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Spatial data structures: concepts and design choices 

Abstract 

Jtirg :--iievergelt and Peter Widmayer 
ETH Zurich 

Spatial data structures. once considered mere variations of structures de­
signed for conventional (non-spat ial ) data. increasingly evolve along a differ­
em track. The reason for this lies in the rich structure of Euclidean space. 
E\'en wi t hout the presence of objects. regions of space admit a multitude 
of operations and relations that are relevant for efficient query processing. 
such as: distance. containment, intersection. touching. in front of. This fac t 
suggests that the main task of a spat ial data structure is to organize the 
embedding space in a s~-stematic manner. rather than the content , i.e. the 
transient set of objects present at any mGmem. This is particularly true 
when objects move or are subject to other transformations , as is the case in 
applications such as computer-aided design (CA.D). 

A second difference bet,', een spatial and non-spatial data lies in the query 
population. Rather than retrieving objects based on their inherent character­
istics. the majority of spatial queries are bik-ro on proximity of the objects to 
be retrieved to query regions of the most varied shape (rays, boxes . arbitrary 
polyhedra). This implies that retrieval begins \Vith a coarse filter that re­
trieves a cluster of neighboring objects, followed by a fine filter that analyzes 
their geometric properties. Thus, proximity in space should be reflected in 
contiguous storage to the e),:tent possible. 

This survey is concerned with spatial data structures suitable for exter­
nal storage devices. This implies a conceptual and technical simplicity that 
excludes a few sophisticated list structures designed for central memory. We 
explain concepts, and their intuitive justification. in the context of their 
historical development . \Ve emphasize common sense principles more than 
detailed techniques; and we illustrate basic ideas by presenting a sample of 
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spatial data structures selected by virtue of their c0~ceptual simplicity. Thus, 
we hope to provide a user's guide to an applicatioLS programmer confronted 
with a bewildering multitude of structures descri',ed in the research litera­
ture , many of which differ only in detail: "If you aok the right questions, 
common sense will provide answers" . 

Keywords and phrases: Data management s::stems. data bases , data 
structures , geometric and solid modeling, compu'ational geometry, spatial 
data. 
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1 Goals and structure of this survey 

The growing importance of graphic user interfaces ane of appl ications such 
as computer-aided design and geo-information systems has confronted many 
applications programmers with a challenging new ta.;k: Processing large 
amounts of spatial data, off disk, correctly and efficiently. The task is daunt­
ing, as spatial data poses distinctly novel problems as compared to traditional 
"business data", in part icular the following two: 

1. Access is primarily via proximity relations to other objects that pop­
ulate Euclidean space, rather than via inherent properties of objects. 
such as attribute values. A typical query. is of the form "retrieve all 
objects that intersect a given region of space' . 

2. Guaranteed correctness in processing spatial objects has proven to be 
a thorny problem requiring a systematic analysis of degenerate config­
urations . ~'Ioreover, efficiency depends on the iLterplay between two 
techniques: one for representing an object (inde;lendently of its loca­
tion in space) , the other for storing the entire collection of objects in 
relation to their position in space. 

We aim to provide a guide through the bewildering mul titude of concepts. 
techniques and choices a programmer faces when desigmng a data structure 
for managing spatial data. We simplify this task by separating the question 
of how an object is represented for internal processing (an issue in compu­
tational geometry that we shall not address), from the question of how a 
large collection of simple objects embedded in space 2.re managed on disk 
(the crucial issue of spatial data management systeIll5). Although object 
representation and external data structures may be int€rtwined , for example 
in image processing, they are treated separately in lllany important applica­
tions. In geographic information systems, for eXafllple. objects of complex 
shape are routinely approximated or bounded by simple containers for re­
t rieval purposes. 

The tutorial approach we have chosen for this surYeY begins with the his­
torical development of data structures in general. a trend from which spatial 
data in particular emerged as a separate discipline relatively late. In spite of 
the profound differences between spatial data on the one hand, and conven­
tional data typical of the business applications that shaped the development 
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of database technology on the other hand, the community of database re­
searchers persisted in forcing "non-standard (including spatial) data" into a 
mold that had proven effective for other applications. It took a long time 
to realize that data structures inherited or adapted from single-key access 
had to be reconsidered, and often abandoned. Thus a brief sketch of the 
development of data structures in section 2 serves the double purpose of re­
viewing the basic notions of data structures, and of identifying key differences 
between spatial and other data. 

A second characteristic of our tutorial approach is to start from about 
a dozen concepts or features that appear to cover most of the many spatial 
data structures described in the literature. This approach assigns to every 
data structure a "profile" that facilitates assessment of its strong and weak 
points, and comparison with others. Thus we avoid enumerating the many 
spatial data structures described in the literature, which often differ only in 
details. and instead focus on the building blocks from \\·hich a programmer 
can assemble his own data structure tailored to the specific requirements of 
a given ta.sk. 

Thus. section 3 presents important concepts needed to discuss spatial 
data structures at an intuitive level. This includes a list of basic questions 
to be raised and considerations to be aware of before a programmer decides 
on data representation and storage technique. The latter have a pervasive 
influence on the complexity and efficiency of any application that processes 
spatial data. 

Having assembled an arsenal of concepts and terminology, section 4 presents 
a concise model that captures the essence of the majority of spatial data 
structures and the way they process queries. By separating three key as­
pects: the organization of the embedding space into a collection of cells, the 
organization of objects into cell populations, and the internal representation 
of an object, we arrive at a three-step query processing model that serves 
as a skeleton for understanding, assessing and comparing most spatial data 
structures. 

So far we have merely mentioned a few examples of specific data struc­
tures, out of several dozen known today. Sections 5 and 6 continue by sys­
tematically listing the major building blocks that go into the design of a spa­
tial data structure, and providing examples of structures for possible design 
choices. Section 5 treats points , the simplest kind of spatial object, whereas 
Section 6 discusses extended objects. By following an approach "from gen-
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eral concept- to specific examples" . we hope to help a reader to program an 
appropriate data structure based on half a dozen design choices, rather than 
by scanning a vast literature that includes hundreds of research papers. 

The concluding sect ion 7 attempts to summarize the survey with a simple 
point of \ie>\": Design and choice of spatial data structures , today, is a matter 
of common sense more than of technical \\izardry. Don't let hundreds of 
research papers prevent you from seeing the forest because of all the trees. 
With a clear understanding of a dozen fundamental concepts characteristic 
of spatial data. you can choose a data structure suited to your application. 

2 Data structures old and new, and the forces 
that shaped them 

2.1 Prehistory, logical vs. physical structure 

The discipline of data structures, as a systematic body of knowledge, is truly 
a creat ion of computer science. The question of how to organize data was 
a lot simpler to answer in the days before the existence of computers: The 
organization had to be simple. because there was no automatic device capable 
of proce~ing intricately structured data. and there is no human being with 
enough patience to do it . Consider two examples. 

1. l\Ianual files and catalogs, as used in business offices and libraries , 
exf>jbit several distinct organizing principles, such as sequential and 
hierarchical order and cross-references. From today's point of \iew, 
ho',·eYer. manual files are not well-defined data structures. For good 
reaSOll:5. people did not rigorously define those aspects that we con­
sider essential when characterizing a data structure: what constraints 
are imposed on the data, both on the structure and its content: what 
operations the data st ructure must support; what constraints these 
operations must satisfy. As a consequence, searching and updating a 
manual file is not typically a process that can be automated: It requires 
common sense, and perhaps even expert training, as is the case for a 
library catalog. 

2. In manual computing (with pencil and paper or a nonprogrammable 
calculator) the algorithm is the focus of attention, not the data struc-
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ture. ~[ost frequently. the person computing writes data (input, in­
termediate results, output) in any convenient place within his field of 
vision. hoping to find them again when he needs them. Occasionally, to 
facilitate highly repetit ive computations (such as income tax declara­
tions). someone designs a form to prompt the user, one operation at a 
time . to write each data item into a specific field. Such a form specifies 
both an algorithm and a data st ructure "ith considerable formality, 
but is necessarily special purpose. 

Edge-notched cards are perhaps the most sophisticated data structures 
ever designed for manual use. Let us illustrate them with the example of a 
database of English words organized 50 as to help in solving crossword puz­
zles. "'Ie "Tite one word per card and index it according to which vowels it 
contains and which ones it does not contain. :\cross the top row of the card we 
punch 10 holes labeled A , E,I, 0, U, 
~ A., ~ E. ~ I. ~ O. ~ U. When a word. say ABACA, exhibits a given 
vO\veL such as ,-1. . we cut a notch above t he hole for .-1. : when it does not, such 
as E , we cut a notch abo\'e the hole for ~ E (pronounced "not E"). The 
figure below sho"'s the encoding of (he words BEAf-'TIFUL, EXETER, OM­
AHA, OMEGA. For example. we search for words that contain at least one 
E, but no [;. by sticking two needles through the pack of cards at the holes 
E and ~ C-. EXETER and OJ'vIEGA will drop out. In principle it is easy to 
make this sample database more po','erful by including additional attributes, 
such as ".-1. occurs exact ly once", ".-1. occurs exactly twice" , "A occurs as the 
first letter in the word". and so on. In pract ice, a few dozen attributes and 
thousands of cards will stretch this mechanical implementation of a mult i key 
data structure to its limits of feasibility. 

The reader might be interested in working out the logic of evaluating 
queries expre.."5ed as arbitrary Boolean expressions over these attributes, ob­
serving that AND works in parallel with multiple needles, ' whereas OR is 
processed sequentially using multiple passes. 

