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Abstract 

We survey some of the basic ideas in randomised algorithms, at a 
level suitable for advanced Wldergraduates. We assume that the reader 
is familiar with the basics of the analysis of algorithms, and probability 
theory. 

1 Overview 

A randomised algorithm is one that makes random choices during its execution. 
As a result its behaviour may vary, even on a fixed input . In designing a 
randomised algorithm, the goal is to ensure that the algorithm is likely to do 
well on every input. For instance , we may design a randomised algorithm and 
analysis, showing that its expected running time is 0 (n') on every input. 

It is important to distinguish this from the probabilistic analysis of algo­
rithms. Here the intent is to study the behaviour of an algorithm whose input 
is chosen from a probability distribution. Any probabilistic statement here is 
conditioned on the randomly chosen input; thus one may for example infer that 
an algorithm's running time is O(n' ) (say) on most inputs. 

There are two principal benefits to randomisation in algorithms: simplicity 
and speed . For many applications a randomised algorithm is the simplest, or the 
fastest, or both . For instance , we know of no deterministic algorithm that will 
determine whether a given integer is prime, in time polynomial in the number 
of digits in the number (i.e., the length of the input). We do however know 
of a randomised algorithm that, given any integer, will determine its primality 
correctly with probability exceeding 1/ 2 in time polynomial in the number of 
digits. Subsequent independent repetitions of this primality test can be used to 
drive the probability of failure down exponentially. 

-IBM Almaden Research Center, 650 Harry Road, San Jose CA 95120, USA . 
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The reader is referred to the recent book by the author with R. Motwani [lJ 
for many more details and examples of randomised algorithms. 

2 Randomised Quicksort 

In this section we study a simple randomised sorting algorithm. The algorithm 
will always correctly sort a set 5 of n numbers. We will show that its expected 
running time (the expectation being over the random choices made by the al­
gorithm) is O(nlogn) , although it may on rare occasions take time n' to run 
to completion . 

If we could find a member y of 5 such that half the members of 5 are smaller 
than y, then we could use the following scheme. We partition 5 \ {y} into two 
sets 5, and 5" where 5, consists of those elements of 5 that are smaller than y, 
and 52 has the remaining elements. We recursively sort 51 and S2 I then output 
the elements of 5, in ascending order, followed by y, and then the elements of 
8 2 in ascending order . In particular! if we could find y in en steps for some 
constant c, we could partition 5 \ {y} into 5, and 5, in n - 1 additional steps 
by comparing each element of 5 with y; thus , the total number of steps in our 
sorting procedure would be given by the recurrence 

T(n ) ::; 2T(n/ 2) + (c + l)n, (1 ) 

where T(k) represents the time taken by this method to sort k ' numbers on 
the worst-case input . This recurrence has the solution T(n) ::; c'nlogn for a 
constant c', as can be verified by direct substitution. 

The difficulty with the above scheme in practice is in finding the element y 
that splits 5 \ {y} into two sets 5, and 52 of the same size. Examining (1), we 
notice that the running time of O( n log n) can be obtained even if 5, and 5, are 
approximately the same size - say, if y were to split 5 \ {y} such that neither 
5, nor 5, contained more than 3n/ 4 elements. This gives us hope, because we 
know that every input 5 contains at least n / 2 candidate splitters y with this 
property. How do we quickly find one? 

One simple answer is to choose an element of S at random. This does not 
always ensure a splitter giving a roughly even split. However, it is reasonable 
to hope that in the recursive algorithm we will be lucky fairly often. The result 
is an algorithm we call Randomised Quicksort. 
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Algorithm Randomised Quicksort : 

Input: A set of numbers 5. 

Output: The elements of 5 sorted in increasing order. 

1. Choose an element y uniformly at random from 5: every element in 5 
has equal probability of being chosen. 

2. By comparing each element of 5 with y, determine the set 51 of elements 
smaller than y and the set 5, of elements larger than y . 

