
v

SPATIAL DATA STRUCTURES: CONCEPTS AND
DESIGN CHOICES

J Nievergelt

Rapporteur: Michael Elphick

V.2

V. 3

Spatial data structures: concepts and design choices

Abstract

Jtirg :--iievergelt and Peter Widmayer
ETH Zurich

Spatial data structures. once considered mere variations of structures de
signed for conventional (non-spat ial) data. increasingly evolve along a differ
em track. The reason for this lies in the rich structure of Euclidean space.
E\'en wi t hout the presence of objects. regions of space admit a multitude
of operations and relations that are relevant for efficient query processing.
such as: distance. containment, intersection. touching. in front of. This fac t
suggests that the main task of a spat ial data structure is to organize the
embedding space in a s~-stematic manner. rather than the content , i.e. the
transient set of objects present at any mGmem. This is particularly true
when objects move or are subject to other transformations , as is the case in
applications such as computer-aided design (CA.D).

A second difference bet,', een spatial and non-spatial data lies in the query
population. Rather than retrieving objects based on their inherent character
istics. the majority of spatial queries are bik-ro on proximity of the objects to
be retrieved to query regions of the most varied shape (rays, boxes . arbitrary
polyhedra). This implies that retrieval begins \Vith a coarse filter that re
trieves a cluster of neighboring objects, followed by a fine filter that analyzes
their geometric properties. Thus, proximity in space should be reflected in
contiguous storage to the e),:tent possible.

This survey is concerned with spatial data structures suitable for exter
nal storage devices. This implies a conceptual and technical simplicity that
excludes a few sophisticated list structures designed for central memory. We
explain concepts, and their intuitive justification. in the context of their
historical development . \Ve emphasize common sense principles more than
detailed techniques; and we illustrate basic ideas by presenting a sample of

V.4

spatial data structures selected by virtue of their c0~ceptual simplicity. Thus,
we hope to provide a user's guide to an applicatioLS programmer confronted
with a bewildering multitude of structures descri',ed in the research litera
ture , many of which differ only in detail: "If you aok the right questions,
common sense will provide answers" .

Keywords and phrases: Data management s::stems. data bases , data
structures , geometric and solid modeling, compu'ational geometry, spatial
data.

. ,

V. S

1 Goals and structure of this survey

The growing importance of graphic user interfaces ane of appl ications such
as computer-aided design and geo-information systems has confronted many
applications programmers with a challenging new ta.;k: Processing large
amounts of spatial data, off disk, correctly and efficiently. The task is daunt
ing, as spatial data poses distinctly novel problems as compared to traditional
"business data", in part icular the following two:

1. Access is primarily via proximity relations to other objects that pop
ulate Euclidean space, rather than via inherent properties of objects.
such as attribute values. A typical query. is of the form "retrieve all
objects that intersect a given region of space' .

2. Guaranteed correctness in processing spatial objects has proven to be
a thorny problem requiring a systematic analysis of degenerate config
urations . ~'Ioreover, efficiency depends on the iLterplay between two
techniques: one for representing an object (inde;lendently of its loca
tion in space) , the other for storing the entire collection of objects in
relation to their position in space.

We aim to provide a guide through the bewildering mul titude of concepts.
techniques and choices a programmer faces when desigmng a data structure
for managing spatial data. We simplify this task by separating the question
of how an object is represented for internal processing (an issue in compu
tational geometry that we shall not address), from the question of how a
large collection of simple objects embedded in space 2.re managed on disk
(the crucial issue of spatial data management systeIll5). Although object
representation and external data structures may be int€rtwined , for example
in image processing, they are treated separately in lllany important applica
tions. In geographic information systems, for eXafllple. objects of complex
shape are routinely approximated or bounded by simple containers for re
t rieval purposes.

The tutorial approach we have chosen for this surYeY begins with the his
torical development of data structures in general. a trend from which spatial
data in particular emerged as a separate discipline relatively late. In spite of
the profound differences between spatial data on the one hand, and conven
tional data typical of the business applications that shaped the development

V.6

of database technology on the other hand, the community of database re
searchers persisted in forcing "non-standard (including spatial) data" into a
mold that had proven effective for other applications. It took a long time
to realize that data structures inherited or adapted from single-key access
had to be reconsidered, and often abandoned. Thus a brief sketch of the
development of data structures in section 2 serves the double purpose of re
viewing the basic notions of data structures, and of identifying key differences
between spatial and other data.

A second characteristic of our tutorial approach is to start from about
a dozen concepts or features that appear to cover most of the many spatial
data structures described in the literature. This approach assigns to every
data structure a "profile" that facilitates assessment of its strong and weak
points, and comparison with others. Thus we avoid enumerating the many
spatial data structures described in the literature, which often differ only in
details. and instead focus on the building blocks from \\·hich a programmer
can assemble his own data structure tailored to the specific requirements of
a given ta.sk.

Thus. section 3 presents important concepts needed to discuss spatial
data structures at an intuitive level. This includes a list of basic questions
to be raised and considerations to be aware of before a programmer decides
on data representation and storage technique. The latter have a pervasive
influence on the complexity and efficiency of any application that processes
spatial data.

Having assembled an arsenal of concepts and terminology, section 4 presents
a concise model that captures the essence of the majority of spatial data
structures and the way they process queries. By separating three key as
pects: the organization of the embedding space into a collection of cells, the
organization of objects into cell populations, and the internal representation
of an object, we arrive at a three-step query processing model that serves
as a skeleton for understanding, assessing and comparing most spatial data
structures.

So far we have merely mentioned a few examples of specific data struc
tures, out of several dozen known today. Sections 5 and 6 continue by sys
tematically listing the major building blocks that go into the design of a spa
tial data structure, and providing examples of structures for possible design
choices. Section 5 treats points , the simplest kind of spatial object, whereas
Section 6 discusses extended objects. By following an approach "from gen-

1

V.7

eral concept- to specific examples" . we hope to help a reader to program an
appropriate data structure based on half a dozen design choices, rather than
by scanning a vast literature that includes hundreds of research papers.

The concluding sect ion 7 attempts to summarize the survey with a simple
point of \ie>\": Design and choice of spatial data structures , today, is a matter
of common sense more than of technical \\izardry. Don't let hundreds of
research papers prevent you from seeing the forest because of all the trees.
With a clear understanding of a dozen fundamental concepts characteristic
of spatial data. you can choose a data structure suited to your application.

2 Data structures old and new, and the forces
that shaped them

2.1 Prehistory, logical vs. physical structure

The discipline of data structures, as a systematic body of knowledge, is truly
a creat ion of computer science. The question of how to organize data was
a lot simpler to answer in the days before the existence of computers: The
organization had to be simple. because there was no automatic device capable
of proce~ing intricately structured data. and there is no human being with
enough patience to do it . Consider two examples.

1. l\Ianual files and catalogs, as used in business offices and libraries ,
exf>jbit several distinct organizing principles, such as sequential and
hierarchical order and cross-references. From today's point of \iew,
ho',·eYer. manual files are not well-defined data structures. For good
reaSOll:5. people did not rigorously define those aspects that we con
sider essential when characterizing a data structure: what constraints
are imposed on the data, both on the structure and its content: what
operations the data st ructure must support; what constraints these
operations must satisfy. As a consequence, searching and updating a
manual file is not typically a process that can be automated: It requires
common sense, and perhaps even expert training, as is the case for a
library catalog.

2. In manual computing (with pencil and paper or a nonprogrammable
calculator) the algorithm is the focus of attention, not the data struc-

V.8

ture. ~[ost frequently. the person computing writes data (input, in
termediate results, output) in any convenient place within his field of
vision. hoping to find them again when he needs them. Occasionally, to
facilitate highly repetit ive computations (such as income tax declara
tions). someone designs a form to prompt the user, one operation at a
time . to write each data item into a specific field. Such a form specifies
both an algorithm and a data st ructure "ith considerable formality,
but is necessarily special purpose.

Edge-notched cards are perhaps the most sophisticated data structures
ever designed for manual use. Let us illustrate them with the example of a
database of English words organized 50 as to help in solving crossword puz
zles. "'Ie "Tite one word per card and index it according to which vowels it
contains and which ones it does not contain. :\cross the top row of the card we
punch 10 holes labeled A , E,I, 0, U,
~ A., ~ E. ~ I. ~ O. ~ U. When a word. say ABACA, exhibits a given
vO\veL such as ,-1. . we cut a notch above t he hole for .-1. : when it does not, such
as E , we cut a notch abo\'e the hole for ~ E (pronounced "not E"). The
figure below sho"'s the encoding of (he words BEAf-'TIFUL, EXETER, OM
AHA, OMEGA. For example. we search for words that contain at least one
E, but no [;. by sticking two needles through the pack of cards at the holes
E and ~ C-. EXETER and OJ'vIEGA will drop out. In principle it is easy to
make this sample database more po','erful by including additional attributes,
such as ".-1. occurs exact ly once", ".-1. occurs exactly twice" , "A occurs as the
first letter in the word". and so on. In pract ice, a few dozen attributes and
thousands of cards will stretch this mechanical implementation of a mult i key
data structure to its limits of feasibility.

The reader might be interested in working out the logic of evaluating
queries expre.."5ed as arbitrary Boolean expressions over these attributes, ob
serving that AND works in parallel with multiple needles, ' whereas OR is
processed sequentially using multiple passes.

Exotic as the physical realization may appear today, the logical structure
of edge-notched cards is an amazingly modern example of mult i-key data
structures: it organizes the search space as a hypercube, i.e. a regular grid
in which every key value. whether present or not among the actual data to
be stored . has its predefined place. :-[oreover, the physical order of the data
to be stored is entirely independent of the logical order imposed on the data

A E 1

V. 9

000 o
U - A - E - I ...() - U

BEAUTIFUL

o
A E

A E

000

EXETER

000
o U - A -E - I

OMEGA

-u

Figure 1: Edge-notches cards as a mechanical multi-key access structure

space, so the fo rmer can be chosen to match the physical characterist ics of
the hardware used (e.g. allocat ion of clusters of cards to boxes or, today. of
records to disk blocks) "ithout interfering >'lith the search logic. But in order
to fully appreciate these remarks we must describe the major evolutionary
steps along the way from t he first computerized data structures to modern
mult i-key data structures. We will observe that each era that focused on
new application domains created ne,,' techniques to address concerns not
adequately met by prior developments ..

2.2 Early scientific computation: Static data sets

Numerical computation in science and engineering mostly leads to linear
algebra and 'hence matri.." computations. Matrices are static data sets: The
values change. but t he shape and size of a matrb: rarely does - this is t rue
even for most sparse mat rices. such as band mat rices. where the propagation
of nonzero elements is bounded. Arrays were Goldstine and von Neumann's . .
answer to the requirement of random access, as described in their venerable
1947 report "Planning and coding of problems for an electronic computing
instrument". FORT~<\i\ '.54 supported arrays and sequential files, but no
other data structures, v.ith statements such as DD.IENSION, READ TAPE,
REWIND, and BACKSP_\CE.

V.1 0

Table look-up was a lso solved early through haoillng. The software pio
neers of the first decade did not look beyond addreso computat ion techniques
(array indexing and hashing) because memories we,~:3O small that any struc
ture that "wastes" space on pointers was consideree a luxury. Memories con
taining a few K words restricted programmers to lli~..:2g only the very simplest
of data st ructures, and the limited class of proble!L:3 addressed let t hem get
away with it. The discipline of data structures hac. yet to be created.

2.3 Commercial data: Batch processmg of dynamic
sets, single key access

Commercial data processing led to the most prolifi<: ;Jhase in the development
of data structures. The achievements of the early d=.ys were comprehensively
presented in Knuth 's pioneering books on "T he .-\:": of Computer Progranl
ming" (Knuth 1968, 1973). These applications br«(lght an ent irely different
set of requirements for managing data typically ·:.rganized according to a
single 'primary key' . When updating an ordered r::.~ter fi le with unordered
transaction files, sorting and merging algorithms c.;:ermine data access pat
terns. The emergence of disk drives extended the (~ , Ilenge of data structure
design to secondary storage devices. Bridging thl; 'memory-speed gap' be
came the dominant practical problem. Central m,,::::lOry and disk both look
like random access devices , but they di ffer in the ,: :der of magnitude of two
key parameters:

r.lemory Disk Ratio:
Disk/ Memory

Access time (seconds): 10-7 .. . 10-6 1O-~ ... 10- 1 104 ... 105

Size of transfer unit (bits): 10 ... 102 104 .. . 105 102 ... 103

In recent decades technology has reduced both ·ime parameters individ
ually, but their ratio has remained a 'speed gap' (·f about 4 orders of mag
nitude. This fact makes the number of disk accesses the most relevant
performance parameter of ex-ternal data structurE:". :-"lany data structures
perform well in central memory, but disk forces us :0 be more selective; disks
call for data structures that avoid pointer chains tiat indiscriminately cross
disk block boundaries. The game of designing da,a structures suitable for
d isk has two main rules: the easy one is to use a small amount of cent ral

V.ll

memory effectively to describe the current allocation of data on disk in a way
that facilitates rapid retrieval ; the hard one is to ensure that the structure
adapts gracefully to the e\'er-changing content of the file.