Exotic as the physical realization may appear today, the logical structure 
of edge-notched cards is an amazingly modern example of mult i-key data 
structures: it organizes the search space as a hypercube, i.e. a regular grid 
in which every key value. whether present or not among the actual data to 
be stored . has its predefined place. :-[oreover, the physical order of the data 
to be stored is entirely independent of the logical order imposed on the data 



A E 1 

V. 9 

000 o 
U - A - E - I ...() - U 

BEAUTIFUL 

o 
A E 

A E 

000 

EXETER 

000 
o U - A -E - I 

OMEGA 

-u 

Figure 1: Edge-notches cards as a mechanical multi-key access structure 

space, so the fo rmer can be chosen to match the physical characterist ics of 
the hardware used (e.g. allocat ion of clusters of cards to boxes or, today. of 
records to disk blocks) "ithout interfering >'lith the search logic. But in order 
to fully appreciate these remarks we must describe the major evolutionary 
steps along the way from t he first computerized data structures to modern 
mult i-key data structures. We will observe that each era that focused on 
new application domains created ne,,' techniques to address concerns not 
adequately met by prior developments .. 

2.2 Early scientific computation: Static data sets 

Numerical computation in science and engineering mostly leads to linear 
algebra and 'hence matri.." computations. Matrices are static data sets: The 
values change. but t he shape and size of a matrb: rarely does - this is t rue 
even for most sparse mat rices. such as band mat rices. where the propagation 
of nonzero elements is bounded. Arrays were Goldstine and von Neumann's . . 
answer to the requirement of random access, as described in their venerable 
1947 report "Planning and coding of problems for an electronic computing 
instrument". FORT~<\i\ '.54 supported arrays and sequential files, but no 
other data structures, v.ith statements such as DD.IENSION, READ TAPE, 
REWIND, and BACKSP_\CE. 
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Table look-up was a lso solved early through haoillng. The software pio­
neers of the first decade did not look beyond addreso computat ion techniques 
(array indexing and hashing) because memories we,~:3O small that any struc­
ture that "wastes" space on pointers was consideree a luxury. Memories con­
taining a few K words restricted programmers to lli~..:2g only the very simplest 
of data st ructures, and the limited class of proble!L:3 addressed let t hem get 
away with it. The discipline of data structures hac. yet to be created. 

2.3 Commercial data: Batch processmg of dynamic 
sets, single key access 

Commercial data processing led to the most prolifi<: ;Jhase in the development 
of data structures. The achievements of the early d=.ys were comprehensively 
presented in Knuth 's pioneering books on "T he .-\:": of Computer Progranl­
ming" (Knuth 1968, 1973 ). These applications br«(lght an ent irely different 
set of requirements for managing data typically ·:.rganized according to a 
single 'primary key' . When updating an ordered r::.~ter fi le with unordered 
transaction files, sorting and merging algorithms c.;:ermine data access pat­
terns. The emergence of disk drives extended the (~ , Ilenge of data structure 
design to secondary storage devices. Bridging thl; 'memory-speed gap' be­
came the dominant practical problem. Central m,,::::lOry and disk both look 
like random access devices , but they di ffer in the ,: :der of magnitude of two 
key parameters: 

r.lemory Disk Ratio: 
Disk/ Memory 

Access time (seconds): 10-7 .. . 10-6 1O-~ ... 10- 1 104 ... 105 

Size of transfer unit (bits): 10 ... 102 104 .. . 105 102 ... 103 

In recent decades technology has reduced both ·ime parameters individ­
ually, but their ratio has remained a 'speed gap' (·f about 4 orders of mag­
nitude. This fact makes the number of disk accesses the most relevant 
performance parameter of ex-ternal data structurE:". :-"lany data structures 
perform well in central memory, but disk forces us :0 be more selective; disks 
call for data structures that avoid pointer chains tiat indiscriminately cross 
disk block boundaries. The game of designing da,a structures suitable for 
d isk has two main rules: the easy one is to use a small amount of cent ral 
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memory effectively to describe the current allocation of data on disk in a way 
that facilitates rapid retrieval ; the hard one is to ensure that the structure 
adapts gracefully to the e\'er-changing content of the file. 

Index-sequential access methods (ISAl'>!) order records according to a 
single key so that a small directory, preferably kept in central memory, ideally 
directs any point query to the correct data bucket where the corresponding 
record is stored, if it is present at all. But the task of maintaining this single­
disk-access performance in a dynamic file, in the presence of insertions and 
deletions , is far from trivial. The first widely used idea, of splitting storage 
into a primary area and an overflow area. suffers from now well-known defects. 

Balanced trees. one of the major achievements of data structure design. 
provide a brilliant solution to the problem of 'maintaining large ordered in­
dexes ' without degradation. They come in many variations (e.g. Adelson­
Velski et al. 1962. Bayer et al. 1972) all based on the same idea: Frequent 
small rebalancing operations that "'ork in logarithmic time eliminate the 
need for periodic reorganization of the entire file. Trees based on compara­
tive search derive their strength from the ease of modifying list structures in 
central memory. They ha\'e been so successful that we tend to apply and gen­
eralize them beyond their natural limitations. In addition to concerns about 
the suitability of comparative search trees for multi key access , discussed in 
the next section. these limitations include (Nievergelt et al. 1981): 

1. The number of disk accesses grows v,ith the height of the tree. De­
pending on the size of the file and the fan-out from a node, or from a 
page containing many nodes. the tree may well have too many levels 
for instantaneous retrieval. 

2. Concurrency. Every node in a tree is the sole entry 'point to the entire 
subtree rooted at that node. and thus a bottleneck for concurrent pro­
cesses t hat pass t hrough it, even if they access diffe rent physical storage 
units. Early papers (e.g. Bayer et al. 1977, Kung et al. 1980) showed 
that concurrent access to trees implemented as lists requires elaborate 
protocols to insure integrity of the data. 



V.12 

2.4 Transaction processing: Interactive multikey ac­
cess to dynamic sets 

\ \ 'hereas single-key access may suffice for batch processing. t ransaction pro­
cessing. as used in resel':ations or banking systems. calls for multikey access 
(by name, date , location. etc.). The simpb, ideas were tried first. Inverted 
files t ry to salvage single-key structures by ordering data according to a 'pri­
mary key ' , and 'inverting' the resulting file "'ith respect to all other keys, 
called 'secondary '. Whereas the primary directory i.s compact as in I5AM, 
the secondary directories are voluminous: Typically. each directory has an 
ent ry for every record. Just updating the directories makes insertion and 
deletion time-consuming. 

Comparative search trees enhanced I5 . .l,.:-1 by eliminating the need for 
o\'erflow chains, so it was natural to generalize them to multikey access and 
improve on inverted files. T his is easy enough. as first shown by k-d trees 
(Bentley 1975). But the resulting multi-key Structures are neither as elegant 
nor as effic ient as in t he single- key case. The main hindrance is that no 
total order can be imposed on multidimensional space without destroying 
proximity relationships. A.s a consequence. the simple rebalancing operations 
that work for single-key trees fail , and rebalancing algorithms must resort to 
more complicated and less efficient techniques. such as general dynanlization 
(\\'illard 1978, Overmars 1981). 

Variations and improwlllents on mult idimensional comparative search 
trees cont inue to appear (e.g. Lomet et al. 1989 . 1990). Their main virtue. 
acceptable worst case bounds, comes from the fact that they partition the 
actual data to be stored into (nearly) equal parts. The other side of this coin 
is that data is part itioned regardless of where in space it is located. Thus the 
resulting space partitions exhibit no regularity. in marked contrast to radix 
partitions that organize space into cells of predetermined size and location. 

2.5 Knowledge representation: Associative recall in 
random nets 

There is a class of applications where data is most naturally thought of as 
a graph , or network with nodes corresponding to entities and arcs to rela­
tionships among these. Library catalogs in information retrieval , hypertexts 
with their many links , semantic nets in art ificial intelligence are examples. 
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The characteristic access patte rn is 'browsing': .-\ probe into the net followed 
by a walk to adjacent nodes. Typically, a nod~ :.s not accessed because of any 
inherent characteristic . but because it is assfJdated \\ith (linked to) a node 
currently being visited. The requirements p06ed by this type of problem 
triggered the development of list processing :echniques and list processing 
languages. 

These graphs look arbitrary, and the ace'::"s patterns look like random 
walks - neither data nor access patterns exhic,it any regular structure to be 
exploited. The general list st ructures designed :or these applicat ions have not 
evolved much since list processing was created. at least not when compared to 
the other data structures discussed. The resuhng lack of sophisticated data 
st,uctures for processing data collections linkEd as arbitrary graphs reminds 
us that efficient algorithms and data structu.:~ are always tailored to the 
presence of specific propert ies to be exploitE<i. in part icular to a regular 
structure of the data space. If the latter h::.o no regular structure to be 
exploited. access degrades to exhaustive seare:'. 

Information retrieval is an example of ar: application where "random" 
structure cannot be avoided. Although a eaalog ent ry in a library is a 
record with a regularly structured part , e.g. d·:·cument = (author , title , pub­
lisher. year) , search by content relies on indO ;( terms chosen from a large 
thesaurus of thousands of concepts, ranging =orn ... .lJchemy" to "Zen" . It 
does not help to consider 1000 index terms. "ach \\ith a range of perhaps 
only two values "relevant" and "irrelevant" , as att ributes of a multi-key data 
structures . which typically are designed to har:de at most tens of access keys. 