3. Recursively sort 51 and 52. Output the sorted version of 51, followed by 
y , and then the sorted version of 5,. 

We analyse the expected number of comparisons in an execution of Ran­
domised Quicksort . Note that all the comparisons are performed in Step 2, 
in which we compare a randomly chosen partitioning element to the remaining 
elements . For 1 ::; i ::; n, let 5 (i ) denote the element of rank i (the ith smallest 
element) in the set 5 . Thus , 5(1) denotes the smallest element of 5, and 5 (n) the 
largest . Define the random variable Xii to assume the value 1 if 5(i) and 5(j) 
are compared in an execution, and the value 0 otherwise . Thus Xij is a count 
of comparisons between 5(i) and 5(j), and so the total number of comparisons 
is L:~;l Lj>i Xi; . We are interested in the expected number of comparisons, 
which is clearly 

n n 

(2) 
1=1 i>i ;=1 ;>i 

This equation uses an important property of expectations called ltnearity of 
expectation. 

Let Pii denote the probability that 5(i) and 5(j) are compared in an execu­
tion . Since Xii only assumes the values 0 and 1, 

E[Xii] = Pii x 1 + (1 - Pii ) x 0 = Pii' (3) 

To facilitate the determination of Pij I we, view the execution of Randomised 
Quicksort as a binary tree T each node of which is labeled with a distinct 
element of 5 . The root of the tree is labeled with the element y chosen in Step 
1, the left sub-tree of y contains the elements in 51 and the right sub-tree of y 
contains the elements in S2 . The structures of the two sub-trees are determined 
recursively by the executions of Randomised Quicksort on 51 and 52 ' The 
root y is compared to the elements in the two sub-trees, but no comparison is 
performed between an element of the left sub-tree and an element of the right 
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sub-tree . Thus , there is a comparison between SCi ) and S(n if and only if one 
of these elements is an ancestor of the other . 

The in-order traversal of T will visit the elements of S in a sorted order 
and this is precisely what the algorithm outputs; in fact, T is a (random) bi­
nary search tree. However! for the analysis we are interested in the level-order 
traversal of the nodes . This 'is the permutation.". obtained by visiting the nodes 
of T in increasing order of the level numbers, and in a left-to-right order within 
each level; recall that the ith level of the tree is the set of all nodes at distance 
exactly i from the root . 

To compute Pi j I we make two observations . 

1. There is a comparison between SCi) and S(n if and only if SCi ) or S(n occurs 
earlier in the permutation if than any element Sell such that i < l < j . 
To see this, let S(k) be the earliest in .". from among all elements of rank 
between i and j. If k 'Ie {i , j}, then SCi ) will belong to the left sub-tree of 
S(k) while S(n belong to the right sub-tree of S(k), implying that there is 
no comparison between SCi) and Sen. Conversely, when k E {i,j}, there is 
an ancestor-descendant relationship between SCi) and S(n, implying that 
the two elements are compared by Randomised Quicksort . 

2. Any of the elements SCi ), S(i+1),"" S(n is equally likely to be the first of 
these elements to he chosen as a partitioning element. Thus, the proba­
bility that this first element is either SCi ) or S(n is exactly 2/{j - i + 1). 

We have thus established that Pij = 2/ (j - i + 1). By (2) and (3), the 
expected number of comparisons is given by 

n 

I:I>ij = 
1=1 i >1 

It follows that the expected number of comparisons is bounded above by 2nHn, 
where Hn is the nth Harmonic number, defined by Hn = E~=11/k . 

Theorem 2.1 The expected number of comparisons in an execution of Ran-
domised Quicksort is at most 2nHn. t 

Since Hn -lnn+0(1) , the expected running time of Randomised Quick­
sort is O{nlogn). 
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3 Random walks and a 2-SAT algorithm 

We now consider a random walk on a connected, undirected graph G with vertex 
set V . A random walk is a discrete-time stochastic process which has many 
algorithmic applications. We will study one such simple application here. 

In a random walk on a graph G, we envision a particle residing at some 
vertex of G. At a typical step the particle proceeds from its current position v 
(a vertex of G) to a neighbour of v chosen uniformly at random. (This is known 
as the simple random walk; more generally, one may consider random walks in 
which the various neighbours of v are chosen with differing probabilities.) We 
are interested in questions such as: starting at a vertex u, what is the expected 
number of steps before the walk first arrives at v? Classical tools from the 
theory of Markov chains enable us to answer such questions. For instance, it 
is known that when G is a chain linking n vertices, the expected number of 
steps to walk from one end to the other is 0 (n '). It is also known that for any 
connected graph G , the expected number of steps from any vertex to any other 
is always O(n3 ) ; this hound cannot be improved in general. 