Index-sequential access methods (ISAl'>!) order records according to a
single key so that a small directory, preferably kept in central memory, ideally
directs any point query to the correct data bucket where the corresponding
record is stored, if it is present at all. But the task of maintaining this single
disk-access performance in a dynamic file, in the presence of insertions and
deletions , is far from trivial. The first widely used idea, of splitting storage
into a primary area and an overflow area. suffers from now well-known defects.

Balanced trees. one of the major achievements of data structure design.
provide a brilliant solution to the problem of 'maintaining large ordered in
dexes ' without degradation. They come in many variations (e.g. Adelson
Velski et al. 1962. Bayer et al. 1972) all based on the same idea: Frequent
small rebalancing operations that "'ork in logarithmic time eliminate the
need for periodic reorganization of the entire file. Trees based on compara
tive search derive their strength from the ease of modifying list structures in
central memory. They ha\'e been so successful that we tend to apply and gen
eralize them beyond their natural limitations. In addition to concerns about
the suitability of comparative search trees for multi key access , discussed in
the next section. these limitations include (Nievergelt et al. 1981):

1. The number of disk accesses grows v,ith the height of the tree. De
pending on the size of the file and the fan-out from a node, or from a
page containing many nodes. the tree may well have too many levels
for instantaneous retrieval.

2. Concurrency. Every node in a tree is the sole entry 'point to the entire
subtree rooted at that node. and thus a bottleneck for concurrent pro
cesses t hat pass t hrough it, even if they access diffe rent physical storage
units. Early papers (e.g. Bayer et al. 1977, Kung et al. 1980) showed
that concurrent access to trees implemented as lists requires elaborate
protocols to insure integrity of the data.

V.12

2.4 Transaction processing: Interactive multikey ac
cess to dynamic sets

\ \ 'hereas single-key access may suffice for batch processing. t ransaction pro
cessing. as used in resel':ations or banking systems. calls for multikey access
(by name, date , location. etc.). The simpb, ideas were tried first. Inverted
files t ry to salvage single-key structures by ordering data according to a 'pri
mary key ' , and 'inverting' the resulting file "'ith respect to all other keys,
called 'secondary '. Whereas the primary directory i.s compact as in I5AM,
the secondary directories are voluminous: Typically. each directory has an
ent ry for every record. Just updating the directories makes insertion and
deletion time-consuming.

Comparative search trees enhanced I5 . .l,.:-1 by eliminating the need for
o\'erflow chains, so it was natural to generalize them to multikey access and
improve on inverted files. T his is easy enough. as first shown by k-d trees
(Bentley 1975). But the resulting multi-key Structures are neither as elegant
nor as effic ient as in t he single- key case. The main hindrance is that no
total order can be imposed on multidimensional space without destroying
proximity relationships. A.s a consequence. the simple rebalancing operations
that work for single-key trees fail , and rebalancing algorithms must resort to
more complicated and less efficient techniques. such as general dynanlization
(\\'illard 1978, Overmars 1981).

Variations and improwlllents on mult idimensional comparative search
trees cont inue to appear (e.g. Lomet et al. 1989 . 1990). Their main virtue.
acceptable worst case bounds, comes from the fact that they partition the
actual data to be stored into (nearly) equal parts. The other side of this coin
is that data is part itioned regardless of where in space it is located. Thus the
resulting space partitions exhibit no regularity. in marked contrast to radix
partitions that organize space into cells of predetermined size and location.

2.5 Knowledge representation: Associative recall in
random nets

There is a class of applications where data is most naturally thought of as
a graph , or network with nodes corresponding to entities and arcs to rela
tionships among these. Library catalogs in information retrieval , hypertexts
with their many links , semantic nets in art ificial intelligence are examples.

V. 13

The characteristic access patte rn is 'browsing': .-\ probe into the net followed
by a walk to adjacent nodes. Typically, a nod~ :.s not accessed because of any
inherent characteristic . but because it is assfJdated \\ith (linked to) a node
currently being visited. The requirements p06ed by this type of problem
triggered the development of list processing :echniques and list processing
languages.

These graphs look arbitrary, and the ace'::"s patterns look like random
walks - neither data nor access patterns exhic,it any regular structure to be
exploited. The general list st ructures designed :or these applicat ions have not
evolved much since list processing was created. at least not when compared to
the other data structures discussed. The resuhng lack of sophisticated data
st,uctures for processing data collections linkEd as arbitrary graphs reminds
us that efficient algorithms and data structu.:~ are always tailored to the
presence of specific propert ies to be exploitE<i. in part icular to a regular
structure of the data space. If the latter h::.o no regular structure to be
exploited. access degrades to exhaustive seare:'.

Information retrieval is an example of ar: application where "random"
structure cannot be avoided. Although a eaalog ent ry in a library is a
record with a regularly structured part , e.g. d·:·cument = (author , title , pub
lisher. year) , search by content relies on indO ;(terms chosen from a large
thesaurus of thousands of concepts, ranging =ornlJchemy" to "Zen" . It
does not help to consider 1000 index terms. "ach \\ith a range of perhaps
only two values "relevant" and "irrelevant" , as att ributes of a multi-key data
structures . which typically are designed to har:de at most tens of access keys.

2.6 Spatial data management: Proximity access to ob-
jects embedded in space

In typical applications that rely on spatial data, such as computer-aided
design or geographic information systems, rniilly or all of the requirements
listed so far are likely to appear: interactive trE-llSaction processing, random
looking networks of references among functionally related components, etc.
In addition to such non-spatial requirements. ;patial data imposes three key
characteristics that sets spatial data managel!!ent apart from the cases de
scribed above:

V.14

1. Data represents objects embedded in some c-dimensional Euclidean
space IRd

2. These objects are mostly accessed through th,,:r location in space, in
response to a proximity query such as interSEi:lion with some query
region , or containment therein.

3. A typical spatial object has a significantly more complex structure than
a 'record' in the other app lications mentioned.

Although other applications share some of these c0.aracteristics to a small
extent, in no other do they playa comparably impo07.ant role. Let us high
light the contrast with the example of a collection of records , each with two
attributes , 'social security number ' (SSN) and 'year of birth'.

1. Although it may be convenient to consider sue:: a record to be a point
in a 2-d attribute space. this is not a Euclid"an space; the distance
between two such points. for example, or en':! the distance between
two SSNs, is unlikely to be meaningful.

2. Partial match and orthogonal range queries ar' common in data pro
cessing applications, but more complex query r"gions are rare. In con
trast, arb itrarily complex query regions are co=on in geometric com
putation (e.g. intersection of objects, or ray tracing).

3. Although a record in commercial data proceSEi2g may contain a lot of
data, for search purposes it is just a point .. -\ t::pical spatial object, on
the other hand , is a polyhedron of arbitrary complexity, and we face
the additional problem of representing it usin~ predefined primitives.
such as points , edges. triangles, tetrahedra.

2.7 Concise summary of trends that shaped the devel
opment of data structures

Starting from t he standard data processing task of the ·50s and 60s: "merge
the old master tape with an update file to produce a new master", we have
mentioned a few of the many requirements that gradually accumulated a
great variety of data handling problems. Here is a concise summary that
compares yesterday 's and today 's requirements:

V.1 5

• Batch processing => interactive use:

sequential access => random access

static file => dynamic file

delayed result ok => "instantaneous" response = 0.1 sec

• Simple queries => complex queries

(e.g. access record with unique id => join in relational DB,
proximity query in CAD)

single key => multi-key access

fe\\' query types => many different query types

(e.g. point query => region query, consistency check, ..)

single access => mult i-access transactions

• Point objects => interrelated objects of arbitrary shape

(e.g. [name. SSN, year] => assembly of mechanical parts)

\Yhereas the generic data structure 'array' was able to meet most needs
of numerical computat ion for decades, it soon became evident that no single
type of data st ructure could be found to meet the increasing variety of data
handling problems that arose when computer use expanded to many other
applications. Since the si.:<ties, the search for specialized structures designed
to handle efficiently a specific set of requirements has newr ceased, and the
resulting zoo of data structures is impressive, perhaps frightening to the non
specialist. The next section develops concepts needed to detect some order
in the \\ilderness of data structures.

3 B asic concepts and characteristics of multi
dimensional and spatial data structures

Having presented a concise historical survey that introduced many ideas
needed to understand data structures in general , we now narrow the concep
tual framework to deal with multi-dimensional data. and spatial structures
in part icular. This section aims to be a user 's guide to understand the zoo
of data structures.

.,

V.1 6

3.1 The profile of a data structure

A relatively small number of concepts suffice to characterize any data struc
ture according to its main features. to highlight similarities and contrasts
with other structures that might be considered as alternatives, and to guide
a programmer in his choice of data st ructure. These key concepts surface
when answering the follo\\ing questions:

• What type of data is to be stored? This is answered by specifying the
domain D of key \'alues, and all operations and relations defined on
D. Well-known frequent cases include:

D is an unordered set, such as author-defined index terms for
document retrie\'al

single-key: D i.s totally ordered w.r.t. a relation "<" (e.g. integers ,
character strings)

multi-key: D i.s a Cartesian product Dl x D2 X ... X Dk of totally
ordered domains D;.

When a meaningful distance i.s defined on D. we talk about "metric
data structures" . The most prominent example is Euclidean space
IRI x IR2 X ... X IRk. where IR denotes real numbers , or perhaps integers.

• How Ulany keys (search attributes) are involved? The dimension of
the space has a great influence on the practical complexity of a multi
key data structure. Some approaches that work well in 2 dimensions, for
example. do not generalize efficiently to more dimensions. One might
think that "spatial data" ob\iously refers to 2-d arid 3-d Euclidean
space. but this is not necessarily so. Higher-dimensional spaces arise
naturally when we describe objects to be stored in terms of parameters
that characterize them. The term "multi-key access", including spatial
data. commonly refers to the case where we have less than 10 keys
(search attributes) .

• Functionality (Abstract Data Type): What operations must be sup
ported by the data structure? The 'most frequently used data struc
tures are variations of the type dynamic table or dictionary. They
support primarily the operations Find, Insert, Delete, along with a

V .17

host of others such as PredecessoL St;(':e:sSOL)'lin. Max, etc. lvlany
algorithms that work on spatial data na~·.:rally use standard data struc
tures such as stacks and queues, but tr:."e is nothing "spat ial" about
these.

• How much data is to be stored , what storage media are involved?
The two major categories to be disting-"-hed are internal data struc
tures. designed for central memory. a.:::: e: .. :ternal ones, designed for
disk. ~Iany more designs are suitable f0~ internal data structures than
for external ones.

• What type of objects are to be stored. :'ow simple or complex is their
descrip tion? Points are certainly the s'-'plest case. Complex objects
are often approximated or packaged ir_ simple containers, such as a
bounding box. Is the location of these ot.' .,cts fixed. or are they movable
or subject to other transformations? In :ie second case it is important
to separate the description of the obj ec: :'rom its location.

• \Vhat types of queries occur , what do ":~ knO\\' about their frequenc\'
and relative importance? This involves :'.ifferences such as interactiw
or batch processing. clustered or scatter--:; access. exact or approximate
matches , and many more. Only rarely : 2Jl we characterize the query
population in terms of precise statistica: ;Jarameters.

• How complex. ho\\' efficient are access and update algorithms? The
efficiency of internal data structures i3)ften \\'ell described by their
asymptotic time complexity (e,g. 0 (1). Clog n). O(n), . . .), whereas that
of external data structures is more mea.::.:.ngfuliy measured in terms of
the (small) number of disk accesses nee::~.

• What implementation techniques .;.:e appropriate (e.g. lists, ad
dress computation)? List processing is ;; prime candidate for dynamic
data structures in central memory, but iE ,)ften less efficient for external
data structures.

V.18

3.2 The central issue: Organizing the embedding space
versus organizing its contents

The single most important issue that distinguishes ;patial data structures
from more traditional structures can be summarized ill ,he phrase "organizing
the embdding space versus organizing its contents-. Let us illustrate this
somewhat abstract idea with examples.

A record with fields such as (name, address. social security number, ...)
can always be considered to be a point in some approp:iate Cartesian product
space. But the role and importance of this embedding space for query
processing, whether its structure is exploited or not. depends greatly on the
application and the nature of the data under conskeration. Whereas the
distance between two character strings, say your ad.:ress and mine, has no
practical relevance, the distance between two points i- Euclidean space often
carries information that is useful for efficient query ;rocessing. In addition,
regions in Euclidean space admit relations such as "i::: front of", "contains".
"intersects" that have no counterpart in non-spatia: data. For this reason.
the embedding space plays a much more important r·: :e for spatial data than
for any other kind of data.