2.6 Spatial data management: Proximity access to ob-
jects embedded in space 

In typical applications that rely on spatial data, such as computer-aided 
design or geographic information systems, rniilly or all of the requirements 
listed so far are likely to appear: interactive trE-llSaction processing, random­
looking networks of references among functionally related components, etc. 
In addition to such non-spatial requirements. ;patial data imposes three key 
characteristics that sets spatial data managel!!ent apart from the cases de­
scribed above: 
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1. Data represents objects embedded in some c-dimensional Euclidean 
space IRd 

2. These objects are mostly accessed through th,,:r location in space, in 
response to a proximity query such as interSEi:lion with some query 
region , or containment therein. 

3. A typical spatial object has a significantly more complex structure than 
a 'record' in the other app lications mentioned. 

Although other applications share some of these c0.aracteristics to a small 
extent, in no other do they playa comparably impo07.ant role. Let us high­
light the contrast with the example of a collection of records , each with two 
attributes , 'social security number ' (SSN) and 'year of birth'. 

1. Although it may be convenient to consider sue:: a record to be a point 
in a 2-d attribute space. this is not a Euclid"an space; the distance 
between two such points. for example, or en':! the distance between 
two SSNs, is unlikely to be meaningful. 

2. Partial match and orthogonal range queries ar' common in data pro­
cessing applications, but more complex query r"gions are rare. In con­
trast, arb itrarily complex query regions are co=on in geometric com­
putation (e.g. intersection of objects, or ray tracing). 

3. Although a record in commercial data proceSEi2g may contain a lot of 
data, for search purposes it is just a point .. -\ t::pical spatial object, on 
the other hand , is a polyhedron of arbitrary complexity, and we face 
the additional problem of representing it usin~ predefined primitives. 
such as points , edges. triangles, tetrahedra. 

2.7 Concise summary of trends that shaped the devel­
opment of data structures 

Starting from t he standard data processing task of the ·50s and 60s: "merge 
the old master tape with an update file to produce a new master", we have 
mentioned a few of the many requirements that gradually accumulated a 
great variety of data handling problems. Here is a concise summary that 
compares yesterday 's and today 's requirements: 
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• Batch processing => interactive use: 

sequential access => random access 

static file => dynamic file 

delayed result ok => "instantaneous" response = 0.1 sec 

• Simple queries => complex queries 

(e.g. access record with unique id => join in relational DB, 
proximity query in CAD) 

single key => multi-key access 

fe\\' query types => many different query types 

(e.g. point query => region query, consistency check, .. ) 

single access => mult i-access transactions 

• Point objects => interrelated objects of arbitrary shape 

(e.g. [name. SSN, year] => assembly of mechanical parts) 

\Yhereas the generic data structure 'array' was able to meet most needs 
of numerical computat ion for decades, it soon became evident that no single 
type of data st ructure could be found to meet the increasing variety of data 
handling problems that arose when computer use expanded to many other 
applications. Since the si.:<ties, the search for specialized structures designed 
to handle efficiently a specific set of requirements has newr ceased, and the 
resulting zoo of data structures is impressive, perhaps frightening to the non­
specialist. The next section develops concepts needed to detect some order 
in the \\ilderness of data structures. 

3 B asic concepts and characteristics of multi­
dimensional and spatial data structures 

Having presented a concise historical survey that introduced many ideas 
needed to understand data structures in general , we now narrow the concep­
tual framework to deal with multi-dimensional data. and spatial structures 
in part icular. This section aims to be a user 's guide to understand the zoo 
of data structures. 



., 

V.1 6 

3.1 The profile of a data structure 

A relatively small number of concepts suffice to characterize any data struc­
ture according to its main features. to highlight similarities and contrasts 
with other structures that might be considered as alternatives, and to guide 
a programmer in his choice of data st ructure. These key concepts surface 
when answering the follo\\ing questions: 

• What type of data is to be stored? This is answered by specifying the 
domain D of key \'alues, and all operations and relations defined on 
D. Well-known frequent cases include: 

D is an unordered set, such as author-defined index terms for 
document retrie\'al 

single-key: D i.s totally ordered w.r.t. a relation "<" (e.g. integers , 
character strings) 

multi-key: D i.s a Cartesian product Dl x D2 X ... X Dk of totally 
ordered domains D;. 

When a meaningful distance i.s defined on D. we talk about "metric 
data structures" . The most prominent example is Euclidean space 
IRI x IR2 X ... X IRk. where IR denotes real numbers , or perhaps integers. 

• How Ulany keys (search attributes) are involved? The dimension of 
the space has a great influence on the practical complexity of a multi­
key data structure. Some approaches that work well in 2 dimensions, for 
example. do not generalize efficiently to more dimensions. One might 
think that "spatial data" ob\iously refers to 2-d arid 3-d Euclidean 
space. but this is not necessarily so. Higher-dimensional spaces arise 
naturally when we describe objects to be stored in terms of parameters 
that characterize them. The term "multi-key access", including spatial 
data. commonly refers to the case where we have less than 10 keys 
(search attributes) . 

• Functionality (Abstract Data Type): What operations must be sup­
ported by the data structure? The 'most frequently used data struc­
tures are variations of the type dynamic table or dictionary. They 
support primarily the operations Find, Insert, Delete, along with a 
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host of others such as PredecessoL St;(':e:sSOL )'lin. Max, etc. lvlany 
algorithms that work on spatial data na~·.:rally use standard data struc­
tures such as stacks and queues, but tr:."e is nothing "spat ial" about 
these. 

• How much data is to be stored , what storage media are involved? 
The two major categories to be disting-"-hed are internal data struc­
tures. designed for central memory. a.:::: e: .. :ternal ones, designed for 
disk. ~Iany more designs are suitable f0~ internal data structures than 
for external ones. 

• What type of objects are to be stored. :'ow simple or complex is their 
descrip tion? Points are certainly the s'-'plest case. Complex objects 
are often approximated or packaged ir_ simple containers, such as a 
bounding box. Is the location of these ot.' .,cts fixed. or are they movable 
or subject to other transformations? In :ie second case it is important 
to separate the description of the obj ec: :'rom its location. 

• \Vhat types of queries occur , what do ":~ knO\\' about their frequenc\' 
and relative importance? This involves :'.ifferences such as interactiw 
or batch processing. clustered or scatter--:; access. exact or approximate 
matches , and many more. Only rarely : 2Jl we characterize the query 
population in terms of precise statistica: ;Jarameters. 

• How complex. ho\\' efficient are access and update algorithms? The 
efficiency of internal data structures i3 )ften \\'ell described by their 
asymptotic time complexity (e,g. 0 (1). Clog n). O(n), . . . ), whereas that 
of external data structures is more mea.::.:.ngfuliy measured in terms of 
the (small ) number of disk accesses nee::~. 

• What implementation techniques .;.:e appropriate (e.g. lists, ad­
dress computation)? List processing is ;; prime candidate for dynamic 
data structures in central memory, but iE ,)ften less efficient for external 
data structures. 
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3.2 The central issue: Organizing the embedding space 
versus organizing its contents 

The single most important issue that distinguishes ;patial data structures 
from more traditional structures can be summarized ill ,he phrase "organizing 
the embdding space versus organizing its contents-. Let us illustrate this 
somewhat abstract idea with examples. 

A record with fields such as (name, address. social security number, ... ) 
can always be considered to be a point in some approp:iate Cartesian product 
space. But the role and importance of this embedding space for query 
processing, whether its structure is exploited or not. depends greatly on the 
application and the nature of the data under conskeration. Whereas the 
distance between two character strings, say your ad.:ress and mine, has no 
practical relevance, the distance between two points i- Euclidean space often 
carries information that is useful for efficient query ;rocessing. In addition, 
regions in Euclidean space admit relations such as "i::: front of", "contains". 
"intersects" that have no counterpart in non-spatia: data. For this reason. 
the embedding space plays a much more important r·: :e for spatial data than 
for any other kind of data. 

Early data structures, developed for non-spatial c~ta . could safely ignore 
the embedding space and concentrate on an efficient ,:-rganization of the par­
ticular data stored at anyone moment. This point 0: ',iew naturally favored 
comparative search techniques. These organize tht data depending on the 
relative value of these elements to each other, regardl-"Os of the absolute loca­
tion in space of any individual value. Comparative se2..:'ch (e.g. binary search) 
leads to structures t hat are easily balanced. Thus. t2ey answer statistical 
queries efficiently (e.g. median, percentiles), but not general location 
queries ("who is closest to a given query point", ·,,·tore are there data clus­
ters"). Balanced trees , with their logarithmic wor~-case performance for 
single-key data, are the most successful examples of ~ructures that organize 
a specific data set. 

Given the success of comparative search for non-spatial data, in particular 
for single-key access, it is not surprising that the firs approaches to spatial 
data were based on them. And that the crucial role of the embedding space, 
independently of the data to be stored, was recognized rather late. But 
when comparative search is extended to multi-dimensional spatial data, some 
shortcomings cannot be ignored. If we generalize the idea of a balanced 
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bi nary search tree to 2 dimensions, as in the following example, we generate 
a space partition that lacks any regularity. Such a partition does not make 
it easy to answer the question what cells of the partition lie within a given 
query region. Even the idea of dynamical ly balancing the tree, so as to 
guarantee logarithmic height and access time in the presence of insertions 
and deletions, does not generalize efficiently from 1 to 2 dimensions. 

x : space partition 

.... 

Figure 2: By balancing data, k-d trees generate irregular space partitions of 
great complexity 

Data structures based on regular radix partitions of the space, on the 
other hand. organize the domain from which data values are drawn in a sys­
tematic manner. Because they support the metric defined on this space, a 
prerequisi te for efficient query processing, we call them metric data struc­
tures. The essent ial structure of these space partitions is determined be­
fore the first element is ever inserted ,. just as inch marks on a measuring 
scale are independent of what is being measured. The actual data to be 
stored merely determines the granularity of these regular partitions. Like 
the "longitude-latitude" partit ion of the earth , they use fixed points of ref­
erence . independent of the current contents. Thus any point on earth has a 
unique pemlanent address, regardless of its relation to any cities that may 
or may not be drawn on a current map. 