Consider the satisfiability problem, in which an instance consists of a set 
of clauses in conjunctive normal form (CNF). The boolean inputs are called 
variables , which may appear in either uncomplemented or complemented form 
in a clause. The uncomplemented or complemented variables in a clause are 
known as literals (respectively, unnegated and negated literals). A clause is said 
to be satisfied if at least one of the literals in it is TRUE . A solution consists 
either of an assignment of boolean values to the variables that ensures that 
every clause is satisfied (such an assignment is known as a truth assignment), 
or a negative answer that it is not possible to assign inputs so as to satisfy all 
the clauses simultaneously. 

The k·SAT problem is the special case of the SAT problem in whicb each 
clause in the input formula contains exactly k literals. We seek an assignment 
of (boolean) values to the variables such that all the clauses are satisfied, or an 
assurance that no such assignment exists . While the k-SAT problem is N'P­
hard for k 2: 3, it is solvable in polynomial time for k = 1 or k = 2. In this 
section we present a simple polynomial-time randomised algorithm for solving 
the 2-SAT problem. 

Suppose we start with an arbitrary assignment of values to the literals. As 
long as there is a clause that is unsatisfied, we modify the current assignment 
as follows : we choose an arbitrary unsatisfied clause , and pick one of the (two) 
literals in it uniformly at random; the new assignment is obtained by comple­
menting the value of the chosen literal. After each such step, we check to see 
if there exists an unsatisfied clause under the current assignment; if not, the 
algorithm terminates successfully with a satisfying assignment . If there is a 
satisfying assignment for this instance, how long does it take for this process to 
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discover it? 

Given an instance with a satisfying assignment , let us fix our at,tention on 
a particular satisfying assignment A, and refer to the values assigned by A 
to the literals as the Hearred values." Let n be the number of variables in 
an instance. The progress of this algorithm can be represented by a particle 
moving between the integers {a, 1, ... , n} on the real line . The position of the 
particle indicates how many variables in the current solution have the correct 
values . At each iteration , we complement the current value of one of the literals 
of some unsatisfied clause , so that the particle's position cbanges by 1 at each 
step . In particular! a particle currently at position iJ for 0 < i < n , can only 
move to positions i - lor i + 1. A particle at location 0 can only move to 1, and 
the process terminates either when the particle reaches position n, or it may 
terminate at some other position with a satisfying assignment other than A. 

The crucial observation is the following : in an unsatisfied clause, at least 
one of the two literals has an incorrect value. With probability at least 1/2 
we increase (by one) the number of variables having their correct values. The 
motion of the particle thus resembles a random walk on the line; we have noted 
above that the expected number of steps in the random walk from one end of 
the line to the other is O(n2) . 

Theorem 3.1 The expected number 01 steps lOT the above 2-SAT algorithm 
to find a satisfying assignment is O(n2 ). 

4 Tail bounds for randomised algorithms 

In the examples above we have bounded the expected running times of two 
randomised algorithms. Very often we seek stronger performance guarantees; 
for instance, we might ask whether there is a significant probability that the 
running time of randomised quicksort exceeds 4n In n steps. We now consider 
tools from probability theory that enable to answer such questions, allowing 
us to assert that the probability that the running time of randomised quicksort 
exceeds 4n In n is at most 1/ n 2 . We then show how these tools can be used in the 
design and analysis of randomised algorithms, using as an example a selection 
algorithm. We begin with the Markov inequality, a fundamental tool we will 
invoke repeatedly when we develop more sophisticated bounding techniques . 
Let X be a discrete random variable, and 1(",) be any real-valued function . 
Then the expectation of I(X) is given by 

E[!(X)J = L 1(",)Pr[X = ",J . 
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Theorem 4.1 (Markov Inequality) Let Y be a random variable assum­
ing only non-negative values. Then for all t E R +, 

Equivalently, 

Pr[Y 2: tJ :<; E~YJ. 