Early data structures, developed for non-spatial c~ta . could safely ignore
the embedding space and concentrate on an efficient ,:-rganization of the par
ticular data stored at anyone moment. This point 0: ',iew naturally favored
comparative search techniques. These organize tht data depending on the
relative value of these elements to each other, regardl-"Os of the absolute loca
tion in space of any individual value. Comparative se2..:'ch (e.g. binary search)
leads to structures t hat are easily balanced. Thus. t2ey answer statistical
queries efficiently (e.g. median, percentiles), but not general location
queries ("who is closest to a given query point", ·,,·tore are there data clus
ters"). Balanced trees , with their logarithmic wor~-case performance for
single-key data, are the most successful examples of ~ructures that organize
a specific data set.

Given the success of comparative search for non-spatial data, in particular
for single-key access, it is not surprising that the firs approaches to spatial
data were based on them. And that the crucial role of the embedding space,
independently of the data to be stored, was recognized rather late. But
when comparative search is extended to multi-dimensional spatial data, some
shortcomings cannot be ignored. If we generalize the idea of a balanced

V.19

bi nary search tree to 2 dimensions, as in the following example, we generate
a space partition that lacks any regularity. Such a partition does not make
it easy to answer the question what cells of the partition lie within a given
query region. Even the idea of dynamical ly balancing the tree, so as to
guarantee logarithmic height and access time in the presence of insertions
and deletions, does not generalize efficiently from 1 to 2 dimensions.

x : space partition

....

Figure 2: By balancing data, k-d trees generate irregular space partitions of
great complexity

Data structures based on regular radix partitions of the space, on the
other hand. organize the domain from which data values are drawn in a sys
tematic manner. Because they support the metric defined on this space, a
prerequisi te for efficient query processing, we call them metric data struc
tures. The essent ial structure of these space partitions is determined be
fore the first element is ever inserted ,. just as inch marks on a measuring
scale are independent of what is being measured. The actual data to be
stored merely determines the granularity of these regular partitions. Like
the "longitude-latitude" partit ion of the earth , they use fixed points of ref
erence . independent of the current contents. Thus any point on earth has a
unique pemlanent address, regardless of its relation to any cities that may
or may not be drawn on a current map.

The well-known quad-tree (Finkel et al. 1974, Samet 1990 a, b) illus
trates the advantages of a regular partition of the embedding space, in this
example a unit square. A hierarchical partition of this square into quad
rants and subquadrants , down to any desired level of granularity, provides a
general-purpose scheme for organizing space, a skeleton to which any kind of
spatial data can be attached for systematic access. The picture below shows
a quarter circle digitized on a 16 . 16 grid, and its compact representation as
a 4-le\"el quadtree.

V. 20

o

2

Figure 3: The quad tree is based on a radix 4 hierarchical space partition

"lost queries about spatial data involve the absolute position of objects
in space. not just their relative position among each other. A typical query in
comput er graphics, such as a visibility computation by means of ray tracing,
asks for the first object intercepted by a given ray of light. Computing
the answer im'olves absolute position (location of the ray and objects) and
relative order (nearest along the ray). Regular space partitions reduce search
effort by prO\iding (d irect) access to any cell of the partition. Given a point
with coordinates (x, y), a simple formula determines the unique index of the
unique cell (at any given level of granularity) that contains (x, y). Moreover,
if storage is allocated contiguously as illustrated in Fig. 4, the address of
the disk block of each cell can also be computed merely on the basis of the

I

j

V.21

coordinates (x , y). This allows for direct access to those objects that are near
to any query point.

Breadth-first addressing: parent i <- > children 4 i + { 1, 2, 3, 4 }

10 I 9 61 5
_2- -1- 0 2 3 4 5 6 7
11 I 7 I 8

I
0

I
-3- -4-

I I
Figure 4: Breadth-first traversal aE0cates quad tree cells contiguously in
order of increasing depth

4 The three step model of spatial object re
trieval

Having surveyed the main concepts the reader needs to keep in mind when
exploring the space of spatial data structures. we can now compress this in
formation into a single model that captures the essence of how most spatial
data structures process the vast majority of queries. Naturally, many details
remain to be filled in to define precisely how the three processing steps out
lined below are implemented for any given data structure. But the point to
be made is that spatial query processing is best described in terms of three
steps that can be analyzed independently.

Consider the embedding space shown in Fig. 5. It is grid-partitioned
into rectangular cells and populated by objects drawn as circles or ovals. A
triangular query region q calls for the retrieval of all objects that intersect
q. In this typical exanlple, ' query processing first t ransforms the query q
into the set of query cells surrounded by the dotted line; second, retrieves

I

l

V. 22

the two objects that intersect the query cells h .ithout having to look at the
horizontal oval) ; third , filters out the tall oval <..; a "false drop", and retains
the circle as a "hit" .

,-----,

hI

'" query
/ cells
I
I

)

Figure 5: A region query selects objects tha: populate a grid-partitioned
space

A more general description of these three processing steps follows:

4.1 Cell addressing: query q -> set {(i,j, .. .)} of query
cells

Obtain the coordinates of all cells, at any desire:ct hierarchical leveL of those
cells that intersect q. This address computation step depends on charac
teristics of the query and of the grid , but not directly on the population
of objects. The objects affect this step only to the extent that they deter
mine the current space partition. Thus a simple space partition, i.e. a grid

V.23

of regular structure determined by a few parameI~rs. is a pre-condition for
fast cell addressing . and this is perhaps the data o:ructure designer 's major
choice. He may have less control over the set oi permissible queries, but
fortu nate ly query complexity is a lesser problem tian part it ion complexity.
Even if a complex query causes much computatiCl. it need not cause any
disk accesses, if the space partition has been proj::.erly designed so as to be
completely described by a small amount of data t~t resides in central mem
ory. And given t hat disk access is the efficiency ::ottleneck of spatial data
structures, the t ime required by this fi rst step is g':!lerally negligible.

4.2 Coarse filter : set of query cells det ermines candi-
date objects

All the objects that populate the query cells detern::.:.::ted in step 1 are retrieved
from disk. because t hey might respond to the que,:. This coarse fi lter is the
bottleneck of spatial data access, and the core p)blem of data st ructure
design. Many issues must be resolved, e.g: what :.0 the precise definition of
"an object 0 populates cell CT The picture abc .:~ suggests the plausible
definition "0 intersects C" , and if so, this coars.: alter retrieves the circle
and the vertical oval, a hit and a false drop, whe:.,as the horizontal oval is
ignored. More sophisticated choices are possible :llat avoid associating an
object with all of t he many cells it might intersect. but each choice requires
corresponding ret rieval algorithms to ensure that c·:, objects are missed. And
the main issue of data structure design revolves arocld the association of data
buckets (disk blocks) to cells. where the aim is to ilocate objects that touch
neighboring cells in as few buckets as possible. Hc·,,;ve\·er this coarse filter is
designed, the disk accesses it may cause are likely :0 require the lion's share
of query processing t ime.

4.3 Fine filter: compare each object to t he query

T he objects selected by the coarse filte r are mere candidates that need a
final check to see whether they are hi ts, i. e. respvnd to the query, or false
drops, i.e. passed the first but failed the second, cr"cial test: Does an object
that appears to be close enough at first sight, really intersect the query? This
intersection test is trivial or complex depending on :he shape and complexity '
of query and object. But floating point operatior:s are cheap compared to

V. 24

disk accesses, so t his fine filter is unlikely to be the per:'ormance bottleneck.
In any case, this step is squarely in the realm of computa,ional geometry. Its
implementation depends on the internal representatior: of the objects, i. e.,
on the data st ructure chosen to represent an object for processing in central
memory. A complex object will have to be broken into its const ituent parts,
such as vertices, edges, and faces in the case of a polyh~dron. This has little
to do "ith the design of t he external data structure - the topic of our survey -
which considers an object as a volume of space, to be treated as an undivided
unit whenever possible.

A final comment: Everything discussed above aL"0 applies to the case
where the "objects" , drawn as ovals in the picture. are containers, chosen for
their simple shape, that hold a more complex object. b this case the circle.
which was labeled a "hit" . is reduced to a mere "conta.i.::ler hit", and the fine
filte r must process the object hidden inside, rather th2.:l the container.

As we discuss the design choices that characterize t::'e many spatial data
structures described in subsequent sections the reader:': encouraged to keep
the first t\VO query processing steps in mind: how fast is cell addressing? how
is the query cell population determined, and what di~:': accesses are caused
by the coarse filter? Such questions serve as a guide :·)r a first assessment
of any spatial data structure. Often, they suffice to e!.iminate from further
consideration apparent ly plausible ideas that fail on the grounds that the
first or the second step cannot be implemented efficier.: ly.

5 A sample of data structures and their space
partitions

5.1 General consideration

Data structures for external storage support spatial qt.:eries to a set of geo
metric objects by realizing a fast but inaccurate filter: The data structure
returns a set of external storage blocks that together contain the requested
objects (hits) and others (false drops). Thereafter , a fine filter analyzes each
object retrieved to either include or exclude it from the response. The pur
pose of a data structure is to associate each object "it!: a disk block in such
a way that the required operations are performed efficiently.

For exact match, insert and delete operations, non-spatial data structures

)

.)

.)

V.2S

such as the B- tree or extendible hashing are sufficient , since a unique key can
be computed from the geometric properties of each object. But whenever a
query in\'olves spatial proximity, as in range queries , a spatial data structure
must take into account the shape and location of objects. Naturall y, a query
can be answered faster if the set of geometric objects that form the response
to the query are spread over as few disk blocks as possible. This implies
that for proximity queries, the objects stored in a block of an efficient data
structure should be close in space. As a consequence, spatial data structures
cover the data space (or a part of it) with cells and associate a storage block
with each cell . For point objects , the cells partition (a part of) the space.
and each point is associated with the cell in which it lies. Our illustrat ions
and explanations of data structuring concepts always refer to 2-dimensional
data, but generalization to higher dimensions is often straightforward.

Our sample of spatial data structures is biased towards those suitable for
external storage. This bias favors simple structures and penalizes sophist i
cated structures that use complicated lists. Thus, we exclude t rees designed
to support worst-case efficient algorithms in computational geometry, such
as segment trees and interval t rees, including their variants for disk storage.
Segment trees and interval trees, as well as hierarchies of such trees making
them multidimensional. where e.g. each node of a segment tree references
an intel'\'al tree, have been studied extensively in computational geometry
(Preparata et al. 1985, Edelsbrunner 1982 , Iyengar et al. 1988, Overmars
1983. Samet 1988. Samet 1990a, van Kreveld 1992). Based on the segment
trees designed for central memory and a worst case scenario. external storage
structures have been proposed (Blankenagel 1991). They turned out to be
quite complicated, and there is no evidence yet as to whether these external
storage segment trees will perform well on average in practical situations.
Among the simple structures we discuss, we emphasize address computation
techniques. because they are conceptually the simplest and the easiest to
implement, and they often lead to the most efficient access structures for
practical situations.

Two dominant factors guide the partition of the embedding space into
cells, namely the data (the objects) and the space. At one end of the spec
trum. the partition is defined without attention to the data; at the other,
the data completely determines the partition; naturally, combinations of the
two abound.

V. 26

5.2 Space driven partitions: Multidimensional linear
hashing, space filling curves

The most regular partitions of the data space are those that take into account
only the amount of data to be stored (measured by the number of objects,
or by the number of storage blocks needed), but disregard the objects them
selves and their specific properties. The number of objects merely determines
the number of cells of the partition , but not their location, size or shape. The
latter are inferred from a generic partition pattern for any number of regions
that is parameterized \vith just one parameter. namely the actual number of
regions desired. As a typical example, let us look at the partitions (Fig. 6)
induced by multidimensional variants of linear hashing (Enbody et al. 1988.
Litwin 1980) . such as multidimensional order presef\ing linear hashing with
partial expansions (Kriegel et al. 1986) or dynamic z-hashing (Hut flesz et
al 1988a).

o o o 2 I 3

(a) linear hashing

2 3 2 5 3 7

o o
o , 0 4 , 6

(b) MOLHPE

1 3 2 3 6 7

o o

o 2 0 , 4 5

(c) z-hashing

Figure 6: Space-driven partitions and their development

V.27

5.2.1 Linear hashing

When viewed as a spatial data structure , linear ::'a.shing (Fig. 6(a)) partition;;
the one-dimensional data space into intervals (G::le-dimensional regions) of at
most two different sizes at any time, the smaller being half the larger. To the
left of a separating position. all intervals are 5I!:ciI: to the right, all intervals
are large. This makes it very simple to find ~he interval in which a one
dimensional query point lies: Given the size of ~he smaller intervals and the
separating position, a simple calculation returr, the desired interval. With
the use of an order-preserving addressing funct:·)n. proximity in the I-d data.
space is preserved in storage space. Dynamic r::.odifications to the partition.
induced by increasing or decreasing numbers of data points, are simple. An
extra interval. for instance. is created by partit:}ning (splitting) the leftmost
of the larger intervals into halves, distributing ~ne data points associated 50

far with the split interval among the two ne?, i.THer,als , and adjusting the
separating position. The separating position St2.:':5 at the left space boundary
and moves from left to right through the data s;·ace. On its move, it cuts the
intervals encountered in half. After it has reac::'.;d the right boundary of the
data space, all intervals ha.\·e been cut to the S'illle size. thus the number of
intervals has doubled (the doubling phase is c'-.. mplete). and the separating
position is reset to the left boundary.