The well-known quad-tree (Finkel et al. 1974, Samet 1990 a, b) illus­
trates the advantages of a regular partition of the embedding space, in this 
example a unit square. A hierarchical partition of this square into quad­
rants and subquadrants , down to any desired level of granularity, provides a 
general-purpose scheme for organizing space, a skeleton to which any kind of 
spatial data can be attached for systematic access. The picture below shows 
a quarter circle digitized on a 16 . 16 grid, and its compact representation as 
a 4-le\"el quadtree. 
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2 

Figure 3: The quad tree is based on a radix 4 hierarchical space partition 

"lost queries about spatial data involve the absolute position of objects 
in space. not just their relative position among each other. A typical query in 
comput er graphics, such as a visibility computation by means of ray tracing, 
asks for the first object intercepted by a given ray of light. Computing 
the answer im'olves absolute position (location of the ray and objects) and 
relative order (nearest along the ray). Regular space partitions reduce search 
effort by prO\iding (d irect) access to any cell of the partition. Given a point 
with coordinates (x, y), a simple formula determines the unique index of the 
unique cell (at any given level of granularity) that contains (x, y). Moreover, 
if storage is allocated contiguously as illustrated in Fig. 4, the address of 
the disk block of each cell can also be computed merely on the basis of the 
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coordinates (x , y). This allows for direct access to those objects that are near 
to any query point. 

Breadth-first addressing: parent i <- > children 4 i + { 1, 2, 3, 4 } 

10 I 9 61 5 
_2- -1- 0 2 3 4 5 6 7 
11 I 7 I 8 

I 
0 

I 
-3- -4-

I I 
Figure 4: Breadth-first traversal aE0cates quad tree cells contiguously in 
order of increasing depth 

4 The three step model of spatial object re­
trieval 

Having surveyed the main concepts the reader needs to keep in mind when 
exploring the space of spatial data structures. we can now compress this in­
formation into a single model that captures the essence of how most spatial 
data structures process the vast majority of queries. Naturally, many details 
remain to be filled in to define precisely how the three processing steps out­
lined below are implemented for any given data structure. But the point to 
be made is that spatial query processing is best described in terms of three 
steps that can be analyzed independently. 

Consider the embedding space shown in Fig. 5. It is grid-partitioned 
into rectangular cells and populated by objects drawn as circles or ovals. A 
triangular query region q calls for the retrieval of all objects that intersect 
q. In this typical exanlple, ' query processing first t ransforms the query q 
into the set of query cells surrounded by the dotted line; second, retrieves 
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the two objects that intersect the query cells h .ithout having to look at the 
horizontal oval) ; third , filters out the tall oval <..; a "false drop", and retains 
the circle as a "hit" . 

,-----, 

hI 

'" query 
/ cells 
I 
I 

) 

Figure 5: A region query selects objects tha: populate a grid-partitioned 
space 

A more general description of these three processing steps follows: 

4.1 Cell addressing: query q -> set {(i,j, .. . )} of query 
cells 

Obtain the coordinates of all cells, at any desire:ct hierarchical leveL of those 
cells that intersect q. This address computation step depends on charac­
teristics of the query and of the grid , but not directly on the population 
of objects. The objects affect this step only to the extent that they deter­
mine the current space partition. Thus a simple space partition, i.e. a grid 



V.23 

of regular structure determined by a few parameI~rs. is a pre-condition for 
fast cell addressing . and this is perhaps the data o:ructure designer 's major 
choice. He may have less control over the set oi permissible queries, but 
fortu nate ly query complexity is a lesser problem tian part it ion complexity. 
Even if a complex query causes much computatiCl. it need not cause any 
disk accesses, if the space partition has been proj::.erly designed so as to be 
completely described by a small amount of data t~t resides in central mem­
ory. And given t hat disk access is the efficiency ::ottleneck of spatial data 
structures, the t ime required by this fi rst step is g':!lerally negligible. 

4.2 Coarse filter : set of query cells det ermines candi-
date objects 

All the objects that populate the query cells detern::.:.::ted in step 1 are retrieved 
from disk. because t hey might respond to the que,:. This coarse fi lter is the 
bottleneck of spatial data access, and the core p)blem of data st ructure 
design. Many issues must be resolved, e.g: what :.0 the precise definition of 
"an object 0 populates cell CT The picture abc .:~ suggests the plausible 
definition "0 intersects C" , and if so, this coars.: alter retrieves the circle 
and the vertical oval, a hit and a false drop, whe:.,as the horizontal oval is 
ignored. More sophisticated choices are possible :llat avoid associating an 
object with all of t he many cells it might intersect. but each choice requires 
corresponding ret rieval algorithms to ensure that c·:, objects are missed. And 
the main issue of data structure design revolves arocld the association of data 
buckets (disk blocks) to cells. where the aim is to ilocate objects that touch 
neighboring cells in as few buckets as possible. Hc·,,;ve\·er this coarse filter is 
designed, the disk accesses it may cause are likely :0 require the lion's share 
of query processing t ime. 

4.3 Fine filter: compare each object to t he query 

T he objects selected by the coarse filte r are mere candidates that need a 
final check to see whether they are hi ts, i. e. respvnd to the query, or false 
drops, i.e. passed the first but failed the second, cr"cial test: Does an object 
that appears to be close enough at first sight, really intersect the query? This 
intersection test is trivial or complex depending on :he shape and complexity ' 
of query and object. But floating point operatior:s are cheap compared to 
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disk accesses, so t his fine filter is unlikely to be the per:'ormance bottleneck. 
In any case, this step is squarely in the realm of computa,ional geometry. Its 
implementation depends on the internal representatior: of the objects, i. e., 
on the data st ructure chosen to represent an object for processing in central 
memory. A complex object will have to be broken into its const ituent parts, 
such as vertices, edges, and faces in the case of a polyh~dron. This has little 
to do "ith the design of t he external data structure - the topic of our survey -
which considers an object as a volume of space, to be treated as an undivided 
unit whenever possible. 

A final comment: Everything discussed above aL"0 applies to the case 
where the "objects" , drawn as ovals in the picture. are containers, chosen for 
their simple shape, that hold a more complex object. b this case the circle. 
which was labeled a "hit" . is reduced to a mere "conta.i.::ler hit", and the fine 
filte r must process the object hidden inside, rather th2.:l the container. 

As we discuss the design choices that characterize t::'e many spatial data 
structures described in subsequent sections the reader:': encouraged to keep 
the first t\VO query processing steps in mind: how fast is cell addressing? how 
is the query cell population determined, and what di~:': accesses are caused 
by the coarse filter? Such questions serve as a guide :·)r a first assessment 
of any spatial data structure. Often, they suffice to e!.iminate from further 
consideration apparent ly plausible ideas that fail on the grounds that the 
first or the second step cannot be implemented efficier.: ly. 

5 A sample of data structures and their space 
partitions 

5.1 General consideration 

Data structures for external storage support spatial qt.:eries to a set of geo­
metric objects by realizing a fast but inaccurate filter: The data structure 
returns a set of external storage blocks that together contain the requested 
objects (hits) and others (false drops). Thereafter , a fine filter analyzes each 
object retrieved to either include or exclude it from the response. The pur­
pose of a data structure is to associate each object "it!: a disk block in such 
a way that the required operations are performed efficiently. 

For exact match, insert and delete operations, non-spatial data structures 
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such as the B- tree or extendible hashing are sufficient , since a unique key can 
be computed from the geometric properties of each object. But whenever a 
query in\'olves spatial proximity, as in range queries , a spatial data structure 
must take into account the shape and location of objects. Naturall y, a query 
can be answered faster if the set of geometric objects that form the response 
to the query are spread over as few disk blocks as possible. This implies 
that for proximity queries, the objects stored in a block of an efficient data 
structure should be close in space. As a consequence, spatial data structures 
cover the data space (or a part of it ) with cells and associate a storage block 
with each cell . For point objects , the cells partition (a part of) the space. 
and each point is associated with the cell in which it lies. Our illustrat ions 
and explanations of data structuring concepts always refer to 2-dimensional 
data, but generalization to higher dimensions is often straightforward. 

Our sample of spatial data structures is biased towards those suitable for 
external storage. This bias favors simple structures and penalizes sophist i­
cated structures that use complicated lists. Thus, we exclude t rees designed 
to support worst-case efficient algorithms in computational geometry, such 
as segment trees and interval t rees, including their variants for disk storage. 
Segment trees and interval trees, as well as hierarchies of such trees making 
them multidimensional. where e.g. each node of a segment tree references 
an intel'\'al tree, have been studied extensively in computational geometry 
(Preparata et al. 1985, Edelsbrunner 1982 , Iyengar et al. 1988, Overmars 
1983. Samet 1988. Samet 1990a, van Kreveld 1992). Based on the segment 
trees designed for central memory and a worst case scenario. external storage 
structures have been proposed (Blankenagel 1991). They turned out to be 
quite complicated, and there is no evidence yet as to whether these external 
storage segment trees will perform well on average in practical situations. 
Among the simple structures we discuss, we emphasize address computation 
techniques. because they are conceptually the simplest and the easiest to 
implement, and they often lead to the most efficient access structures for 
practical situations. 