1 
Pr[Y 2: kE[YJ] :<; k 

Proof: Define a function f (y) by f (y ) = 1 if y 2: t , and 0 otherwise . Then 
Pr[Y 2: tJ = E[J(Y )J . Since f (y) :<; y/ t for all t, 

E[J(Y )J :<; E [~l = E~YJ , 

and the theorem follows . o 

The following generalisation of Markov's inequality underlies its usefulness 
in deriving stronger bounds. 

Lemma 4.2 Let Y be any random variable , and h any non· negative real 
funct ion. Show that for all t E R + , 

Pr[h(Y ) 2: tJ :<; E[hiY)J. 

The first of these is the Chebyshev bound; we will apply this to the analysis 
of a simple randomised selection algorithm. 

For a random variable X with expectation J..'X J its variance oJ. is defined 
to be E[(X - !lx)'J . The standard deviation of X, denoted I1'x, is the positive 
square root of O'~ . 

Theorem 4.3 (Chebyshev's Inequality) Let X be a random variable with 
expectation!lx and standard deviation 11' x. Then for any t E R + , 

1 
Pr[l X - !lxl2: tl1'xJ :<; t" 

Proof: First , note that 

Pr[l X - !lx l > tl1'xJ = Pr[(X - !lx)' > t'I1'H 

The random variable Y = (X - I'x )' has expectation 17k , and applying the 
Markov inequality to Y bounds this probability from above by l / t' . 0 
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5 Randomised selection 

Consider finding the kth smallest number in a given set 5 of n given numbers . 
It is known that any deterministic algorithm requires at least 2n comparisons 
to find the median of n given numbers. We now describe a simple algorithm 
that , on any input , will find the kth smallest element in n + k + o( n) steps with 
probability 1 - o(n ). 

We assume that the elements of 5 are all distinct, although it is not very 
hard to modify the following analysis to allow for multi-sets. Let rs(t ) denote 
the rank of an element t (the kth smallest element has rank k) and let 5 (; ) 

denote the ith smallest element of 5. We extend the use of this notation to 
subsets of 5 as well . Thus we seek to identify 5 (k). 

Algorithm LazySelect: 

Input: A set 5 of n elements from a totally ordered universe , and an integer 
kin [1,n] . 

Output: The kth smallest element of 5 , 5 (k). 

1. Pick n3/4 elements from 5, chosen independently and uniformly at ran­
dom with replacement ; call t his multi-set of elements R . 

2 . Sort R in O{n3 / 4 10gn) steps using any optimal sorting algorithm. 

3 . Let" = kn~1 /4 . For l = max{l,,-foJ, I} and h = minH "+fol , n3/4}, 
let a = R (l ) and b = R (h). By comparing a and b to every element of 
5, determine rs(a) and rs(b ). 

4. if k < n I I " let P = {y E 5 I y :s b}; 
else if k > n- n' /4, let P = {YE 5 I'Y 2: a}; 
else if k E [n'/4 , n - n1/4], let P = {y E 5 I a :s Y :s b} ; 
Check whether 5 (k ) E P and IPI :s 4n3/4 + 2. If not, repeat Steps 1-3 
until such a set P is found . 

5. By sorting P in O( IPllog IP I) steps, identify P(k -'s( a)+ I ), which is 5 (k ). 

In Step 1 we sample with replacement : for instance, if an element. of 5 
is chosen to be in R on the first of our n3 / 4 drawings, the remaining n3

/
4 

- 1 
drawings are all as likely to pick. again as any other element in 5 . This style 
of sampling appears to be wasteful , but we employ it here because it keeps 
our analysis clean . Sampling without replacement would result in a marginally 
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sharper analysis , but in practice this may be slightly harder to implement : 
throughout the sampling process, we would have to keep track of the elements 
chosen so far . 

Figure 1 illustrates Step 3. where small elements are at the left end of the 
picture and large ones to the right . Determining (in Step 4) whether S(k) E Pis 

easy since we know the ranks rs (a) and rs (b ) and we compare either or both of 
these to k , depending on which of the three if statements in Step 4 we execute . 
The sorting in Step 5 can be performed in O{n3 /<logn} steps . 

\/ 
Elements of R 

Figure 1: The LazySelect algorithm. 