The simplicity of the partitioning pattern c: linear hashing makes it ex
tremely simple to keep track of the actual pa:-:ition: the directory consists
of only two values, one for the number (or siz~ of large (or small) intervals
at the beginning of the current doubling phas and one for the separating
position. The cost for this simplicity due to the regularity of the partition is
the lack of adaptivity of the partition to the ac~ual data points. In general.
it will be necessary to provide overflow blocks fvr intervals, since the number
of data points in an inter\-al can be larger tha:! the block capacity. When
ever the data points are distributed evenly ow:- the data space, the lack of
adaptivity may be tolerable: otherwise, conside:-able inefficiency may result.

5.2.2 Multidimensional linear hashing

Multidimensional order preserving linear hash:.ng versions are nothing but
generalizations of linear hashing to higher dime::l.Sions. Therefore, they share
the basic characteristics with linear hashing. T!:~:: \-ary in the way the dim en- '

-I

V.28

sions are involved in the addressing mechanism, The ma::t direct extension of
linear hashing is multidimensional order preserving lineu hashing with par
tial expansions (MOLHPE, Kriegel et al, 1986), where the doubling phases
cycle through the dimensions, Starting with one block. the first doubling
leads to two blocks separated in the first dimension, the second doubling
leads to two more blocks, separated from the first two in the second dimen
sion, and so on (see Fig, 6(b)),

5.2.3 Dynamic z-hashing

Since there is some freedom in choosing the addressing rJllction, we can even
extend the scope of our considerations and ask for mappings that preserve
the geometric order of the data beyond blocks, Here, we request that regions
of blocks whose addresses are close tend to be close i.::l data space, This
makes sense for proximity queries whenever it is fastt~ to read a number
of consecutive blocks than to read the same number Gi blocks, spread out
arbitrarily on the storage medium; it has been used fGr wr iting in Wang et
at. (1987), Since current disks typically have much hig::-:r seek plus latency
times than transfer time, they qualify as good candidat.:s, Similar in spirit,
Droge et al , (1993), Droge (1995) investigate space partitioning schemes for
variable size storage clusters instead of fixed size blocks, An addressing
function that leads to a more global preservation of order is dynamic z
hashing (Hutflesz et at. 1988a, see Fig, 6(c)), The s:atic version of this
addressing mechanism (Manola et al, 1986, Orenstein et al, 1984, Orenstein
1989, 1990) is long known to cartographers as 1[ortoQ encoding (Morton
1966); it is the same as the quad code (Samet 1990a) or the locational code
(Abel et al, 1983, Tropf et al , 1981), One of its nice properties is the fact that
addresses can be computed easily by interleaving the bitS of the coordinates,
cycling through the dimensions; therefore, the technique is also known as bit
interleaving,

The only reason why closeness of blocks does not match closeness of cells
precisely lies in the impossiblity of embedding a higher dimensional partition
in a one-dimensional one while preserving distances, That is , when applied
to one-dimensional linear hashing, dynamic z-hashing fully preserves global
order.

V.29

5.2.4 Space-filling curves

Each of the above addressing mechanisms defines a traversal of the embedding
space by \'isiting all ce lls in the order of their addresses, a so-called space
filling cun·e. A number of space-filling curves other than the ones above have
been proposed , with the goal of maintaining proximity in space also in the
one-dimell5ional embedding the curve defines. Since the data structure based
on a space-filling curve must adapt the partition pattern dynamically, space
filling cun'es usually have recursive definitions. Fig. 7 shows two building
blocks ((a) and (c)) and the three best-known space-filling curves based on
them - bit interleaving (b) , the Gray code (d) (Faloutsos 1985, 1988),and
Hilbert's curve (e) (Faloutsos et aI. 1989, Jagadish 1990b).

17 , " , '" 3 I , 2 L 5 ,.J

"'J " i'I
0 2 3 I 3 12 '51

(a) (b) (e) (d) (e)

Figure 7: Traditional one-dimensional embed dings

Experiments comparing the efficiencies of data structures based on these
curves (.-\bel et aI. 1990, Jagadish 1990b, van Oosterom 1990) seem to in
dicate that for certain sets of geometric objects and sets of queries , bit in
terlea\ing and Hilbert 's curve outperform the Gray code curve significantly,
with Hilbert beating bit interleaving in many cases. On the other hand ,
an analysis of the expected behavior of space filling curves (Nievergelt et
at. 1996). where all possible different queries are equally likely, indicates that
all space filling curves are equally efficient, if disk seek operations are counted.
This il1u.:"rates that there is a bias in the distribution of query ranges in the
experiments: Queries are not chosen at random, but instead are taken to
be in some sense typical of a class of applications. It is certainly useful to
evaluate data structures with respect to particular query distributions; it is
unfortunate that the distributions are not discussed explicitely. In contrast

I

V.30

to the a\'erage case. the worst case for hierarchical space filling curves clearly
depends on the curve (Asano et al. 1995).

In spite of the interesting properties of dynamic z-hashing and other prox
imity pre;::er.·ing mappings of partitions in multidimensional space to one di
mension. we feel that the importance of the corresponding data structures
is limited to uniformly distributed data. due to the lack of adaptivity of the
partition.

5.3 Data driven partitions: k-d-B-tree , hB-tree

The most adaptive partitions of all are those defined by the set of data
points. Since the partition tends to be less regular, a mechanism to keep
track of the partition is needed. A natural choice for such a mechanism is
a hierarchy. and hence multidimensional generalizations of one-dimensional
tree structure;:: have been proposed for that purpose. Prime examples are
the k-d-B-aee (Robinson 1981). a B-tree version (Bayer et al. 1972, Comer
1979) of the k-d-tree (Bentley 1975) , and a modified version of it , the hB-tree
(Lomet et aI. 1989, 1990).

5.3.1 The k-d-B-tree

A k-d-B-tree partition is created from one region for the entire data space by
recursh'e splits of regions (see Fig. 8) . The splits follow the k-d-tree structure
in that they cycle through the dimensions of the data space, but do so within
each node of the tree, The leaves of the tree are all on the same level, just as
in B-trees . and maintain the cells of the partition. Interior nodes maintain
unions of cells to direct the search through the tree. Thus, the tree is leaf
oriented and serves as a directory. Whenever a data block overflows, due to
an insert operation, its region is split so as to balance the number of data
points in both subregions, and the change propagates towards the root. This
may neces;::itate a spli t of a directory block region, not a simple operation in
a k-d-B-tree. The reason is that in order to balance the load between both
directory block subregions, a split position may be chosen that cuts through
a region of some child (or even several children), thereby forcing the spli t
to propagate downwards in the tree as well. Since the decision for the most
balanced split position is made locally for a node, the forced downward split
may become quite a costly operat ion, both in terms of runtime and of the

.J

V.31

resul ting storage space utilization. As a result. no lower bound on the storage
space utilization can be gi\'en for k-d-B-trees. i.:l contrast to the 50 guarantee
for B-trees.

A B

c

Figure 8: Data-driven partitions: The k-d-B-tree

5.3.2 The hE-tree

A closer look reveals that in degenerate cases . '" balanced split may be impos
sible in the k-d-B-tree (see Fig. 9). To remedy ~hat situation, a variant of the
k-d-B-tree has been proposed , the hB-tree (LeJ!llet et al. 1989, 1990). It has
the interesting property that the regions that 'onn the partition of the data
space are not restricted to multidimensional ,"(tangles. Instead, subregions
can be removed from a region (see Fig. 9), leaving a "holey brick" . With
this freedom, balanced splits are possible in G"generate situations in which
a single split line fails. The hB-tree keeps tZ2.ck of holey brick regions by
allowing directory entries to refer to the sarr." block: that is, a holey brick
region is represented in the rooted DAG directory by the union of a set of
rectangular regions.' Of course, holey bricks cay occur on each level of the
rooted DAG; changes propagate upwards, just as in B-trees. As an example.
Fig. 9c shows the rooted k-d-DAG local to a directory block to be split with
regions shown in Fig. 9d , and Fig. 9b shows tl:" part of the rooted DAG that
propagates upwards when the block is split as sho';\n in Fig. 9a.

Although data-driven partitions turn out to be quite complicated to main
tain , they are able to cope "ith skew data reasonably welL while space-driven
partitions fail here. For extremely skew data or whenever worst-case guaran
tees are more important than average behavior. data-driven partitions may
be the method of choice. Due to the freedom in splitting regions , they cer
tainly do have a great inherent flexibility that allows them to be tuned to

I

V. 32

A • • G I H
• •

~
Y3

~
••••

8

F I

c ~
0

x4

(a) (b) (e)

Figure 9: Data-driven partitions: The hB- tree

various situations easily. For instance, the local split decision (LSD-) tree is
designed to make good use of a large available main memory. while resorting
to external storage as necessary (Henrich et at. 1989a. b. Henrich 1990). Ex
cept for such situations , the adaptivity of data-driven partitions will rarely
compensate for the burden of their complexity and fragility. More often.
combinat ions of space-driven and data-driven partit ions will be appropriate.

5.4 Combinations of space driven and data driven par
titions: EXCELL, grid fi le, hierarchical grid files,
BANG file

In their simplest form , these partitions follow the generic pattern of space
driven partitions, with the level of refinement determined by the data. A
typical example of a one-dimensional data structure of this type is extendible
hashing (Fagin et at. 1979), where the data space ·is partitioned by recursively
halving exactly those subspaces that contain too many data points.

5.4.1 EXCELL and the grid file

A direct generalization of extendible hashing to higher dimension , EXCELL
(Tamminen 1982) , applies t he one-dimensional strategy of extendible hash
ing to each dimension, again running cyclically through the dimensions (see
Fig. lOa). Since an extra directory is available for each dimension, plus a

V. 33

directory for the mult idimensional product of the one-dimensional directo
ries. and the number of blocks that can be addressed is therefore the product
of the sizes of all one-dimensional directories , the sum of the sizes of the
one-dirnell5ional directories tends to be quite small in all realist ic cases. This
obsel':at ion is used in the grid file (! ievergelt et al. 1981, 1984) to keep the
directories for all single dimensions - the so-called scales - in main memory;
as a result. no duplication of a directory is necessary due to a data block
split. but instead a mere addition of a (multidimensional) directory entry
wi ll suffice (see Fig. l Ob). Nevertheless, the grid file inherits from extendible
hashing the superlinear growth of its directory (Regnier 1985, Tamminen
1985). A. search operation in the grid file can always be carried out with
just two e;..."ternal memory accesses, the first one to the directory, based on
the information from the scales, and the second one to the data block refer
enced in the directory block. Similarly. a range query can be answered by
first searching for a corner point of the query range, and t hen propagating
to adjacent blocks as indicated by the directory. Since this entails a range
query on the directory, one might organize the directory itself as a grid file.

A A B B A A B

C D E E C D E

(a) (b)

Figure 10: EXCELL and grid file partitions: Cells with data block addresses

5.4.2 Hierarchical grid files

This approach has been pursued in hierarchical grid files (Fig. 11) with two
(Hinrichs 198.5) or more directory levels (Krishnamurthy et al. 1985). The
interior of each directory block is organized as a grid file directory; changes

V.34

in the t ree structure, due to block split or merge operations , propagate along
the search path in the tree. Data structures of this type are often called
hash trees. A. particularly efficient example of such a structure is the buddy
tree (Seeger 1989 , Seeger et al. 1990). It applies a specific merge strategy,
and it distinguishes the standard block regions, using them for insertions,
from the block regions used for all search operations: The latter are the
bounding boxes of the objects stored in the corresponding subtree. While
the non-hierarchical grid file inherits the ptoperty of a superlinearly growing
directory from extendible hashing. hash trees grow linearly, just like trees in
general. This does not imply that hash trees are always the better choice in
practice: It is true for many data structures that better asymptotic efficiency
may come at the cost of higher conceptual complexity and therefore lead to
poorer perforlllance in practical applications.

