" s ize o f t he search space, it mig ht be necessary to restri ct 
t he fo rma !. o f I.h,' rll l,'s I\'(-' s(,C'\; . Fo r example , 0' . t. 11<.' precondi t io n of the rule might be 
rest ri cted t.o be a conjlln ct. ioll of t he form 

( A I, E p.I , ) II (A .I, E V.I,) II .. . II (A.1. E ".1, ) 

whe re I ::; '\1 < ,\., < ... < ,I i ::; 11 a nd whe re 

".1, ~ D()m .I, ' ''.I, ~ DO'I11 .I" .. .. ".I , ~ D O'I1l .I. ' 

T he predi ct il'e part. 0[' t.h c r ill e, /3, migh t. t. hen be.s imi larly rest ri c ted take the form o[ 

fo r som e j tf. (A 1, '\ 2, ... , '\,) a.nd "j ~ Dumj . 
Assum i ng I.hat l.hC'· d OlTlil.i ns a.re mean i ng flill y o rdered, s uch rul es ca n than be rep· 

resented as a n Mray of suil.ab ly e ncoded uppe r and lower limits (one pa ir for each of 
t he input fi e lds and o ne pa.ir fo r the OlitpUt ne ld ). 

Once the [ormal. of t he rul e is df,t.e rmin ("d togel.her wi t h its representation , we 
need to define a fit. ness (o r \'allle) ['ull ct io ll. C:i \'cn a. rule, t hi s [unct ion de te rmines how 
we ll t hat rule m eet.s t. he g ive n crite ria. Seve ra.1 sugges t.i ons [or de fining these cri teri a 
have been proposed in t11f' li tera t.u re . see for ('xil m ple [4.') , 7.') j. These can be qui te 
com plex invo lvillg fl1 7.ZY Sf'I.s. info rm a l.ion gain a nd rul e s impli city m eaSUl'es as well as 
ex press ion s ill {/, Ii. c a.nd rI. Neve r t he less, t he re have been cases where very simple 
value fu nct ions han·' pl'O\'cd re m M b .bly success ful. In [75j, a. case st udy was described 
whe re t he pred ict. il·e fie ld \\'as a preset 8 001ea 11 value a.nd t. he va.lue fun ct ion was just. 

'\e- (l. '\ E fI 

yet usefu l ru les ,,'er(> f'xt.ra,('led . 
On ce t. h is fit. ness \'a l11 e is dc t.c rmi ncc\. da t.a mining t. he n becom es a.n opt imisat ion 

p roble m - "'e Sf'C \; 11'1<' "bcst." rul e . acco rdi ng \0 our meas ure, w it hin t. he space of a ll 
rul es . \'Ve hill'e uSf'd sinllIi a.t.C'd a.nnealing a.nd g(,l1C'1 ic a lgo rit.h m s to find such rules and 
ou r recent: !'('scarch is rC'port(-'d in [lDj. 
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8 Hybridisation 

[n th is section . we will suggest a unifying framework for t he various search strategies 
t.hat we have conside red. Other attempts to do t.his have been presented in [29,71,731. 

Our key observation is that it is poss ible' 1.0 view GAs as yet another type of 
neighbourhood sea.rch. Rather than I'iew neighbour as a function U ---> 2u , we can 
extend the concf'p,t a nd define 

/H' ighl)()'II ·r., : U X /. ' ---> l ' . 

The crossover opera t.ion Illerely defi nes a ne igh bou rhood of 1/110 solu t ions in U, taken 
togel her. 

Given a submu lti set. of solut ions, Cd C P, we can define create so that it generates 
some submultiset. of iV, U iV2 where 

!V, = U{ neighboltr(u.)luECd} 

a nd 

!V2 U{ nclghbou1',(u., u) I '11,11 E Q}. 

iV, corresponds t.o Illul:ant·s a nd Nz to child ren. The neighboU7'2 function may not be 
pure crossover but., may be defined in a. more complex manner. 

Viewed in th is way, I he GA paradigm is merely a s imple extens ion of neighbour
hood s('il.rch. CUI'l'f' nt ly, 1110st. GAs only randomly selec t at most one solution from 
neighbouI'2(u,1') for il.ny 'It," E Q. It. may well bE' wo rthwh ile investigating varia.nts 
of th is techni qu e' whe reby I.he fi tter ch ildren iHe more likely to be generated. This 
could be achieved by eit he r generating more chi ldren in a single mat ing cycle and 
then culling weaker offspring a.nd/or by rest.ricting crossover points accord ing to some 
(possibly dynamically changing) rul es. 