Two dominant factors guide the partition of the embedding space into 
cells, namely the data ( the objects) and the space. At one end of the spec­
trum. the partition is defined without attention to the data; at the other, 
the data completely determines the partition; naturally, combinations of the 
two abound. 



V. 26 

5.2 Space driven partitions: Multidimensional linear 
hashing, space filling curves 

The most regular partitions of the data space are those that take into account 
only the amount of data to be stored (measured by the number of objects, 
or by the number of storage blocks needed), but disregard the objects them­
selves and their specific properties. The number of objects merely determines 
the number of cells of the partition , but not their location, size or shape. The 
latter are inferred from a generic partition pattern for any number of regions 
that is parameterized \vith just one parameter. namely the actual number of 
regions desired. As a typical example, let us look at the partitions (Fig. 6) 
induced by multidimensional variants of linear hashing (Enbody et al. 1988. 
Litwin 1980) . such as multidimensional order presef\ing linear hashing with 
partial expansions (Kriegel et al. 1986) or dynamic z-hashing (Hut flesz et 
al 1988a). 

o o o 2 I 3 

(a) linear hashing 

2 3 2 5 3 7 

o o 
o , 0 4 , 6 

(b) MOLHPE 

1 3 2 3 6 7 

o o 

o 2 0 , 4 5 

(c) z-hashing 

Figure 6: Space-driven partitions and their development 
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5.2.1 Linear hashing 

When viewed as a spatial data structure , linear ::'a.shing (Fig. 6( a)) partition;; 
the one-dimensional data space into intervals (G::le-dimensional regions) of at 
most two different sizes at any time, the smaller being half the larger. To the 
left of a separating position. all intervals are 5I!:ciI: to the right, all intervals 
are large. This makes it very simple to find ~he interval in which a one­
dimensional query point lies: Given the size of ~he smaller intervals and the 
separating position, a simple calculation returr, the desired interval. With 
the use of an order-preserving addressing funct:·)n. proximity in the I-d data. 
space is preserved in storage space. Dynamic r::.odifications to the partition. 
induced by increasing or decreasing numbers of data points, are simple. An 
extra interval. for instance. is created by partit:}ning (splitting) the leftmost 
of the larger intervals into halves, distributing ~ne data points associated 50 

far with the split interval among the two ne?, i.THer,als , and adjusting the 
separating position. The separating position St2.:':5 at the left space boundary 
and moves from left to right through the data s;·ace. On its move, it cuts the 
intervals encountered in half. After it has reac::'.;d the right boundary of the 
data space, all intervals ha.\·e been cut to the S'illle size. thus the number of 
intervals has doubled (the doubling phase is c'-.. mplete). and the separating 
position is reset to the left boundary. 

The simplicity of the partitioning pattern c: linear hashing makes it ex­
tremely simple to keep track of the actual pa:-:ition: the directory consists 
of only two values, one for the number (or siz~ of large (or small) intervals 
at the beginning of the current doubling phas .... and one for the separating 
position. The cost for this simplicity due to the regularity of the partition is 
the lack of adaptivity of the partition to the ac~ual data points. In general. 
it will be necessary to provide overflow blocks fvr intervals, since the number 
of data points in an inter\-al can be larger tha:! the block capacity. When­
ever the data points are distributed evenly ow:- the data space, the lack of 
adaptivity may be tolerable: otherwise, conside:-able inefficiency may result. 

5.2.2 Multidimensional linear hashing 

Multidimensional order preserving linear hash:.ng versions are nothing but 
generalizations of linear hashing to higher dime::l.Sions. Therefore, they share 
the basic characteristics with linear hashing. T!:~:: \-ary in the way the dim en- ' 
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sions are involved in the addressing mechanism, The ma::t direct extension of 
linear hashing is multidimensional order preserving lineu hashing with par­
tial expansions (MOLHPE, Kriegel et al, 1986), where the doubling phases 
cycle through the dimensions, Starting with one block. the first doubling 
leads to two blocks separated in the first dimension, the second doubling 
leads to two more blocks, separated from the first two in the second dimen­
sion, and so on (see Fig, 6(b)), 

5.2.3 Dynamic z-hashing 

Since there is some freedom in choosing the addressing rJllction, we can even 
extend the scope of our considerations and ask for mappings that preserve 
the geometric order of the data beyond blocks, Here, we request that regions 
of blocks whose addresses are close tend to be close i.::l data space, This 
makes sense for proximity queries whenever it is fastt~ to read a number 
of consecutive blocks than to read the same number Gi blocks, spread out 
arbitrarily on the storage medium; it has been used fGr wr iting in Wang et 
at. (1987), Since current disks typically have much hig::-:r seek plus latency 
times than transfer time, they qualify as good candidat.:s, Similar in spirit, 
Droge et al , (1993), Droge (1995) investigate space partitioning schemes for 
variable size storage clusters instead of fixed size blocks, An addressing 
function that leads to a more global preservation of order is dynamic z­
hashing (Hutflesz et at. 1988a, see Fig, 6(c)), The s:atic version of this 
addressing mechanism (Manola et al, 1986, Orenstein et al, 1984, Orenstein 
1989, 1990) is long known to cartographers as 1[ortoQ encoding (Morton 
1966); it is the same as the quad code (Samet 1990a) or the locational code 
(Abel et al, 1983, Tropf et al , 1981), One of its nice properties is the fact that 
addresses can be computed easily by interleaving the bitS of the coordinates, 
cycling through the dimensions; therefore, the technique is also known as bit 
interleaving, 

The only reason why closeness of blocks does not match closeness of cells 
precisely lies in the impossiblity of embedding a higher dimensional partition 
in a one-dimensional one while preserving distances, That is , when applied 
to one-dimensional linear hashing, dynamic z-hashing fully preserves global 
order. 
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5.2.4 Space-filling curves 

Each of the above addressing mechanisms defines a traversal of the embedding 
space by \'isiting all ce lls in the order of their addresses, a so-called space­
filling cun·e. A number of space-filling curves other than the ones above have 
been proposed , with the goal of maintaining proximity in space also in the 
one-dimell5ional embedding the curve defines. Since the data structure based 
on a space-filling curve must adapt the partition pattern dynamically, space­
filling cun'es usually have recursive definitions. Fig. 7 shows two building 
blocks ((a) and (c)) and the three best-known space-filling curves based on 
them - bit interleaving (b) , the Gray code (d) (Faloutsos 1985, 1988),and 
Hilbert's curve (e) (Faloutsos et aI. 1989, Jagadish 1990b). 

17 , " , '" 3 I , 2 L 5 ,.J 

"'J " i'I 
0 2 3 I 3 12 '51 

(a) (b) (e) (d) (e) 

Figure 7: Traditional one-dimensional embed dings 

Experiments comparing the efficiencies of data structures based on these 
curves (.-\bel et aI. 1990, Jagadish 1990b, van Oosterom 1990) seem to in­
dicate that for certain sets of geometric objects and sets of queries , bit in­
terlea\ing and Hilbert 's curve outperform the Gray code curve significantly, 
with Hilbert beating bit interleaving in many cases. On the other hand , 
an analysis of the expected behavior of space filling curves (Nievergelt et 
at. 1996). where all possible different queries are equally likely, indicates that 
all space filling curves are equally efficient, if disk seek operations are counted. 
This il1u.:"rates that there is a bias in the distribution of query ranges in the 
experiments: Queries are not chosen at random, but instead are taken to 
be in some sense typical of a class of applications. It is certainly useful to 
evaluate data structures with respect to particular query distributions; it is 
unfortunate that the distributions are not discussed explicitely. In contrast 
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to the a\'erage case. the worst case for hierarchical space filling curves clearly 
depends on the curve (Asano et al. 1995). 

In spite of the interesting properties of dynamic z-hashing and other prox­
imity pre;::er.·ing mappings of partitions in multidimensional space to one di­
mension. we feel that the importance of the corresponding data structures 
is limited to uniformly distributed data. due to the lack of adaptivity of the 
partition. 

5.3 Data driven partitions: k-d-B-tree , hB-tree 

The most adaptive partitions of all are those defined by the set of data 
points. Since the partition tends to be less regular, a mechanism to keep 
track of the partition is needed. A natural choice for such a mechanism is 
a hierarchy. and hence multidimensional generalizations of one-dimensional 
tree structure;:: have been proposed for that purpose. Prime examples are 
the k-d-B-aee (Robinson 1981). a B-tree version (Bayer et al. 1972, Comer 
1979) of the k-d-tree (Bentley 1975) , and a modified version of it , the hB-tree 
(Lomet et aI. 1989, 1990). 

5.3.1 The k-d-B-tree 

A k-d-B-tree partition is created from one region for the entire data space by 
recursh'e splits of regions (see Fig. 8) . The splits follow the k-d-tree structure 
in that they cycle through the dimensions of the data space, but do so within 
each node of the tree, The leaves of the tree are all on the same level, just as 
in B-trees . and maintain the cells of the partition. Interior nodes maintain 
unions of cells to direct the search through the tree. Thus, the tree is leaf­
oriented and serves as a directory. Whenever a data block overflows, due to 
an insert operation, its region is split so as to balance the number of data 
points in both subregions, and the change propagates towards the root. This 
may neces;::itate a spli t of a directory block region, not a simple operation in 
a k-d-B-tree. The reason is that in order to balance the load between both 
directory block subregions, a split position may be chosen that cuts through 
a region of some child (or even several children), thereby forcing the spli t 
to propagate downwards in the tree as well. Since the decision for the most 
balanced split position is made locally for a node, the forced downward split 
may become quite a costly operat ion, both in terms of runtime and of the 
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resul ting storage space utilization. As a result. no lower bound on the storage 
space utilization can be gi\'en for k-d-B-trees. i.:l contrast to the 50 guarantee 
for B-trees. 