A B o
A B 0 E E H H K E E HHK

'I ry E E I J K

A C C F G L F G L L L

c
(a) (b) (c)

Figure 11: Two- level (a). (b) against one-level grid file partition (c)

5.4.3 The BANG file

The balanced and nested grid file (BANG file, Freeston 1987) is a particu
larly interesting attempt at balancing the load in a regular partition pattern.
It operates on a regular grid in such a way as to guarantee linear growth of
the directory. Unlike the grid file. the BANG file splits a cell such that the
numbers of objects in the two resulting subs paces differ as little as possible.
This is done under the restriCtion that the smaller subspace is created by
recursively cutting the subspace to be divided along some dimension into
two halves. In addition. the cuts run cyclically through all dimensions (see

V.35

fig. 12a. where point numbers indicate the insertion order). As a conse
quence, the BANG file tends to use fewer cells than the grid file (Fig. 12c) ,
but these cells have a more complex shape. !\e\·ertheless, it is not a problem
to maintain these cell: we simply maintain rectangular cells and associate a
point with the smallest of all cells containing it (Fig. 12b). These cells can
even be stored in a highly compressed form: Since they are created with a
very strict mechanism, each cell can be stored as a pair of indices, where the
first one indicates the number of recursive cuts and the second one is the
relative number in some numbering :;cheme, for instance that of MOLHPE
(Fig. 12b). Not surprisingly. the BA~G file directory is organized as a tree,
following the BANG file strategy recursively. This results in the necessity
to propagate splits not only upwards in the hierarchy, but also downwards -
the forced split phenomenon shared by quite a few hierarchical spatial access
structure"'s"-. ____ .-T71 , '.

7 •

• • • • ·r • • •

0.0

I~ ..

3.:-

3 • 3.0 • . ' . , • •
5 • •

(a) (b) (c)

Figure 12: _-\ BA! -G file partition (a;. its maintenance (b), and a grid file
partition (c) for capacity 3

There is a large number of data srructures whose partition is driven by
a combination of space and data considerations. with quad tree based struc
tures (Finkel et al. 197·1, Samet 1990a. b) being the most prominent ones
among them. Others are variants of grid file or hash tree structures (Kriegel
et al . 1988, Otoo 1986, 1990. Ouksel 1985, Ozkarahan et al. 1985) or adaptive
hashing schemes (Kriegel et al . 1987, 1989b). Some of them aim in particular
at high storage space utilization (Hutflesz et al. 1988b, c, d), apart from the
efficiency of range queries.

V. 36

5.5 Redundant data storage

So far we have presented data structures that store every data element (point)
exactly once. This natural approach is universally followed in pract ice, be
cause data redundancy complicates updating and therefore is used only to
enhance reliability (e.g. back-up procedures), but is not part of the access
structure.

From a theoretical point of view, however, one can ask ,,;hether replicating
some part of the data might speed up retrieval. This turns out to be true in
part icular for static files. Chazelle (1990) proves the following lower bound
for a pointer machine that executes static 2-d range searches: A query t ime of
O(t+ logC n), where t is the number of points reported and c is some constant .
can only be achieved at the expense of l1(n log n/ log log r.) storage.

Data structures that use data redundancy to impro';e access time for
range searching include the P-range tree (Subramanian 199.)), a combination
of the priority search t ree and a 2-d range t ree.

6 Spatial data structures for extended ob
jects

So far \\'e have considered the simplest of spatial object~ only, points , for
the good reason that any spa tial data ~tructure must be able to handle
point data efficiently. Most app licat ions, however, deal Voirh complex spatial
objects. And although complex objects are composed of simpler building
blocks, we encounter a mult itude of the latter: line segrne!lts, poly-lines, tri
angles, aligned rectangles, simple polygons, circles and o\-als, and the mult i
dimensional generalizations of all these. The way a spatial data structure
supports extended (non-point) objects of various kinds determines whether
it is generally applicable. For extended objects, each of wl>ich may intersect a
numl;ler of cells, the associat ion of an object with a cell is not as immediate as
it is for points. In this case, cells usually overlap, and an object is associated
most often either with a cell that contains it , or with all cells it intersects.
But there are also other possibilities. Therefore, while we distinguish data
st ructures for points merely according to the type of cells they define, we
characterize data structures for extended objects also according to the way
they associate objects with regions.

l

V.37

We consider the ca<;e where objects to be stored are relatively simple, in
the sense that they have a concise description, and computations are easy
and efficient. This restriction is realistic because complex objects are often
approximated or bounded by a simple container, such as a bounding box,
the smallest aligned (axis-parallel) multidimensional rectangle that contains
the ob jeer.. Such a container serves as a conservative filter for spatial prox
imity queries. In a range query, for instance, an object intersects the query
range only if its bounding box intersects the query range; similarly, a query
point can be contained in an object only if it is contained in its bound
ing box. :-lost data structures that support extended objects limit them
selves to aligned rectangles (bounding boxes); exceptions include (Bruzzone
et al. 1993. Gunther 1988, 1989, 1992a, Gunther et al. 1989 , 1991, Jagadish
1990a. \'an Oosterom et al. 1990). Even in this restricted case, it is by no
means clear how to associate a rectangle with a region in space, because a
rectangle may intersect more than one of these regions. There are essen
tially three different extremal solutions to this problem, and a fourth one as
a combination of two extremes.

6.1 Parameter space transformations

Since points can be maintained in any of the ways described in the previous
section. there is the obvious possibility to store simple objects as points in
some parameter space. Simple mappings have been proposed that transform
a d-dirneIl.5ional rectangle into a 2-d-dimensional point (Henrich 1990, Hin
richs 198·5. Seeger 1989). The corner transformation simply takes the 2-d
rec tangle boundary coordinates and interprets them as the coordinates of a
point in 2-d space (see Fig. 13 a for d = 1). The center transformation sep
arates parameters for the position of the rectangle in space from parameters
for the size of the rectangle: the former are the d coordinates of the rectangle
center. and the latter are the extensions of the rectangles in the d dimensions
- divided by two , resulting in a more evenly populated data space (see Fig. 13
b). But then , fairly small query ranges (that seem to be common in prac
tice) may map to queries with fairly large query regions (see Fig. 13 c and d),
and the distribution of points, the data space partition and t he shape of the
query region seem not to work well together. For the special case in which
range queries are the only type of proximity queries , good transformations
have actually been found (Pagel et al. 1993a). These transformations use

J

V. 38

parameters such as volume and aspect ratio. and they turn out to cluster
rectangle:> in a way that is quite appropriate for many point data structures ,
especially in combination with highly adaptive space partitions such as the
LSD-tree (Henrich et al. 1989b , Henrich 1990). Nevertheless , we feel that
a transformation cannot be general enough to preserve the geometry of the
situation entirely, and as a consequence, will not be able to support all kinds
of locational queries well. In the remainder of this section, we will therefore
look more closely at ways .to store rectangles in the given space.

(r~)/2

• • I P2

P3 ·

t • P2
•

-P, • P3 • r+/)/2
•

...----1> , >----P, (r+ lY2
1-< ,....,

1 J ~2 ,
I--< b3

Ib2
I---t ::3
(0) (b) (e) (d)

Figure 13: Corner transformation (a) and center t ransformation (b) for in
tervals and for query regions (c) , (d)

6.2 Clipping

The problem in associating a rectangle with a region in a partition is the
fact that a rectangle can intersect more than one region . For the technique
of answering a range query by returning all those data blocks whose regions
intersect the query range, there is no other choice but to associate each
rectangle "'ith all regions in the partition that it intersects. This method
is called clipping. It can lead to reasonable performance in cases where the
geometric object behind the bounding box can be cut at region boundaries,
such as thoi3e cartographic applications in which objects are polygons with
lots of corners (Schek et al. 1986, Waterfeld 1991). In these cases, the clipping
technique has the advantage over many others to be conceptually simple and

. 1

V.39

to preserve the geometry of the situation for any proximity query. Clipping
turns out not to lead to good performance for rectangles (Six et al. 1988) ,
though, and it can become very bad in the worst case, with a linear proportion
of all rectangles even on the best possible cut line (d' Amore et al. 1993a. b,
Nguyen et al. 1993, d'Arnore et al. 1995).

6.3 Regions with unbounded overlap: R-tree

6.3.1 Storing a reference point

In another straightforward way of using point data structures for storing
objects, a reference point is chosen for each object - typically its center (of
gravity) -. and the object is a."-Sociated with the block in whose region its
reference point lies. This works only if we keep track of the extensions of
the objects beyond the region boundaries. In a range query, the cell to be
considered for a block is not the cell defined by the partition of the data
space, but instead the bounding box of all objects actual ly associated with
the block. The latter may in general be larger than the former, and not
all data structures will easily accomodate that extended region information.
Hierarchical structures such as k-d-trees (Ooi 1987, Ooi et al. 1989) or the
BANG file (Freeston 1989b) as ,,'ell as some others (Seeger et al. 1988, Seeger
1989) can be used for that purpose. Even though this approach works well
whenever only small objects are to be stored. it is inefficient in generaL be
cause no attempt is made to avoid the overlap of search regions, and therefore
geometric selectivity is lost easily.

6.3.2 The R-tree family

With the e)..-plicit goal of high geometric selectivity, the R-tree (Guttman
1984) has been designed to maintain block cells that overlap just as much as
necessary, so as to make each rectangle fall entirely within a cell. Its structure
resembles the B+-tree. including restructuring operations that propagate
from the leaf level towards the root. Each data cell is the bounding box
of the rectangles associated with the corresponding block. Each directory
block maintains a rectangular subspace of the data space; its block cell is the
bounding box of the subspaces of its children. As a consequence, on each
level of the tree, each stored rectangle lies entirely in at least one block cell ;

I

V.40

since block cells will overlap in general. it may actually lie in more than one
cell (in Fig. 1,1 , rectangles E and F lie in cells A and B, referenced by the root
block) . This fac t may distort geometric selecti\ity: In an exact match query,
we cannot restrict the search for E to either A or B. but instead we need to
follow both paths (in the worst case, v.ith no hint as to which one is more
likely). Since it is essential for the R- tree to avoid excessive overlap of cells ,
many strategies of split ting an overflowing block into two exist, ranging from
the initial suggestion (Guttman 1984) to less or more sophisticated heuristics
(Beckmann et al. 1990, Greene 1989) and even to optimal splits for a number
of criteria (Becker et al. 1992 . Six et al. 1992). \\-ith the appropriate splitting
strategy and extra restructuring operations (Beckmann et al . 1990), the R
tree seems to be one of the most efficient access structures for rectangles to
date.

B I0OI

A

f-c
LevalO

(rOOI) A

r-- I
0 E " G H 1 J

B
A H

c

W Levell

Figure 14: Cells of an R-tree

For specific purposes, a number of variants of the R-tree have been pro
posed. The R +-tree avoids overlapping directory cells by clipping rectangles
as necessary (Faloutsos et al. 1987, Sellis et al. 1987). It suffers , however ,
somewhat from the inefficiency caused by forced splits propagating down
wards, similar to k-d-B-trees. For a static situation, in which almost no

V.41

insertions or deletions take place, and therefore queries dominate the pic
ture , the R-tree can be packed densely so as to increase effciency in time and
space (Roussopoulos et al. 1985). Ohsawa et al. (1990) combine the R-tree
and quad tree cells.

6.4 C ells w ith bounded overlap: multilayer structures,
R-file, guard file

Geometric selectivity increases with decreasing cell oYerlap. This has been
the starting point for a number of attempts to maintain rectangles with cells
whose overlap is under tight control

6.4. 1 T he mult ilayer technique

The basic idea is to cover the data space with more than one partition. In
the most direct way to implement this idea, each partition - called layer -
is maintained in an extra data structure (Six et al. 1988) . Care has to be
taken to ensure that the partitions of the different layers are actually differem
(Fig. 1.5) : otherwise , the number of partitions increases more than necessary.
and in general efficiency deteriorates. A fairly large number of split strategies
that guarantees the partitions to be quite different ha\'e been developed. It
can be guaranteed that for storing a set of small d-dimensional rectangles.
d + 1 layers will always suffice - the technical term small there has a preci5e
meaning (Six et al. 1988). Large rectangles must be clipped, whenever there
are few of them , such as in most cartographic applications, clipping will not
be harmful.

Cl

IT
0 r

DO
D

Layer 1 Layer 2 Layer 3

Figure 15: Cells of a three-layer grid file

=

V.42

In a multilayer data st ructure that uses a point data st ructure with a
modified split strategy for each layer. the layers are totally ordered, from
lowest to highest. A rectangle is associated with the lowest layer that has
a cell of the partition containing it entirely; in that layer, the rectangle
is associated with that cell , just like a point in the underlying point data
structure. If there is no such layer. either a new layer is created, or the
rectangle is clipped at the boundaries of the highest layer.