Thus the idea of the algorithm is to identify two elements a and b in S such 
that both of the following statements hold with high probability : 

1. the element S(k ) that we seek is in P ; 

2. the set P of elements between a and b is not very large , so that we can 
sort P inexpensively in Step 5. 

We examine how either of these requirements could fail. We focus on the most 
interesting case when k E [n l/ <, n - nl /<], so that P = {y E S I a :::; y :::; b}; 
the analysis for the other two cases of Step 4 is similar and in fact somewhat 
simpler . 

If the element a is greater than S(k) (or if b is smaller than S(k»), we fail 
because P does not contain S(k ). For this to happen , fewer than e of the samples 
in R should be smaller than S(k) (respectively, at least h of the random samples 
should be smaller than S(k»). We will bound the probability that this happens 
using the Chebyshev bound . 

The second type of failure occurs when P is too big. To study this, we define 
k, = max{l , k - 2n3/<} and kh = min{k + 2n3/<, n} . To obtain an upper bound 
on the probability of this kind of failure, we will be pessimistic and say that 
failure occurs if either a < S(k,) or b > S(k, ). We prove that this is also unlikely, 
again using the Chebyshev bound . Before we perform this analysis , we establish 
an important property of independent random variables . Recall the definition 
of ajoint density function p(z , y) for random variables X and Y . 
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Definition 5.1 Let X and Y be random variables, and f(" y) be a function 
of two real variables. Then, 

E[j(X , Y)J = L *, y)p(., y) . 
·.Y 

For independent random variables X and Y 

E[XYJ = E[XJE[YJ . (4) 

Lemma 5.1 Let Xl , X 4 , .. 'j Xm be independent random variables . Let X = 
L:~1 Xi . Then O"~ = E~l O'~. , 

Proof: Let 1" denote E[X,], and I' = 2::::,l'i . The variance of X is given 
by 

m 

E[(X -I') ' J ~ E[(L(X, -/'i))'J. 
i=1 

Expanding the latter and using linearity of expectations , we obtain 

m 

E [( X - I')'J = L E[(X, - /'i)'J + 2 L E[(Xi - /'i)(X; - 1'; )J. 
1=1 i<i 

Since all pairs X" X; are independent, so are the pairs (X, -/'i ), (X; - 1';) . 
By (4), each term in the latter summation can be replaced by E [( X, - /'i)JE[(X; - 1'; )J. 
Since E[(X, - I', )J = E[X;] - /'i = 0, the latter summation vanishes . It follows 
that 

m m 

E[(X - I')'J = L E[( X, - I';)'J = L O"~, . 
1=1 '::;::1 

o 

We measure the running time of LazySelect in terms of the number of 
comparisons performed by it . 

Theorem 5.2 With probability 1_0(n-l /4), LazySelect finds S(. ) on the 
first pass through Steps 1·5, and thus performs only 2n '+ o(n) comparisons. 

Proof: The time bound is easily established by examining the algorithm; 
Step 3 requires 2n comparisons, and all other steps perform o(n ) comparisons, 
provided the algorithm finds S(. ) on the first pass through Steps 1-5. We now 
consider the first mode of failure listed above: a> S(. ) because fewer than l of 
the samples in R are less than or equal to S(. ) (so that S(' ) rt Pl . Let X, = 1 if 
the ith random sample is at most S(' )' and 0 otherwise ; thus Pr[X, = 1J = ki n, 
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[ 
n l/4 

and Pr Xi = 0] = 1 - ki n . Let X = 2::i=1 Xi be the number of samples of R 
that are at most 5 (. ). Note that we really do mean the number of samples, and 
not the number of distinct elements . The random variables Xi are Bernoulli 
trials: each may be thought of as the outcome of a coin toss . Then, using 
Lemma 5.1 and the variance of a Bernoulli trial with success probability p 

and 

kn3 /< 
J.l.x = -- = kn- 1/4, 

n 

n 3/< 
:s -4-· 

This implies t hat "x :s n3 / 8 /2. Applying the Chebyshev bound to X, 

An essentially identical argument shows that 

Since the probability of the union of events is at most the sum of their prob­
abilities, the probability that either of these events occurs (causing 5 (. ) to lie 
outside P ) is 0 (n-l /4). 