A B 

c 

Figure 8: Data-driven partitions: The k-d-B-tree 

5.3.2 The hE-tree 

A closer look reveals that in degenerate cases . '" balanced split may be impos­
sible in the k-d-B-tree (see Fig. 9). To remedy ~hat situation, a variant of the 
k-d-B-tree has been proposed , the hB-tree (LeJ!llet et al. 1989, 1990). It has 
the interesting property that the regions that 'onn the partition of the data 
space are not restricted to multidimensional ,"(tangles. Instead, subregions 
can be removed from a region (see Fig. 9), leaving a "holey brick" . With 
this freedom, balanced splits are possible in G"generate situations in which 
a single split line fails. The hB-tree keeps tZ2.ck of holey brick regions by 
allowing directory entries to refer to the sarr." block: that is, a holey brick 
region is represented in the rooted DAG directory by the union of a set of 
rectangular regions.' Of course, holey bricks cay occur on each level of the 
rooted DAG; changes propagate upwards, just as in B-trees. As an example. 
Fig. 9c shows the rooted k-d-DAG local to a directory block to be split with 
regions shown in Fig. 9d , and Fig. 9b shows tl:" part of the rooted DAG that 
propagates upwards when the block is split as sho';\n in Fig. 9a. 

Although data-driven partitions turn out to be quite complicated to main­
tain , they are able to cope "ith skew data reasonably welL while space-driven 
partitions fail here. For extremely skew data or whenever worst-case guaran­
tees are more important than average behavior. data-driven partitions may 
be the method of choice. Due to the freedom in splitting regions , they cer­
tainly do have a great inherent flexibility that allows them to be tuned to 
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Figure 9: Data-driven partitions: The hB- tree 

various situations easily. For instance, the local split decision (LSD-) tree is 
designed to make good use of a large available main memory. while resorting 
to external storage as necessary (Henrich et at. 1989a. b. Henrich 1990). Ex­
cept for such situations , the adaptivity of data-driven partitions will rarely 
compensate for the burden of their complexity and fragility. More often. 
combinat ions of space-driven and data-driven partit ions will be appropriate. 

5.4 Combinations of space driven and data driven par­
titions: EXCELL, grid fi le, hierarchical grid files, 
BANG file 

In their simplest form , these partitions follow the generic pattern of space­
driven partitions, with the level of refinement determined by the data. A 
typical example of a one-dimensional data structure of this type is extendible 
hashing (Fagin et at. 1979), where the data space ·is partitioned by recursively 
halving exactly those subspaces that contain too many data points. 

5.4.1 EXCELL and the grid file 

A direct generalization of extendible hashing to higher dimension , EXCELL 
(Tamminen 1982) , applies t he one-dimensional strategy of extendible hash­
ing to each dimension, again running cyclically through the dimensions (see 
Fig. lOa). Since an extra directory is available for each dimension, plus a 
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directory for the mult idimensional product of the one-dimensional directo­
ries. and the number of blocks that can be addressed is therefore the product 
of the sizes of all one-dimensional directories , the sum of the sizes of the 
one-dirnell5ional directories tends to be quite small in all realist ic cases. This 
obsel':at ion is used in the grid file (! ievergelt et al. 1981, 1984) to keep the 
directories for all single dimensions - the so-called scales - in main memory; 
as a result. no duplication of a directory is necessary due to a data block 
split. but instead a mere addition of a (multidimensional) directory entry 
wi ll suffice (see Fig. l Ob). Nevertheless, the grid file inherits from extendible 
hashing the superlinear growth of its directory (Regnier 1985, Tamminen 
1985). A. search operation in the grid file can always be carried out with 
just two e;..."ternal memory accesses, the first one to the directory, based on 
the information from the scales, and the second one to the data block refer­
enced in the directory block. Similarly. a range query can be answered by 
first searching for a corner point of the query range, and t hen propagating 
to adjacent blocks as indicated by the directory. Since this entails a range 
query on the directory, one might organize the directory itself as a grid file. 

A A B B A A B 

C D E E C D E 

(a) (b) 

Figure 10: EXCELL and grid file partitions: Cells with data block addresses 

5.4.2 Hierarchical grid files 

This approach has been pursued in hierarchical grid files (Fig. 11) with two 
(Hinrichs 198.5) or more directory levels (Krishnamurthy et al. 1985). The 
interior of each directory block is organized as a grid file directory; changes 
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in the t ree structure, due to block split or merge operations , propagate along 
the search path in the tree. Data structures of this type are often called 
hash trees. A. particularly efficient example of such a structure is the buddy 
tree (Seeger 1989 , Seeger et al. 1990). It applies a specific merge strategy, 
and it distinguishes the standard block regions, using them for insertions, 
from the block regions used for all search operations: The latter are the 
bounding boxes of the objects stored in the corresponding subtree. While 
the non-hierarchical grid file inherits the ptoperty of a superlinearly growing 
directory from extendible hashing. hash trees grow linearly, just like trees in 
general. This does not imply that hash trees are always the better choice in 
practice: It is true for many data structures that better asymptotic efficiency 
may come at the cost of higher conceptual complexity and therefore lead to 
poorer perforlllance in practical applications. 
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Figure 11: Two- level (a). (b) against one-level grid file partition (c) 

5.4.3 The BANG file 

The balanced and nested grid file (BANG file, Freeston 1987) is a particu­
larly interesting attempt at balancing the load in a regular partition pattern. 
It operates on a regular grid in such a way as to guarantee linear growth of 
the directory. Unlike the grid file. the BANG file splits a cell such that the 
numbers of objects in the two resulting subs paces differ as little as possible. 
This is done under the restriCtion that the smaller subspace is created by 
recursively cutting the subspace to be divided along some dimension into 
two halves. In addition. the cuts run cyclically through all dimensions (see 
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fig. 12a. where point numbers indicate the insertion order). As a conse­
quence, the BANG file tends to use fewer cells than the grid file (Fig. 12c) , 
but these cells have a more complex shape. !\e\·ertheless, it is not a problem 
to maintain these cell: we simply maintain rectangular cells and associate a 
point with the smallest of all cells containing it (Fig. 12b). These cells can 
even be stored in a highly compressed form: Since they are created with a 
very strict mechanism, each cell can be stored as a pair of indices, where the 
first one indicates the number of recursive cuts and the second one is the 
relative number in some numbering :;cheme, for instance that of MOLHPE 
(Fig. 12b). Not surprisingly. the BA~G file directory is organized as a tree, 
following the BANG file strategy recursively. This results in the necessity 
to propagate splits not only upwards in the hierarchy, but also downwards -
the forced split phenomenon shared by quite a few hierarchical spatial access 
structure"'s"-. ____ .-T71 , '. 
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Figure 12: _-\ BA! -G file partition (a;. its maintenance (b), and a grid file 
partition (c) for capacity 3 

There is a large number of data srructures whose partition is driven by 
a combination of space and data considerations. with quad tree based struc­
tures (Finkel et al. 197·1, Samet 1990a. b) being the most prominent ones 
among them. Others are variants of grid file or hash tree structures (Kriegel 
et al . 1988, Otoo 1986, 1990. Ouksel 1985, Ozkarahan et al. 1985) or adaptive 
hashing schemes (Kriegel et al . 1987, 1989b). Some of them aim in particular 
at high storage space utilization (Hutflesz et al. 1988b, c, d), apart from the 
efficiency of range queries. 
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5.5 Redundant data storage 

So far we have presented data structures that store every data element (point) 
exactly once. This natural approach is universally followed in pract ice, be­
cause data redundancy complicates updating and therefore is used only to 
enhance reliability (e.g. back-up procedures), but is not part of the access 
structure. 

From a theoretical point of view, however, one can ask ,,;hether replicating 
some part of the data might speed up retrieval. This turns out to be true in 
part icular for static files. Chazelle (1990) proves the following lower bound 
for a pointer machine that executes static 2-d range searches: A query t ime of 
O(t+ logC n), where t is the number of points reported and c is some constant . 
can only be achieved at the expense of l1(n log n/ log log r. ) storage. 

Data structures that use data redundancy to impro';e access time for 
range searching include the P-range tree (Subramanian 199.)), a combination 
of the priority search t ree and a 2-d range t ree. 

6 Spatial data structures for extended ob­
jects 

So far \\'e have considered the simplest of spatial object~ only, points , for 
the good reason that any spa tial data ~tructure must be able to handle 
point data efficiently. Most app licat ions, however, deal Voirh complex spatial 
objects. And although complex objects are composed of simpler building 
blocks, we encounter a mult itude of the latter: line segrne!lts, poly-lines, tri­
angles, aligned rectangles, simple polygons, circles and o\-als, and the mult i­
dimensional generalizations of all these. The way a spatial data structure 
supports extended (non-point) objects of various kinds determines whether 
it is generally applicable. For extended objects, each of wl>ich may intersect a 
numl;ler of cells, the associat ion of an object with a cell is not as immediate as 
it is for points. In this case, cells usually overlap, and an object is associated 
most often either with a cell that contains it , or with all cells it intersects. 
But there are also other possibilities. Therefore, while we distinguish data 
st ructures for points merely according to the type of cells they define, we 
characterize data structures for extended objects also according to the way 
they associate objects with regions. 
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We consider the ca<;e where objects to be stored are relatively simple, in 
the sense that they have a concise description, and computations are easy 
and efficient. This restriction is realistic because complex objects are often 
approximated or bounded by a simple container, such as a bounding box, 
the smallest aligned (axis-parallel) multidimensional rectangle that contains 
the ob jeer.. Such a container serves as a conservative filter for spatial prox­
imity queries. In a range query, for instance, an object intersects the query 
range only if its bounding box intersects the query range; similarly, a query 
point can be contained in an object only if it is contained in its bound­
ing box. :-lost data structures that support extended objects limit them­
selves to aligned rectangles (bounding boxes); exceptions include (Bruzzone 
et al. 1993. Gunther 1988, 1989, 1992a, Gunther et al. 1989 , 1991, Jagadish 
1990a. \'an Oosterom et al. 1990). Even in this restricted case, it is by no 
means clear how to associate a rectangle with a region in space, because a 
rectangle may intersect more than one of these regions. There are essen­
tially three different extremal solutions to this problem, and a fourth one as 
a combination of two extremes. 