Note that the multilayer technique is generic in the sense that it allows
anyone of a number of point data structures to be used for the layers. Exper
iments ';\ith a multilayer grid file, for instance, show that the loss of efficiency
as compared with a standard (single layer) grid file for points is tolerable,
with a certain. but smalL query overhead due to the fact that a directory
for each layer needs to be inspected. Experiments with multilayer dynamic
z-hashing (Hutfiesz et al. 1992) show that the attempt to preserve global
order make;; range queries extremely fast , far better than any other data
structure. for data and queries from cartography. In addit ion, the multilayer
technique realizes the advantages of recursive linear hashing (Ramamoha
narao et al. 1984) over linear hashing without the overhead, because there
are several (recursive) layers anyway.

6 .4.2 The R-file

Since the search parameters are the same for each layer of a multilayer st ruc
ture (e.g. in a range query). it might be desirable to somehow integrate
all the directories into just one directory. This is exactly what the R-file
(Hutfiesz et al . 1990) does: It maintains a set of overlapping cells with one
directory. Since the grid file philosophy of data-space oriented partitioning
and t he BANG file technique for keeping the directory small have proven
to be useful. both are applied in the R-file. Overlapping cells are defined
by considering each cell to be a rectangle, exactly as in the BANG file, but
objects are associated with cells in a different way. In the R-file, a rectangle
is associated with the smallest cell that contains it entirely (Fig. 16). Su
perficially. this sounds to the BANG file technique, but since it is applied to
rectangles instead of points, it creates overlapping rectangular cells instead
of a partition into orthogonal polygons.

\Nhen too many rectangles are associated with one cell: if too many
rectangles intersect the split line of a cell in which they lie, they cannot be

V. 43

L I I I

01 In
u J!

r 1-

g ~ c

(a) (b) (c)

Figure 16: R-file cells for insertion (a) and for searching (b), and grid file
cells Thith clipping (c)

distributed to other cells. In that case, a lower dimensional R-file stores these
rectangles: the one dimension in which all of these rectangles intersect the
spli t line can be disregarded. Fortunately, no extra data structure is needed
for the (d-1)-dimensional R-file; instead, a simple skip of the corresponding
dimension in t he cyclic turn through all dimensions will do. Experiments
have shown the R-file to be a very efficient data structure for cartographic
data. It suffers. however, from the disadvantage of being somewhat compli
cated to implement, with extra algorithmic difficulties (but not inefficiencies)
such as a forced split downwards. Nevertheless, it is a good basis for a data
struct ure that supports queries with a requested degree of detail , all within
a query range (Becker et al. 1991).

6.4.3 The guard file

T he difficulties in maintaining objects , as opposed to points, comes from the
fact that an · object may intersect more than one cell of a space partition ,
that is. it may intersect split lines in a dynamic data structure. In the R-file,
for instance. rectangles intersecting a split line are sometimes handled sepa
rately. The guard file deliberately places guard points (not lines) in strategic
positions. and then distinguishes objects according to the guards they over
lap. Niewrgelt et al . (1993) study guard placements at the corners of the
cells of some regular space partition. Fig. 17 shows a quad tree partition ,
but other partitions such as triangular or hexagonal ones work just as well.

By imposing a hierarchy on the guards, range queries become efficient:
The lewl of a guard is the level of the largest cell of which the guard is a corner

V. 44

I ~

0 I

r-, 0
L...J

Figure 17: A quad tree partition with guards at corner points

point , with t he root of the tree having the highest level. Any sufficiently large
object must overlap a guard. An object containing a guard is stored with the
highest level guard that it contains . . -ill object that contains no guard must
be small: it can be clipped and stored with all cells (of the partition , that
is. at the leaf level of the quad tree) that it intersects. As a consequence, a
range query would be carried out by inspecting the objects associated with
all guards in the query range and all cells intersecting the query range. For
long and skinny objects. clipping would make this data structure quite an
inefficient one . but for fat objects (those with aspect ratio not too far from
one) such as those often encountered in cartography, clipping would not be
a problem.

The guard file. however. includes an additional step to trade storage space
for query time: An unguarded object is associated with exactly one cell of
the partition. namely the one into v,hich its center (of gravity) falls. Hence,
each object is stored only a smalL constant number of times, the number
depending only on .the type of regular partition being used. In a range
query, it is no longer sufficient to inspect the cells that intersect the query
range: Adjacent cells also need to be inspected. The halo by which a query
range must be extended depends entirely on how fat the stored objects are:
the fatter the objects , the smaller the halo. For various types of regular
part it ions and various bounds on the fatness (in a precise, technical sense for
arbitrary, convex geometric objects). it has been shown that the guard file is
conceptually simple, easy to implement , and efficient at the same time.

V. 45

6.5 Conclusions drawn from the structures surveyed

The set of spatial data structures and paradigms has grown to a respectable
size. A multitude of concepts serve as building blocks in the design of new
spatial data structures for specific purposes. A number of convincing sugges
tions indicate that , for instance, these building blocks can be used in the de
sign of data structures for more complex settings. Becker (1992), Brinkhoff et
al. (1993), Gunther (1992b), Kriegel et al. (1992a). and Shaffer et al . (1990a).
among others, show ho\\' various kinds of set operations, such as spatial join.
can be performed efficiently by using a spatial index. For objects and op
erations going beyond geometry, Ohler (1992) shows how to design access
structures that involve non-geometric attributes in a query. In a closer look
to the needs of cartography, a data structure of weighted geometric objects
is proposed that efficiently supports queries \\ith a varying degree of de
taiL as specified by the user (Becker et al. 1991). For the special case in
which the objects to be stored are the polygons of a planar partition, and
access to entire polygons (in containment queries "'ith points, for instance)
as well as access to the polygon boundaries (for drawing a map) is needed .
there are suggestions that consider both e).."temal accesses and main memory
computations as important cost factors (Kriegel et al. 1992b , Schiwietz et
al. 1993) ; other suggestions aim at making queries efficient without storing
polygon boundaries twice (Becker 1993). In addition, hierarchical spatial
access structures can be designed to support queries into the past (Becker
et al. 1993, Charl ton et al. 1990, Xu et al. 1990). It can be seen from this
list that even though a fair number of concepts of data access are readily
available, it is mosten often a considerable effort to bring any two of them
together without losing key features , especially efficiency . .

All the arguments above concerning the efficiency of data structures are
of an intuit ive nature. An average case analysis is rarely given (Ang et
al. 1992, Devroye 1986. Flajolet et al. 1986. Lindenbaum et al. 1995, Nelson
et al. 1987, Regnier 1985, Rottke et al. 1987 are notable exceptions), because
a probability model for sets of geometric objects and queries is very hard to
get (Ambartzumjan et al. 1993, Harding et al. 197·01, Matheron 1975 , Santalo
1976, Stoyan et al. 1987). Even experiments (Kriegel et al . 1989a, Shaffer
et al. 1990b, Smith et al. 1990) that clarify some of the efficiency aspects
tend to reveal not too much about the contribution of the building blocks of
data st ructures to their overall efficiency. Some steps towards a clarification

V.46

of what is the desired average case efficiency a.:.d how to achieve it , with
consequences for the data structure design. ha';e been taken (Henrich et
al. 1991, Pagel et al. 1993b. Six et al. 1992, Ang e: al. 1992 , Pagel 1995), but
many more are needed to shed enough light on tte inner workings of spatial
data structures. In the meantime, the designer c.nd programmer of spatial
data structures should be aware of the existing boding blocks and use them
with expertise and intuition. bringing them toge:2ter wherever possible.

7 Summary: Points to consider when choos
ing a spatial data structure

Let us conclude this bird's eye survey of the domG.'.!:l of spatial data structures
with a few concisely stated points of view and rE"(Dmmendations.

Spatial data differs from all other types of c2.ta in important respects.
Objects are embedded in a Euclidean space with ' :5 rich geometric structure.
and most queries involve proximity rather thaL '.ntrinsic properties of the
objects to be retrieved. Thus data structures ·:'ewloped for conventional
data base systems are unlikely to be efficient.

The most important feature of a spatial date structure is a systematic.
regular organization of the embedding space. TLs serves as a skeleton that
lets one address regions of space in terms of invar.a.nt quantities, rather than
merely in relation to transient objects that hap per: co be stored. In particular.
radix partitions of the space are more widely us0J.l than data-driven space
partitions based on comparative search.

The vast literature on spatial data describes a multitude of structures
that differ only in technical details. Theory has :::.ot progressed to the stage
where it can rank them in terms of efficiency. Performance comparisons
representative of a wide range of applications ane! data are difficult to design.
and' reported results to this effect are often biased. Thus we are left to choose
on the basis of common sense and conceptual simplicity.

Whereas the choice of a spatial data structU!';e does not require a lot of
detailed technical know-how. programming the computational geometry rou
tines that implement the fine filter of Section 4.3 is a different matter. Writ
ing robust and efficient procedures that intersect arbitrary polyhedra (say a
query region and an object) is a specialist 's task ;nat requires a different set

.,

V.47

of skills.
In conclusion, this survey is neither a "how-to" recipe book that describe"

the multitude of data structures, nor a sales pitch for anyone in particular.
It intends to be a thought-provoking display of the L""ues to ponder and to
assess. Our message places responsibility for a competent choice where it
belongs , with the programmer.

References
Abel, D.L J.L. Smith (1983): A data structure and algorithm based on a
linear key for a rectangle retrieval problem; Computer Vision , Graphics, and
Image Processing, Vol. 24, 1-13
Abel, D.J., D.lvl. Mark (1990): A comparative analysi5 of some two-dimensional
orderings: International Journal of Geographical Information Systems, Vol. 4.
No. 1. 21-31
Adelson-Velskii, G.M. , Y.M. Landis (1962): .-ill alg'Jrithm for the organi
zation of information , Doklady Akademia Nauk SSSR. Vol, 146, 263-266:
English translation in: Soviet Math. 3, 1259-1263
Ambartzumjan, R.V. , J. Mecke, D. Stoyan (1993): Geometrische Wahrschein
lichkeiten und Stochastische Geometrie, Akademie Verlag, Berlin
Ang, C.-H., H. Samet (1992): Average storage utilization of a bucket method:
Technical Report , University of Maryland
Aref. \V.G., H. Samet (1994): The spatial filter redsited. In Proc. 6th
Int. Symp. on Spatial Data Handling, 190-208
Asano. T.. D. Ranjan, T. Roos , P. Widmayer. E. Welzl (1995): Space filling
curves and their use in the design of geometric data structures , Proc. Sec
ond Intern. Symp. of Latin American Theoretical lniormatics LATIN '9-5 .
Valparaiso, Lecture Notes in Computer Science, Vol. 9ll, Springer-Verlag.
36-48
Bayer. R., C. McCreight (1972): Organization and maintenance of large or
dered indexes; Acta Informatica, Vol, 1, No.3. 173-159
Bayer. R. , Schkolnick, M. (1977): Concurrency of operations on B-trees, Acta
Informatica Vol. 1, 1-21
Becker. B. (1993): Methoden und Strukturen zur effizienten Verwaltung ge
ometrischer Objekte in Geo-Informationssystemen, Dissertation, Mathema
tische Fakultat, Albert-Ludwigs-U niversitat, Freiburg. Germany
Becker. B., H.-W. Six, P. Widmayer (1991): Spatial priority search: An ac
cess technique for scaleless maps, Proc. ACM SIG~[OD International Con-