Now for the second mode of failure - that P contains more than 4n3/< + 2 
elements . For this, the analysis is very similar to that above in studying the first 
mode of failure , with k, and kh playing the role of k. The analysis shows that 
Pr[a < 5(. ,)] and Pr[b > 5( •• )] are both 0(n-1/<) (the reader should verify 
these details) . Adding up the probabilities of all of these failure modes, we find 
that the probability that Steps 1-3 fail to find a suitable set Pis 0(n- 1/<). 0 

Exercise 5.1 Theorem 5.2 tells us that the probability that LazySelect ter­
minates in 2n + o( n ) steps goes to 1 as n -7 00 . Suggest a m odification in the 
algorithm that brings the constant in the linear term down to 1.5 from 2. 

This adds to the significance of LazySelect : the best known deterministic 
selection algorithms use 3n comparisons in the worst case, and are quite compli~ 
cated to implement . Further , it is known that any deterministic algorithm for 
finding the median requires at least 2n comparisons! so we have a randomised 
algorithm that is both fast and has an expected number of comparisons that is 
provably smaller than that of any deterministic algorithm. 
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DISCUSSION 

Rapporteur: Richard Achmatowicz 

Lecture One 

A number of questions were raised during the talk. To the question of whether the 
presented algorithm for randomized quicksort would fail if equal keys were present, Dr 
Raghavan replied that it was necessary to make some arrangement to deal with them, but 
that quicksort doesn't change the relative order of equal keys. Dr Raghavan was also asked 
to whom the presented analysis of the randomized quicksort algorithm was due. He replied 
that it is very similar to the technique used by Clarkeson and Shore in the analysis of 
geometric algorithms. He first encountered the analysis in 1984 from Karp. Professor 
Benson asked whether, given that randomized algorithms are good, was there any 
advantage in taking 3 random numbers instead of one? Dr Raghavan noted that it was a 
good point and that he would be talking about that subject later in his talk. 

After the talk, the main discussion began. 

Dr Andersson asked whether randomized algorithms weren't the opposite of adaptive 
algorithms, where advantage is taken of the structure of the data? Dr Raghavan answered 
that there is a trade off between simplicity and adaptability in deciding which approach to 
use. It also depends on how much analysis is performed on the data. 

Professor Randell asked how much of the field has been driven by the cryptography 
community? How much of the work is public? Dr Raghavan estimated that roughly 1/10 of 
the published work is cryptography-related. 

Professor Randell then asked if Dr Raghavan envisaged the field [of randomized 
algorithms] growing? He replied in the affirmative, stating that the main attractions are 
simplicity and/or performance improvements. People often start off using 'quick and dirty' 
randomized algorithms and then, as they learn more about their data, write a deterministic 
version. Professor Jones asked if there is empirical evidence to support the conjecture that 
randomized algorithms are faster than deterministic algorithms? Dr Raghavan stated that 
there already is a body of experimental evidence showing that they are faster and that as 
more randomized implementations are created, this assertion gets stronger. 

Lecture Two 

During the presentation of Yao's MinMax theorem, it was asked whether it is allowed to 
use algorithms which are incorrect but correct for the given inputs? Dr Raghavan replied 
that algorithms used could be correct for all inputs except those with zero probability. 

After the talk, the main discussion began. 

A discussion arose as to why running time of nrndomized algorithms should be expressed 
in terms of problem size, as in 'the probability that quicksort'S running time exceeds n*n is 
n*log(n)', and not in absolute terms. As an example, Dr Andersson pointed out that if we 
said quicksort performed O(n squared) every tenth time, it would be a very bad algorithm. 

Professor Nievergelt asked if when comparing the running time of deterministic algorithms 
to that of probabilistic algorithms, is it fair to compare worst case running time for 
deterministic algorithms to expected running time of probabilistic algorithms? Wouldn't it 
be fairer to, for example, use the average running time of deterministic algorithms in 
comparison? Dr Raghavan stated that the analysis of randomized algorithms always takes 
into account the worst possible input. To compare with the average running time of 
deterministic algorithms would favour these. Dr Andersson supported this view. 
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