6.1 Parameter space transformations 

Since points can be maintained in any of the ways described in the previous 
section. there is the obvious possibility to store simple objects as points in 
some parameter space. Simple mappings have been proposed that transform 
a d-dirneIl.5ional rectangle into a 2-d-dimensional point (Henrich 1990, Hin­
richs 198·5. Seeger 1989). The corner transformation simply takes the 2-d 
rec tangle boundary coordinates and interprets them as the coordinates of a 
point in 2-d space (see Fig. 13 a for d = 1). The center transformation sep­
arates parameters for the position of the rectangle in space from parameters 
for the size of the rectangle: the former are the d coordinates of the rectangle 
center. and the latter are the extensions of the rectangles in the d dimensions 
- divided by two , resulting in a more evenly populated data space (see Fig. 13 
b). But then , fairly small query ranges (that seem to be common in prac­
tice) may map to queries with fairly large query regions (see Fig. 13 c and d), 
and the distribution of points, the data space partition and t he shape of the 
query region seem not to work well together. For the special case in which 
range queries are the only type of proximity queries , good transformations 
have actually been found (Pagel et al. 1993a). These transformations use 
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parameters such as volume and aspect ratio. and they turn out to cluster 
rectangle:> in a way that is quite appropriate for many point data structures , 
especially in combination with highly adaptive space partitions such as the 
LSD-tree (Henrich et al. 1989b , Henrich 1990). Nevertheless , we feel that 
a transformation cannot be general enough to preserve the geometry of the 
situation entirely, and as a consequence, will not be able to support all kinds 
of locational queries well. In the remainder of this section, we will therefore 
look more closely at ways .to store rectangles in the given space. 
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Figure 13: Corner transformation (a) and center t ransformation (b) for in­
tervals and for query regions (c) , (d) 

6.2 Clipping 

The problem in associating a rectangle with a region in a partition is the 
fact that a rectangle can intersect more than one region . For the technique 
of answering a range query by returning all those data blocks whose regions 
intersect the query range, there is no other choice but to associate each 
rectangle "'ith all regions in the partition that it intersects. This method 
is called clipping. It can lead to reasonable performance in cases where the 
geometric object behind the bounding box can be cut at region boundaries, 
such as thoi3e cartographic applications in which objects are polygons with 
lots of corners (Schek et al. 1986, Waterfeld 1991). In these cases, the clipping 
technique has the advantage over many others to be conceptually simple and 
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to preserve the geometry of the situation for any proximity query. Clipping 
turns out not to lead to good performance for rectangles (Six et al. 1988) , 
though, and it can become very bad in the worst case, with a linear proportion 
of all rectangles even on the best possible cut line (d' Amore et al. 1993a. b, 
Nguyen et al. 1993, d'Arnore et al. 1995). 

6.3 Regions with unbounded overlap: R-tree 

6.3.1 Storing a reference point 

In another straightforward way of using point data structures for storing 
objects, a reference point is chosen for each object - typically its center (of 
gravity) -. and the object is a."-Sociated with the block in whose region its 
reference point lies. This works only if we keep track of the extensions of 
the objects beyond the region boundaries. In a range query, the cell to be 
considered for a block is not the cell defined by the partition of the data 
space, but instead the bounding box of all objects actual ly associated with 
the block. The latter may in general be larger than the former, and not 
all data structures will easily accomodate that extended region information. 
Hierarchical structures such as k-d-trees (Ooi 1987, Ooi et al. 1989) or the 
BANG file (Freeston 1989b) as ,,'ell as some others (Seeger et al. 1988, Seeger 
1989) can be used for that purpose. Even though this approach works well 
whenever only small objects are to be stored. it is inefficient in generaL be­
cause no attempt is made to avoid the overlap of search regions, and therefore 
geometric selectivity is lost easily. 

6.3.2 The R-tree family 

With the e)..-plicit goal of high geometric selectivity, the R-tree (Guttman 
1984) has been designed to maintain block cells that overlap just as much as 
necessary, so as to make each rectangle fall entirely within a cell. Its structure 
resembles the B+-tree. including restructuring operations that propagate 
from the leaf level towards the root. Each data cell is the bounding box 
of the rectangles associated with the corresponding block. Each directory 
block maintains a rectangular subspace of the data space; its block cell is the 
bounding box of the subspaces of its children. As a consequence, on each 
level of the tree, each stored rectangle lies entirely in at least one block cell ; 
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since block cells will overlap in general. it may actually lie in more than one 
cell (in Fig. 1,1 , rectangles E and F lie in cells A and B, referenced by the root 
block) . This fac t may distort geometric selecti\ity: In an exact match query, 
we cannot restrict the search for E to either A or B. but instead we need to 
follow both paths (in the worst case, v.ith no hint as to which one is more 
likely). Since it is essential for the R- tree to avoid excessive overlap of cells , 
many strategies of split ting an overflowing block into two exist, ranging from 
the initial suggestion (Guttman 1984) to less or more sophisticated heuristics 
(Beckmann et al. 1990, Greene 1989) and even to optimal splits for a number 
of criteria (Becker et al. 1992 . Six et al. 1992). \\-ith the appropriate splitting 
strategy and extra restructuring operations (Beckmann et al . 1990), the R­
tree seems to be one of the most efficient access structures for rectangles to 
date. 
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Figure 14: Cells of an R-tree 

For specific purposes, a number of variants of the R-tree have been pro­
posed. The R +-tree avoids overlapping directory cells by clipping rectangles 
as necessary (Faloutsos et al. 1987, Sellis et al. 1987). It suffers , however , 
somewhat from the inefficiency caused by forced splits propagating down­
wards, similar to k-d-B-trees. For a static situation, in which almost no 



V.41 

insertions or deletions take place, and therefore queries dominate the pic­
ture , the R-tree can be packed densely so as to increase effciency in time and 
space (Roussopoulos et al. 1985). Ohsawa et al. (1990) combine the R-tree 
and quad tree cells. 

6.4 C ells w ith bounded overlap: multilayer structures, 
R-file, guard file 

Geometric selectivity increases with decreasing cell oYerlap. This has been 
the starting point for a number of attempts to maintain rectangles with cells 
whose overlap is under tight control 

6.4. 1 T he mult ilayer technique 

The basic idea is to cover the data space with more than one partition. In 
the most direct way to implement this idea, each partition - called layer -
is maintained in an extra data structure (Six et al. 1988) . Care has to be 
taken to ensure that the partitions of the different layers are actually differem 
(Fig. 1.5 ) : otherwise , the number of partitions increases more than necessary. 
and in general efficiency deteriorates. A fairly large number of split strategies 
that guarantees the partitions to be quite different ha\'e been developed. It 
can be guaranteed that for storing a set of small d-dimensional rectangles. 
d + 1 layers will always suffice - the technical term small there has a preci5e 
meaning (Six et al. 1988). Large rectangles must be clipped, whenever there 
are few of them , such as in most cartographic applications, clipping will not 
be harmful. 
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Figure 15: Cells of a three-layer grid file 
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In a multilayer data st ructure that uses a point data st ructure with a 
modified split strategy for each layer. the layers are totally ordered, from 
lowest to highest. A rectangle is associated with the lowest layer that has 
a cell of the partition containing it entirely; in that layer, the rectangle 
is associated with that cell , just like a point in the underlying point data 
structure. If there is no such layer. either a new layer is created, or the 
rectangle is clipped at the boundaries of the highest layer. 

Note that the multilayer technique is generic in the sense that it allows 
anyone of a number of point data structures to be used for the layers. Exper­
iments ';\ith a multilayer grid file, for instance, show that the loss of efficiency 
as compared with a standard (single layer) grid file for points is tolerable, 
with a certain. but smalL query overhead due to the fact that a directory 
for each layer needs to be inspected. Experiments with multilayer dynamic 
z-hashing (Hutfiesz et al. 1992) show that the attempt to preserve global 
order make;; range queries extremely fast , far better than any other data 
structure. for data and queries from cartography. In addit ion, the multilayer 
technique realizes the advantages of recursive linear hashing (Ramamoha­
narao et al. 1984) over linear hashing without the overhead, because there 
are several (recursive) layers anyway. 

6 .4.2 The R-file 

Since the search parameters are the same for each layer of a multilayer st ruc­
ture (e.g. in a range query). it might be desirable to somehow integrate 
all the directories into just one directory. This is exactly what the R-file 
(Hutfiesz et al . 1990) does: It maintains a set of overlapping cells with one 
directory. Since the grid file philosophy of data-space oriented partitioning 
and t he BANG file technique for keeping the directory small have proven 
to be useful. both are applied in the R-file. Overlapping cells are defined 
by considering each cell to be a rectangle, exactly as in the BANG file, but 
objects are associated with cells in a different way. In the R-file, a rectangle 
is associated with the smallest cell that contains it entirely (Fig. 16). Su­
perficially. this sounds to the BANG file technique, but since it is applied to 
rectangles instead of points, it creates overlapping rectangular cells instead 
of a partition into orthogonal polygons. 