[n si mulated a.nnealing, t he essent.ia.1 idea is to il.ll ow weak mutants to survive pro
vid ing it is lI'arm e nough. GAs a lso have this facility of a.llowing some weak membe.rs 
to su r vive in t he solut.ion pool bu t a lways have mechanisms ror favour ing fitter solu
tions. The GA pa.rildigm might. be strengt hened with the inclus ion of a temperature 
paramet.er or at least. sOllle dyna.m ic cont. rol of its parameters. T he GAmeteI' package 
a llows such con t.rol but. on ly by human interl'cn t.ion . 

The GA para..d igm ca n also be considerably enhanced by learning some of the 
lessons of tabu sea.rch . Oy ma.int.aining a dynamic list or rules, both iVI and Nz can 
be pruned and/or ranked by des irabi li ty. Rather t han simply use value as the value 
measure, we can also use such a ranking as a.n additional or replacement measure. 
The use of such ex pert guidance need not. be rest.r icted t.o CTeate . We must have 
definitions for eilch or the function s, inilia/i.,(', fiJ/ish, select, neighbour, create and 
merge: we can elll' isage algorithms where t.lwse defini\' ions are quite sophisticated. 
Tabu search suggests that the inclusion of an expert system to define some of these 
definit.ions may be appropriate. Moreov(' r, if such an expe rt. system is given as a set 
ofrules, these can I", updat.ed during t he running of the program . This could exploit 
t he temperature coemc ie nt. used by s imulated annealing. 

The general search nlet.hod in n('ari y all of its many va.r iahons has cons iderab le 
scope ror parallelism [11, -18, :")7. 62, 70, 9:31 . TIl(' ("I'aluation or t he sol utions, generation, 
evaluation and select.ion of ne ighbours t.ogel.h('r ",it.h much of the merging can be 
performed in pill'illlc:l. 
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9 UEA Toolkits 

At UEr\ , we haH' dcu"lop<'d a C,\ toolkit .. C.\II1<'I('r [.18], which supports a ll of the 
above options for .,dccl . creole alld llIuge- as \I'cll as some others. T he toolkit can run 
on UN IX or Maci ntosh workstat.iolls and there is a parallel ve rsion running on a Meiko 
t.ransputcr rack alld a distributcd \'('rsion using PV~I on a network of UN IX worksta
tions. Ii. ena.bles \'cry fa st. impleme nlation of CAs and allows easy experimentation 
with pa.nllnet.er set.tings. 

Similarly. \\'c hau~ df'vcloped a. loolkiL Sr\~ISON, suppor ting Simulated Annealing. 
It supporl.s a \\'idc range of SA options and both UN IX ,wd i'vlacintosh versions a re 
a.vai lable. The dist rib ltl.cd \'crsion is abollt to be rcleased for trial. 

The tool kit for Tabu SeMeh, Tr\basco, is kss developed but a preliminary vers ion 
is being us"d in ou r department .. \ 'Ve intend to d('\'"lop this further and to implement 
a. d is t.ributed \·crs ion. Ollr nE'xt. step is to bu ild an ada.pt.ive, distributed search engine . 

GArneter and SA~ I SON a.re availablc free to academic reseMchers and copies can 
be obtained by emailingllwatvjrs<0!sys.uea.ac.uk. Further detail s of the toolki ts and 
of the research acti\·it.i('s of the ~fathctl1atieal Algorithms Croup is available on our 
web page 

(h t tp: j j \I'\\'\\' .sys.ueil .. ac.u kj II cs<,at'ch j lI<'sG rou psj M A G j). 
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During the talk Professor Randell enquired whether during a search that starts at multiple 
starting points there was a danger of overlapping while searching in the same area. 
Professor Rayward-Smith replied that that was the kind of problems raised in the selection 
and replacement; the wish was either to diversify or to intensify the search around a certain 
area, because all the solutions are bound to have the same features. 

Professor Randell made the remark that if the specific modifications in the searching 
techniques discussed in the talk were likely to be more appropriate for the various 
particular types of problems, then the difficulty would become the identification of the 
different types of problems. Professor Rayward-Smith agreed with the statement and added 
that it was hard to try and one had to be an expert in the field. Professor Randell continued 
by asking whether instead of selecting the appropriate techniques for selected problems 
one could have general rules about problems. Professor Rayward-Smith replied that 
although it was possible to diversify and intensify, it was not so easy to apply general rules 
to unseen problems. 