V.48

ference on the l\lanagement of Data. Denver, 128-137
Becker, B .. P. Franciosa, S. Gschwind, T. Ohler, G. ThiemL P. Widmayer
(1992): Enclosing many boxes by an optimal pair of boxes; Proc. 9th Annual
Symposium on Theoretical Aspects of Computer Science STACS, Cachan ,
Lecture :\otes in Computer Science, Vol. 577, 475-486
Becker. B .. S. Gschwind, T. Ohler, B. Seeger, P. Widmayer (1993): On
optimal multiversion access structures; 3rd International Symposium on Ad
vances in Spatial Databases, Singapore, Lecture Notes in Computer Science,
Vol. 692. Springer-Verlag, 123- 141
Becker, L. (1992): A new algorithm and a cost model for join processing with
grid files: Dissertation , Fachbereich Elektrotechnik und Informatik, Univer
sitiit-Gesalllthochschule Siegen, Germany
Beckmann. N. , H.-P. Kriegel. R. Schneider, B. Seeger (1990): The R*-tree:
An efficient and robust access method for points and rectangles; Proc. ACM
SIGl\IOD International Conference on the Management of Data, Atlantic
City. :\e';\' Jersey, 322-331
Bentley. J .L. (197.5): Multidimensional binary search used for associative
searching: Communications of the ACM, Vol. 18, No.9 , 509-517
Blankenagel. G. (1991): Intervall- Indexstrukturen und externe Algorithmen
fUr Nicht-Standard-Datenbanksysteme; Dissertation, FernUniversitiit Hagen
Brinkhoff. T .. H.-P. Kriegel. B. Seeger (1993): Efficient processing of spatial
joins using R-trees: Proc. ACM SIGMOD International Conference on the
Management of Data, Washington D.C ., 237-246
Brinkhoff. T . (1994): Der Spatial Join in Geo-Datenbanksystemen. Ph.D.thesis.
Lud';\ig-),laximilians-U niversitiit Miinchen.
Brinkhoff. T . und H.-P. Kriegel (1994): The impact of gl()bal clustering on
spatial database systems. In Proc. 20th Int. Conf. on Very Large Data Bases,
168-179.
Brinkhoff. T ., H.-P. Kriegel, and R. Schneider (1993) : Comparison of approx
imations of complex objects used fo r approximation-based query processing
in spat ial database systems. In Proc. 9th IEEE Int. Conf. on Data Eng.,
40-49.
Brinkhoff. T. , H.-P. Kriegel, R. Schneider , and B. Seeger (1994): Multi-step
processing of spatial joins. In Proc. ACM SIGMOD Int. Conf. on Manage
ment of Data, 197-208.
Bruzzone. E., L. De Floriani , M. Pellegrini (1993): A hierarchical spatial
index for cell complexes; 3rd International Symposium on Advances in Spa-

V.49

tial Databases. Singapore. Lecture Notes in Computer Science. Vol. 692.
Springer-\'erlag. 105-122 .
Charlton. :'I.E .. S. Openshaw, C. Wymer (1990): Some experiments with an
adaptive data structure in the analysis of space-time data; Proc. 4th Inter
national Symposium on Spatial Data Handling, Zurich , 1030-1039
Chazelle. B. (1990): Lower bounds for orthogonal range searching: 1. The
reporting case: J . ACM Vol. 37 , No.2, 200-212
Chen, L.. R. Drach, M. Keating, S. Louis, D. Rotem , and A. Shoshani (1995):
Access to multidimensional datasets on tertiary storage systems. Informa
tion Systems 20(2), 155-183.
Comer . D. (1979): The ubiquitous B-tree; ACM Computing Surveys, Vol. 1L
No.2. 121-138
Crain, LK. (1990): Extremely large spatial information systems: a quantita
tive perspective; Proc. 4th International Symposium on Spatial Data Han
dling . Zurich. 632-641
d'Amore. F .. P.G. Franciosa (1993a): Separating sets of hyperrectangles. In
ternational Journal of Computational Geometry and Applications, Vol. 3,
No.2 , 155-1 6·5
d 'Amore. F .. T. Roos, P. Widmayer (1993b): An optimal algorithm for com
puting a best cut of a set of hyperrectangles, International Computer Graph
ics Conference. Bombay
d 'Amore. F . V. H. Nguyen, T. Roos. P. Widmayer (1995): On optimal cuts
of hyperrectangles, Computing, Vol. 55, Springer-Verlag, 191-206
Devroye L. (1986): Lecture notes on bucket algorithms; Birkhauser Verlag.
Boston
Droge. G .. H.-J. Schek, (1993): Query-adaptive data space part itioning using
variable-size storage clusters; 3rd International Symposium on Advances in
Spatial Databases, Singapore, Lecture Notes in Computer Science, Vol. 692,
Springer-\'erlag, 337-356
Droge, G. (1995): Eine anfrage-adaptive Partitionierungsstrategie fur Raurnzu
griffsmethoden in Geo-Datenbanken; Dissertation ETH Zurich Nr. 11172
Edelsbnmner. H. (1982): Intersection problems in computational geometry:
Dissertation . Technische Universitat Graz
Enbody. R.J.. H.C. Du (1988): Dynamic hashing schemes; ACM Computing
Surveys, Vol. 20, No.2, 85-113
Evangelidis. G. (1994): The hB - Tree: A Concurrent and Recoverable Multi
Attribute Index Structure. Ph.D. thesis , Northeastern University, Boston,

v.so

MA.
Fagin , R .. J. Nievergelt , N. Pippenger. H.R. Strong (1979): Extendible hash
ing - a fast access method for dynamic files ; ACM Transactions on Database
Systems. Vol. 4, No.3, 315-344
Faloutsos . C. (1985): Multiattribute hashing using Gray codes; Proc. ACM
SIGMOD International Conference on the Management of Data, Washington
D.C. , 227-238
Faloutsos. C. (1988) : Gray codes for partial match and range queries: IEEE
Transactions on Software Engineering, Vol. 14, 1381-1393
Faloutsos. C .. S. Roseman (1989): Fractals for secondary key retrieval: Proc. 8th
ACM SIGA.CT j SIGMOD Symposium on Principles of Database Systems,
247-252
Faloutsos. C .. T . Sellis, N. Roussopoulos (1987): Analysis of object oriented
spatial access methods; Proc. ACr-1 SIGMOD International Conference on
the Management of Data, San Francisco. 426-439
Finkel. R.A ... J .1. Bentley (1974): Quad trees: A data structure for ret rieval
on composite keys; Acta Informatica, Vol. 4, No. L 1-9
Flajolet P .. C. Puech (1986): Partial match retrieval of mult idimensional
data; Journal of the ACM, Vol. 33 , No.2, 371-407
Frank. ,.\,.. (1981): Application of DB:-"IS to land information systems; Proc. 7th
International Conference on Very Large Data Bases, Cannes , 448-453
Freeston. ~l.\v . (1987): The BANG file: a new kind of grid file; Proc. ACM
SIGMOD International Conference on the Management of Data, San Fran
cisco, 260-269
Freeston. ~l.\V. (198980): Advances in the design of the BANG file; Proc. 3rd
International Conference on Foundations of Data Organization and Algo
rithms, Paris. Lecture Notes in Computer Science, Vol. 367, Springer-Verlag,
Berlin, 322-338
Freeston, ~l.\v. (1989b): A well-behaved file st ructure for the storage of spa
tial objects: Symposium on the Design and Implementation of Large Spatial
Databases. Santa Barbara, Lecture Notes in Computer Science, Vol. 409,
Springer-Verlag, Berlin , 287-300
Freeston. ~I. (1995): A general solution of the n-dimensional B-tree problem.
In Proc. AC~I SIGMOD Int. Conf. on Management of Data, 80-9l.
Gaede. V. (1995): Optimal redundancy in spatial database systems. In
Proc. 4th Int. Syinp. on Spatial Databases (SSD'95).
Gaede, V .. GUnther, O. (1996): Multidimensional access methods; manuscript ,

V,sl

Humboldt-Universitat Berlin , Institut fur Wirtschaftsinformatik
Goodchild, M.F. (1990): Spatial information 5cience: Proc. 4th International
S)lnposiulll on Spatial Data Handling, Zurich. 3-12
Greene, D. (1989): An implementation and performance analysis of spatial
data access methods; Proc. 5th International Conference on Data Engineer
ing. Los Angeles, 606-615
Giinther, O. (1988): Efficient structures for geometric data management:
Lecture Notes in Computer Science, Vol. 337. Springer-Verlag, Berlin
Gunther, O. (1989): The design of the cell tree: An object oriented index
structure for geometric databases; Proc . .5rh International Conference on
Data Engineering, Los A.ngeles. 598-605
Giinther, O. (1992a): Evaluation of spatial access methods with oversize
shelves; Geographic Data Base Management Systems. ESPRIT Basic Re
search Series Proceedings, Springer-Verlag. 1';'7-193
Giinther, O. (1992b): Efficient computation of spatial joins; Technical Re
port TR-92-029, International Computer Science Institute, Berkeley
Giinther, O. (1993): Efficient computation of spatial joins. In Proc. 9th
IEEE Int. Conf. on Data Eng.
Giinther, 0. , J. Bilmes (1989): The implementation of the cell tree: de
sign alternatives and performance evaluation: GI-Fachtagung Datenbanksys
teme fur Bura, Technik und Wissenschaft, lniormatik-Fachberichte, Vol. 20 .. 1,

Springer-Verlag, Berlin. 2 .. 6-265
Gunther, 0. , J. Bilmes (1991): Tree-based access methods for spatial databases:
implementation and performance evaluation: IEEE Transactions on Knowl
edge and Data Engineering, Vol. 3, No.3, 3..l"J-3.j6
Gunther, 0. , A. Buchmann (1990): Research issues in spatial databases:
IEEE CS Bulletin on Data Engineering, Vol. 13. No.4 . 35-42
Giinther, 0 . , R. Ki:irstein. R. Muller, and P. Schmidt (1995): The MMM
project: Acess to algorithms via WWW.lnProc.Third International World
Wide Web Conference. URL http.// www.igd.fhg.de/ www95.html.
Guting, R.H. (1989): Gral: An extensible relational database system for geo
metric applications; Proc. 15th International Collference on Very Large Data
Bases , Amsterdam , 33-4,1
Guttman, A. (1984): R-trees: a dynamic index structure for spatial search
ing: Prac. ACM SIGMOD International Conference on the Management of
Data, Boston. 47-57
Harding, E.F. , D.G. Kendall (1974) : Stocha...qic Geometry; Wiley, New York

V.52

Henrich. A. (1990): Der LSD-Baum: eine mehrdimell.5ionale Zugriffsstruk
tur und ihre Einsatzmoglichkeiten in Datenbanksystemen: Dissertation, Fer
n U niversi tat Hagen
Henrich, A .. H.-W. Six (199 1): How to split buckets in spatial data struc
tures; Geographic Data Base Management Systems. ESPRIT Basic Research
Series Proceedings , Springer-Verlag, 212-244
Henrich, A .. H.-W. Six. P. Widmayer (1989a) : Paging binary trees with ex
ternal balancing; 15th Internat ional Workshop on Graph-Theoretic Concepts
in Computer Science, Castle Rolduc, Lecture Notes in Computer Science.
Vol. 411, 260-276
Henrich, A. , H.-W. Six, P. Widmayer (1989b): The LSD-tree: Spat ial access
to multidimensional point- and non-point objects: 1·5rh Internat ional Con
ference on Very Large Data Bases , Amsterdam, 4.)-.):3
Hinrichs, K.H . (1985): The grid file system: implememation and case studies
of applicat ions; Dissertation, ETH Zurich
Hutflesz, A., H.-W. Six. P. Widmayer (1988a): Globally order preserving
multidimensional linear hashing; Proc . 4th Internat ional Confe rence on Data
Engineering. Los Angeles , 572-579
Hut flesz, A., H.-W. Six , P. Widmayer (1988b): The t"\\in grid file:A nearly
space optimal index structure; Proc. International Conference on Extending
Database Technology, Venice, Lecture Notes in Computer Science, Vol. 303.
Springer-Verlag, Berlin , 352-363
Hutflesz. A .. H.-W. Six, P. Widmayer (1988c) : T"in grid files: Space opt i
mizing access schemes; P roc. ACM SIG MOD Conference on the Management
of Data, Chicago, 183-190
Hutflesz , A., H.-W. Six, P . Widmayer (1988d): T"in grid files: A perfor
mance evaluation; Proc. Workshop on Computational Geometry, CG'88.
Lecture Notes in Computer Science, Vol. 333, Springer-Verlag, Berlin , 15-
24
Hutflesz, A. , H.-W. Six , P. Widmayer (1990): The R-file: An efficient access
structure for proximity queries; Proc. 6th International Conference on Data
Engineering, Los Angeles , 372-379
Hutflesz, A., P. Widmayer, C. Zimmermann (1992): Global order makes
spatial access faster; Geographic Data Base Management Systems, ESPRIT
Basic Research Series Proceedings, Springer-Verlag, 113 1-176
Iyengar , S.S., N.S.V. Rao, R.L. Kashyap, V.K. Vaishnavi (1988) : Multidi
mensional data structures: Review and outlook; in: Advances in Computers,