\Nhen too many rectangles are associated with one cell: if too many 
rectangles intersect the split line of a cell in which they lie, they cannot be 
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Figure 16: R-file cells for insertion (a) and for searching (b), and grid file 
cells Thith clipping (c) 

distributed to other cells. In that case, a lower dimensional R-file stores these 
rectangles: the one dimension in which all of these rectangles intersect the 
spli t line can be disregarded. Fortunately, no extra data structure is needed 
for the (d-1 )-dimensional R-file; instead, a simple skip of the corresponding 
dimension in t he cyclic turn through all dimensions will do. Experiments 
have shown the R-file to be a very efficient data structure for cartographic 
data. It suffers. however, from the disadvantage of being somewhat compli­
cated to implement, with extra algorithmic difficulties (but not inefficiencies) 
such as a forced split downwards. Nevertheless, it is a good basis for a data 
struct ure that supports queries with a requested degree of detail , all within 
a query range (Becker et al. 1991). 

6.4.3 The guard file 

T he difficulties in maintaining objects , as opposed to points, comes from the 
fact that an · object may intersect more than one cell of a space partition , 
that is. it may intersect split lines in a dynamic data structure. In the R-file, 
for instance. rectangles intersecting a split line are sometimes handled sepa­
rately. The guard file deliberately places guard points (not lines) in strategic 
positions. and then distinguishes objects according to the guards they over­
lap. Niewrgelt et al . (1993) study guard placements at the corners of the 
cells of some regular space partition. Fig. 17 shows a quad tree partition , 
but other partitions such as triangular or hexagonal ones work just as well. 

By imposing a hierarchy on the guards, range queries become efficient: 
The lewl of a guard is the level of the largest cell of which the guard is a corner 
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Figure 17: A quad tree partition with guards at corner points 

point , with t he root of the tree having the highest level. Any sufficiently large 
object must overlap a guard. An object containing a guard is stored with the 
highest level guard that it contains . . -ill object that contains no guard must 
be small: it can be clipped and stored with all cells (of the partition , that 
is. at the leaf level of the quad tree) that it intersects. As a consequence, a 
range query would be carried out by inspecting the objects associated with 
all guards in the query range and all cells intersecting the query range. For 
long and skinny objects. clipping would make this data structure quite an 
inefficient one . but for fat objects (those with aspect ratio not too far from 
one) such as those often encountered in cartography, clipping would not be 
a problem. 

The guard file. however. includes an additional step to trade storage space 
for query time: An unguarded object is associated with exactly one cell of 
the partition. namely the one into v,hich its center (of gravity) falls. Hence, 
each object is stored only a smalL constant number of times, the number 
depending only on .the type of regular partition being used. In a range 
query, it is no longer sufficient to inspect the cells that intersect the query 
range: Adjacent cells also need to be inspected. The halo by which a query 
range must be extended depends entirely on how fat the stored objects are: 
the fatter the objects , the smaller the halo. For various types of regular 
part it ions and various bounds on the fatness (in a precise, technical sense for 
arbitrary, convex geometric objects). it has been shown that the guard file is 
conceptually simple, easy to implement , and efficient at the same time. 
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6.5 Conclusions drawn from the structures surveyed 

The set of spatial data structures and paradigms has grown to a respectable 
size. A multitude of concepts serve as building blocks in the design of new 
spatial data structures for specific purposes. A number of convincing sugges­
tions indicate that , for instance, these building blocks can be used in the de­
sign of data structures for more complex settings. Becker (1992), Brinkhoff et 
al. (1993), Gunther (1992b), Kriegel et al. (1992a). and Shaffer et al . (1990a). 
among others, show ho\\' various kinds of set operations, such as spatial join. 
can be performed efficiently by using a spatial index. For objects and op­
erations going beyond geometry, Ohler (1992) shows how to design access 
structures that involve non-geometric attributes in a query. In a closer look 
to the needs of cartography, a data structure of weighted geometric objects 
is proposed that efficiently supports queries \\ith a varying degree of de­
taiL as specified by the user (Becker et al. 1991). For the special case in 
which the objects to be stored are the polygons of a planar partition, and 
access to entire polygons (in containment queries "'ith points, for instance) 
as well as access to the polygon boundaries (for drawing a map) is needed . 
there are suggestions that consider both e).."temal accesses and main memory 
computations as important cost factors (Kriegel et al. 1992b , Schiwietz et 
al. 1993) ; other suggestions aim at making queries efficient without storing 
polygon boundaries twice (Becker 1993). In addition, hierarchical spatial 
access structures can be designed to support queries into the past (Becker 
et al. 1993, Charl ton et al. 1990, Xu et al. 1990). It can be seen from this 
list that even though a fair number of concepts of data access are readily 
available, it is mosten often a considerable effort to bring any two of them 
together without losing key features , especially efficiency . . 

All the arguments above concerning the efficiency of data structures are 
of an intuit ive nature. An average case analysis is rarely given (Ang et 
al. 1992, Devroye 1986. Flajolet et al. 1986. Lindenbaum et al. 1995, Nelson 
et al. 1987, Regnier 1985, Rottke et al. 1987 are notable exceptions), because 
a probability model for sets of geometric objects and queries is very hard to 
get (Ambartzumjan et al. 1993, Harding et al. 197·01, Matheron 1975 , Santalo 
1976, Stoyan et al. 1987). Even experiments (Kriegel et al . 1989a, Shaffer 
et al. 1990b, Smith et al. 1990) that clarify some of the efficiency aspects 
tend to reveal not too much about the contribution of the building blocks of 
data st ructures to their overall efficiency. Some steps towards a clarification 
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of what is the desired average case efficiency a.:.d how to achieve it , with 
consequences for the data structure design. ha';e been taken (Henrich et 
al. 1991, Pagel et al. 1993b. Six et al. 1992, Ang e: al. 1992 , Pagel 1995), but 
many more are needed to shed enough light on tte inner workings of spatial 
data structures. In the meantime, the designer c.nd programmer of spatial 
data structures should be aware of the existing boding blocks and use them 
with expertise and intuition. bringing them toge:2ter wherever possible. 

7 Summary: Points to consider when choos­
ing a spatial data structure 

Let us conclude this bird's eye survey of the domG.'.!:l of spatial data structures 
with a few concisely stated points of view and rE"(Dmmendations. 

Spatial data differs from all other types of c2.ta in important respects. 
Objects are embedded in a Euclidean space with ' :5 rich geometric structure. 
and most queries involve proximity rather thaL '.ntrinsic properties of the 
objects to be retrieved. Thus data structures ·:'ewloped for conventional 
data base systems are unlikely to be efficient. 

The most important feature of a spatial date structure is a systematic. 
regular organization of the embedding space. TLs serves as a skeleton that 
lets one address regions of space in terms of invar.a.nt quantities, rather than 
merely in relation to transient objects that hap per: co be stored. In particular. 
radix partitions of the space are more widely us0J.l than data-driven space 
partitions based on comparative search. 

The vast literature on spatial data describes a multitude of structures 
that differ only in technical details. Theory has :::.ot progressed to the stage 
where it can rank them in terms of efficiency. Performance comparisons 
representative of a wide range of applications ane! data are difficult to design. 
and' reported results to this effect are often biased. Thus we are left to choose 
on the basis of common sense and conceptual simplicity. 

Whereas the choice of a spatial data structU!';e does not require a lot of 
detailed technical know-how. programming the computational geometry rou­
tines that implement the fine filter of Section 4.3 is a different matter. Writ­
ing robust and efficient procedures that intersect arbitrary polyhedra (say a 
query region and an object) is a specialist 's task ;nat requires a different set 
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of skills. 
In conclusion, this survey is neither a "how-to" recipe book that describe" 

the multitude of data structures, nor a sales pitch for anyone in particular. 
It intends to be a thought-provoking display of the L""ues to ponder and to 
assess. Our message places responsibility for a competent choice where it 
belongs , with the programmer. 
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DISCUSSION 

Rapporteur: Michael Elphick 

Professor Randell remarked that in his introduction, the speaker had omitted the whole 
history of the development of punched-card processing techniques. 

Later, Dr Goldberg asked how well the data-structures described by the speaker coped with 
the problems posed by animation, virtual reality and the like, where the need for coherent 
movement imposed rather strong requirements. Professor Nievergelt said that this was an 
area about which he had little to say; however, he would suggest that one must have some 
kind of "coarse" object model, for representing such objects as a train moving at constant 
speed. His data-structures certainly didn't solve all problems. 

Professor Randell then referred to the problems faced by mapping organisations (such as the 
British Ordnance Survey), who had initially simply inserted the unstructured data previously 
held on paper into their early databases. Professor Nievergelt responded that in one sense 
these were simpler problems, in that the data was largely static. However, they had to deal 
with many more types of relationship than the purely geometrical. He also noted that in 
typical GIS applications, the total amount of data was not staggeringly large; perhaps of the 
order of several hundred thousand basic items. 

As a separate point, Professor Randell observed that in talking to other colleagues, there 
seemed to be two distinct types of GIS: one principally concerned with representing and 
visualising physical data, and the other with the correlating of different kinds of data 
(perhaps relating ZIP codes with administrative divisions) . 

Professor Nievergelt felt that this was to go way beyond the problems of structuring spatial 
data, and dealt with areas about which he had no particular knowledge. His talk had dealt 
with a restricted area, and this might well be only a minor part of the whole problem in such 
cases. 
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