Professor Henderson asked if genetic algorithms could work without mutation. Professor 
Rayward-Smith answered that it would work occasionally, but in practice in all the 
problems that he had encountered the genetic algorithms work much better with a bit of 
mutation. Professor Hesselink made the comment that if the initial pool was too small then 
there was the need for mutation. 

Professor Randell asked if there was in the community a satisfactory set of tests cases. 
Professor Rayward-Smith replied that the community had set up libraries of test cases, 
however these represented very classic academic problems which were quite different from 
the single problems that were found in the real world. 

After the talk Professor Burns asked the speaker to comment about neural nets. Professor 
Rayward-Smith said that neural networks were effective in data mining, in other words , to 
clean up the data, otherwise there was tremendous hostility on its use from industry 
because they were essentially a black box technology. On the other hand, genetic 
algorithms were easier to explain and to make sense out of them. 

Dr Larcombe made the comment that in her opinion while heuristics were a violence, 
genetic algorithms were a mindless violence because while one could prove something 
with heuristics, with genetic algorithms it was difficult to obtain a relevant proof. Professor 
Rayward-Smith agreed, and said that it was a fair comment to be made. 

Professor Nievergelt made the comment that if one was able to abstract from a specific 
problem, then there was not any reason to say that a particular algorithm was better than 
the other, because in search all cleverness was related with the identification of a specific 
problem and its mathematical structure. Professor Rayward-Smith replied that there were 
principles that one could learn at every appljcation of a genetic algorithm, how.ever at the 
end, it really depended on the understanding that one had of the problem. 

Dr Bird asked whether from the results presented one could conclude that one class of 
techniques was much broader than another class, for instance, could one say that simulated 
annealing could be formally represented by genetic algorithms. Professor Rayward-Smith 
replied that simulated annealing could be considered a subclass of tabu, depending on the 
rule set, however he would prefer to see the techniques as intercepting variants of local 
search. Instead of fitting one technique into another and finding a general one, he would 
prefer to generalise local search. to encompass all the techniques. 
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Lecture Two 

During the talk, while commenting on the difficulties of convincing industrial managers 
about the efficiency and accuracy in the utilisation of certain rules, Professor Randell 
enquired whether it would not be easier if the managers could convince themselves about a 
rule that they did .not follow beforehand, if that rule had been applied in retrospect. 
Professor Rayward-Smith replied that he did not know of any rule introduced to these 
managers that they had to convince themselves that was right beforehand; he continued by 
saying that the reason managers were not interested in neural nets was because they would 
not be able to justify to their senior managers about the accuracy and efficiency of neural 
nets in taking dramatic decisions. 

After the talk, Dr Andersson asked the speaker to comment on the relation between 
thinking and hacking, in the sense that in this field there is no need to prove what is done, 
except through benchmarks. Professor Rayward-Smith answered that there were standard 
techniques that hackers use, moreover there was an early training element which provided 
the educational value. He continued by saying that there were some underlying principles 
in the material he had presented that could be used in an algorithm course; these principles 
would not be adequate for a course at the undergraduate level, which should deal with 
classical algorithms, but perhaps at the postgraduate level. He also emphasised that there 
was a great demand in industry for these skills , and universities should be providing the 
technical training. 

Dr Bird asked the speaker to make a broad distinction between genetic algorithms and 
neural nets. Professor Rayward-Smith answered that essentially genetic algorithms come 
up with a rule which provided the basis for understanding them, however neural nets are 
essentially black boxes from which it is difficult to extract a rule. Dr Bird also asked 
whether in neural nets a rule could be an output. Professor Rayward-Smith replied that a 
rule could be considered an output if there were enough outputs to cover all possible 
settings. 

Professor Randell felt that several of the speakers had made the point of bringing together 
what he thought to be separate topics, and asked whether the belief in the communality and 
the belief in the potential value of hybridisation of different techniques was something that 
was generally accepted or it was restricted in the choice of speakers. Professor Rayward
Smith answered that there was already a fair proportion of hybrid algorithms. 

Professor Randell also commented that he had heard many people giving talks on data 
mining, and these talks usually appeared to him to have little in common because of the 
different techniques that were applied in different sorts of problems, he wondered whether 
the data mining community was really a community. Professor Rayward-Smith replied that 
there were a lot of issues in the data mining field, and that although there were a lot of 
toolkits for the individual bits, there was not really an adequate toolkit that could deal with 
all the different issues. Dr Andersson agreed with the speaker, and added that in his 
opinion the problem in these communities was essentially the lack of common benchmarks 
which would allow comparison of the different approaches, and this was sometimes 
frustrating. Professor Rayward-Smith made the remark that the area was growing fast, and 
there was an increasing number of academics who were getting involved. 




