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Abstract
The selection problem, determining the k’th largest out of a set of n elements, is less
fundamental than sorting, but has still been studied extensively over several decades.

Our focus will be on the worst-case complexity of selection, measured by the number
of comparisons required. In contrast to sorting, there is a considerable gap between
the upper and lower bounds known for this problem. Although the comparison count
is not of prime importance for overall efficiency in most applications, some of the
lower bound methods and algorithms derived over the last twenty-five years are of
combinatorial interest, and have a place in undergraduate courses on the design and
analysis of algorithms.

There has been recent progress in the selection problem, and in median-finding in
particular, after a lull of ten years. In these talks I shall review some ancient and
modern results on this problem, and suggest possibilities for future research. A full
paper appears in [19].

Outline

Let S(n) be the worst-case minimum number of pairwise comparisons required to
sort n elements, and Vi(n) the corresponding number to find the &*" largest out of
n elements. In particular, we are interested in M(n) = Vjn/21(n), the complexity of
finding the median. It is well known that S(n) = nlog,n + O(n), but for M(n) only
rather loose bounds have so far been found. y

References [23, 15, 10, 16, 13, 14, 26, 11, 17, 21] describe early work in this area, but
the classic paper by Blum, Floyd, Pratt, Rivest and Tarjan [2] in 1973 was the first to
show that M(n) = O(n), and therefore that finding the median is much easier than
sorting. Their bound was improved to 3n in 1976 [22], and then, only after a further
20 years, has it been further improved slightly by Dor and Zwick [5, 6, 7].

Blum et al. [2] also showed a lower bound of M(n) > 3n/2 — O(1) by using a simple
adversary argument. This lower bound was gradually improved by several authors [11,
20, 13, 26, 18], taking the coefficient for medians from 3/2 up to about 1.837. A major
step was taken by Bent and John [1] in 1985 using a “leaf-counting” argument from [9)].
They proved a lower bound of 2n — o(n) . This stood for ten years until a recent tiny
improvement by Dor and Zwick [5, 8].

Frances Yao [24] considered the problem of finding a (u,v)-mediocre element from m
elements, i.e., an element which is smaller than at least u elements and larger than
at least v elements. If m = u + v + 1, the complexity is just Vi(m), but if more
than « 4+ v 4+ 1 elements are available the complexity might be less. Yao explored
the hypothesis (YH) that the latter complexity is never less, and so far no counter-
example to YH is known. However, since YH implies M(n) < 2.5n + o(n), it is of



VI.4

interest to determine the truth of YH.

The usual “information theoretic™ measure used to prove lower bounds for sorting
problems is w(x), the number of total orders consistent with the partial order =
reached at some stage of an algorithm. Then log,(w(7)) gives a lower bound on the
worst-case number of comparisons to complete the sorting of #. For median-finding,
the measure w is inappropriate and yields only trivial bounds. We investigate some
better measures, based on counting numbers of partitions. A few preliminary results
are presented. and a conjecture made as to the asymptotic value of M(n).
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DISCUSSION
Rapporteur: Avelino Zorzo

During his two lectures Professor Paterson described the progress of selection during the
last years. In the first talk he described the upper bound, while in the second he
concentrated on the lower bound number of comparisons required during the selection. He
said that little progress has been done in this area, and that the intended progress is to
"reduce the number of comparisons by 2% or 5%". In his lectures, he showed how to
obtain such numbers using practical exercises.

Lecture One

When Professor Paterson commented that he found it remarkable that they got so close to
the upper bound, Dr Raghavan asked whether the algorithm used was a uniform algorithm
or was it necessary to look at the input space. Professor Paterson said that it was a very
simple recursive algorithm.

Talking about the same subject, Dr Andersson said that the time could be higher than that
mentioned, but Professor Paterson said that it would not be higher than those used in data
structures algorithms, and in the data structures algorithms the results are n log n, which
was confirmed by Professor Mehlhorn.

Before talking about the lower bound, Professor Tedd wanted to know if the upper bound
of 2.95 had been proven or was it just an empirical view. Professor Paterson said that it had
been proven.

Lecture Two

Professor Henderson asked about the use of Monte Carlo algorithms to show the upper
bound and Professor Paterson answered that he thought that the use of Monte Carlo
algorithms was not tried. Professor Paterson also said that he is more concerned about
knowing how many comparisons are necessary in the selection process and not in finding a
real algorithm to show the solution.



VI.16