•

•

•

V,S3

ed, by r- Iarshall C. Yovits, Academic Press, Vol. 27, 69-119
Jagadish. H.V. (1990a): Spatial search with polyhedra: Proc. 6th Interna
tional Conference on Data Engineering , Los Angeles, 311-319
Jagadish. H. V. (1990b): Linear clustering of objects with multiple attributes:
Proc. AC:\! SIGMOD International Conference on the lI!anagement of Data,
At lantic City, New Jersey, 332-342
KameL I. and C. Faloutsos (1994): Hilbert R- tree: An improved R-tree using
fractals. In Proc. 20th Int. Conf. on Very Large Data Bases. 500-509.
Kemper. :L M. Wallrath (1987): An analysis of geometric modelling in
database systems; ACM Computing Surveys, Vol. 19, No. 1. 47-91
Knuth, D. E . (1968): The art of computer programming, Vol.1 : Fundamen
tal algorithms, Addison-Wesley,
Knuth, D. E. (1973): The art of computer programming, Vol. 3: Sorting and
searching. Addison-Wesley.
KriegeL H.-Poo B. Seeger (1986): Multidimensional order preserving linear
hashing ~ith partial expansions; Proc. International Conference on Database
Theory. Lecture Notes in Computer Science, Vol. 243, Springer-Verlag, Berlin,
203-220
Kriegel. H.-Poo B. Seeger (1987): Multidimensional dynamic quantile hashing
is very efficient for non-uniform record distributions; Proc . 3rd International
Conference on Data Engineering, Los Angeles, 10-17
KriegeL H.-P., B. Seeger (1988): PLOP-Hashing: a grid file without direc
tory; Proc. 4th International Conference on Data Engineering, Los Angeles .
369-376
Kriegel. H.-P. , M. Schiwietz, R. Schneider, B. Seeger (1989a): Performance
comparison of point and spatial access methods; Proc. Symposium on the
Design and Implementation of Large Spatial Databases, Santa Barbara, Lec
ture Notes in Computer Science, VoL 409, Springer-Verlag. Berlin , 89-114
KriegeL H.-P. , B. Seeger (1989b): Multidimensional quantile hashing is very
efficient for non-uniform distributions ; Information Sciences, Vol. 48, 99-117
KriegeL H.-P., T . Brinkhoff, R. Schneider (1992a): An efficient map over
lay algorithm based on spatial access methods and computational geometry:
Geographic Data Base Management Systems , ESPRIT Basic Research Series
Proceedings, Springer-Verlag, 194-211
KriegeL H.-P., P. Heep, S. Heep, M. Schiwietz, R. Schneider (1992b) : An ac
cess method based query processor for spatial database systems; Geographic
Data Base Management Systems, ESPRIT Basic Research Series Proceed-

V.54

ings. Springer-Verlag. 273-292
Krishnamurthy. R. , K.-Y. Whang (1985): Multilevel grid files ; IB!\[T..J. Wat
son Research Center Report, Yorktown Heights , New York
Kung. H.T.. Lehman , P.L. (1980): Concurrent manipulation of binary search
trees. AC), [Trans. on Database Systems, Vol. 5, No.3, 339-353
Lindenbaum. M., H. Samet (1995): A probabilistic analysis of trie-based
sorting of large collections of line segments; Technical Report , University of
Maryland
Litwin. \Y. (1980): A new tool for file and table addressing; Proc. 6th Inter
national Conference on Very Large Data Bases, Montreal, 212-223
Lo, H and C. Ravishankar (1994): Spatial joins using seeded trees. In
Proc. AC),[SIGMOD Int. Conf. on Management of Data, 209-220.
Lohrnarm. F .. K. Neumann (1990): A geoscientific database system support
ing cartography and application programming; Proc. 8th British National
Conference on Databases, Pitman , London, 179-195
Lomet. D.B .. B. Salzberg (1989): A robust multi-attribute search structure;
Proc. 5th International Conference on Data Engineering, Los Angeles , 296-
304
Lomet. D.B .. B. Salzberg (1990): The hB-tree: A multiattribute indexing
method '>\ith good guaranteed performance; ACM Transactions on Database
Systems. \'01. 15 , No.4, 625-658
Manola. F .. J.A. Orenstein (1986): Toward a general spatial data model
for an object-oriented DBMS; Proc. 12th International Conference on Very
Large Dara Bases, Kyoto, 328-335
Matheron G. (1975): Random sets and integral geometry; Wiley, New York
Morton. G.),!. (1966): A computer oriented geodetic data base and a new
technique in file sequencing; IBM, Ottawa, Canada
Nelson. R.C .. H. Samet (1987): A population analysis for hierarchical data
structures: Proc. ACtvl SIGMOD International Conference on the Manage
ment of Data. San Francisco, 270-277
Nguyen, V.H. , T. Roos, P. Widmayer (1993): Balanced cuts of a set of hy
perrectangles: Proc. 5th Canadian Conference on Computational Geometry,
Waterloo, 121-126
Nievergelt . J. (1989): 7+-2 criteria for assessing and comparing spatial data
structures: Symposium on the Design and Implementation of Large Spatial
Databases. Santa Barbara, Lecture Notes in Computer Science, Vol. 409,
Springer-Verlag, Berlin. 3-28

•

v.ss

Nievergelt. J.. H. Hinterberger and KC. Sevcik (1981) : The Grid File: An
adaptable. symmetric multikey file structure. In: Trends in Information
Processing Systems, Proc. 3rd ECI ConL A. Duijvestijn and P. Lockemann
(eds.), Lecture Notes in Computer Science 123, Springer Verlag, 236-251
Nievergelt. 1., H. Hinterberger. KC. Sevcik (1984): The grid file: an adapt
able, symmetric multikey file structure; ACM Transactions on Database Sys
tems. Vol. 9. No.1, 38-71
Nievergelt. 1., P. Widmayer (1993): Guard files: Stabbing and intersection
queries on fat spatail objects; The Computer JournaL Vol. 36, No.2, 107-116
Nievergelt. J. , P. Widmayer (1996): All space filling curves are equally effi
cient. t-, [anuscript, ETH Zurich.
Ohler. T. (1992): The multiclass grid file: An access structure for multiclass
range queries: Proc. 4th Internat ional Symposium on Spatial Data Handling,
260-271
Ohler. T. (1994): On the integrat ion of non-geometric aspects into access
structures for geographic information systems; Dissertation ETH Zurich Nr.
10877
Ohler. T.. P. \Vidmayer (1994): A brief tutorial introduction to data struc
tures for geometric databases; in: Advances in database systems: Implemen
tations and applications , CISr.[courses and lectures No. 347, Springer-Verlag
Wien New York. 329-351
Ohsawa. Y .. r.I. Sakauchi (1990): A new tree type data structure with ho
mogeneous nodes suitable for a very large spatial database; Proc. 6th Inter
national Conference on Data Engineering, Los Angeles, 296-303
Ooi. B.C. (1987): A data structure for geographic database; GI-Fachtagung
Datenbanksysteme fur Biiro, Technik und Wissenschaft , Informatik-Fachberichte,
Vol. 136. Springer-Verlag, Berlin, 247-258
Ooi. B.C .. R. SaCks-Davis, KJ. McDonell (1989): Extending a DBMS for
geographic applications; Proc. 5th International Conference on Data Engi
neering , Los Angeles, 590-597
Orenstein. J .A. (1986): Spatial query processing in an object-oriented database
system; Proc. ACM SIGMOD International Conference on the Management
of Data, 326-336
Orenstein. J.A. (1989): Redundancy in spatial databases; Proc. ACM SIG
MOD International Conference on the Management of Data, Portland , 294-
305
Orenstein. J.A. (1990): A comparison of spatial query processing techniques

V.56

for native and parameter spaces; Proc. ACM SIG~[QD International Con
ference on the Management of Data, Atlantic City. };ew Jersey, 343-352
Orenstein , J .A., T.H. Merrett (1984): A class of data structures for associa
tive searching; Proc. 3rd ACM SIGACT / SIGl\lOD Symposium on Principles
of Database Systems , Waterloo , 181-190
Otoo. E.J . (1986) : Balanced multidimensional extendible hash tree; Proc. 5th
ACM SIGACT-SIGMOD International Symposium on Principles of Database
Systems, Cambridge, Massachusetts , 100-113
Otoo, E.J . (1990): An adaptive symmetric mul tidimensional data structure
for spatial searching; Proc. 4th International Synposium on Spatial Data

. Handling, Zurich, 1003-1015
OukseL M. (1985): The interpolation-based grid file: Proc. 4th ACM SIGACT
SIGMOD Symposium on Principles of Database S:.:;tems, Portland, 20-27
Overmars, M. (1981): Dynanl ization of order decomposable set problems,
J . of Algorithms, VoL 2, 245-260
Overmars, M. (1983): The design of dynamic da~a structures, Proefschrift .
Rijksuniversiteit Vtrecht
Ozkarahan , E.A ., M. Ouksel (1985): Dynamic a::d order preserving data
partitioning for database machines; Proc. 11 th Il!:ernational Conference on
Very Large Data Bases, Stockholm, 358-368
PageL B.-V. (1995): Analyse und Optimierung von Indexstrukturen in Geo
Datenbanksystemen; Dissertat ion, FernVniversitiir Hagen, Germany
Pagel, B.-V. , H.-W. Six, H. Toben (1993a): The transformation technique
for spatial objects revisited; 3rd International SY:lIposium on Advances in
Spatial Databases, Singapore, Lecture Notes in Computer Science , VoL 692.
Springer-Verlag, 73-88
Pagel , B.-V ., H.-W. Six, H. Toben, P. Widmayer !l993b): Towards an anal
ysis of range query performance in spatial data muctures; 12th SIGACT
SIGMOD-SIGART Symposium on Principles of Database Systems, Wash
ington, D.C. , 214-221
Preparata, F.P., M.I. Shamos (1985): Computational Geometry: An Intro
duction , Springer Verlag, Berlin, Heidelberg, New York
Ramamohanarao, K. , R. Sacks-Davis (1984): Recumve linear hashing; ACM
Transactions on Database Systems, VoL 9, No.3. 369-391
Regnier, M. (1985): Analysis of grid file algorithms: BIT Vol. 25, 335-357
Robinson, J .T. (1981): The K-D-B-tree: a search mucture for large multidi
mensional dynamic indexes; Proc.ACM SIGMOD International Conference

o

•

V.s7

on the l\lanagement of Data, Ann Arbor, 10-18
Roman , G.-C. (1990): Formal specification of geographic data processing re
quirements: IEEE Transactions on Knowledge and Data Engineering, Vol. 2,
No.4, 370-:380
Rottke T.. H.-W. Six, P. Widmayer (1987): On the analysis of grid struc
tures for spatial objects of non-zero size; International Workshop on Graph
Theoretic Concepts in Computer Science, Staffelstein, Lecture Notes in Com
puter Science. Vol. 314, Springer-Verlag, Berlin, 94-105
Roussopoulos. N. , D. Leifker (1985): Direct spatial search on pictorial databases
using packed R- trees; Proc. ACM SIGMOD International Conference on the
Management of Data. Austin , 17-31
Sagan, H. (199.1): Space-Filling Curves. Berlin/ Heidelberg/New York: Springer
Verlag.
Samet . H. (1988): Hierarchical representations of collections of small rectan
gles; AC:\l Computing Surveys, Vol. 20, No.4, 271-309
Samet. H. (1990a): The design and analysis of spatial data structures; Addison
Wesley. Reading
Samet , H. (1990b): Applications of spatial data structures; Addison-Wesley,
Reading
Santalo. L.A .. (1976): Integral geometry and geometric probability: Addison
Wesley. Reading
Schek. H.-J .. W. Waterfeld (1986): A database kernel system for geoscientific
applications: Proc. 2nd International Symposium on Spatial Data Handling,
Seattle. 273-288
Schek, H.-J .. A. Wolf (1993): From extensible databases to interoperability
between multiple databases and GIS applications; 3rd International Sympo
sium on Adyances in Spatial Databases, Singapore, Lecture Notes in Com
puter Science. Vol. 692 , Springer-Verlag, 207-238
Schiwietz. :\1.. H.-P. Kriegel (1993): Query processing of spatial objects:
Complexity \'ersus redundancy, 3rd International Symposium on Advances in
Spatial Databases , Singapore, Lecture Notes in Computer Science, Vol. 692 ,
Springer-Verlag, 377-396
Seeger, B. (1989): Entwurf und Implementierung mehrdimensionaler Zugriff
sstrukturen: Dissertation, U niversitiit Bremen
Seeger, B .. H.-P. Kriegel (1988) : Techniques for design and implementation
of efficient spatial .access methods; Proc. 14th International Conference on
Very Large Data Bases, Los Angeles, 360-371

V.S8

Seeger. B .. H.-P. Kriegel (1990): The buddy-tree: An efficient and robust
access method for spatial data base systems; Proc. 16th International Con
ference on Very Large Data Bases , Brisbane, 590-601
Sellis T. . N. Roussopoulos, C. Faloutsos (1987) : The R.,.-tree:A dynamic
index for multi-dimensional objects; Proc. 13th International Conference on
Very Large Data Bases. Brighton, 507-518
Shaffer. C.A., H. Samet (1990): Set operations for unaligned linear quadtrees ;
Computer Vision, Graphics , and Image Processing, Vol. 50 . No. 1, 29-49
Shaffer. C.A. , H. Samet, R.C. Nelson (1990b): QUILT: :\ geographic infor
mation system based on quad trees; International Journal of Geographical
Informat ion Systems , Vol. 4, No.2, 103-131
Six H.-\Y .. P. Widmayer (1988): Spatial searching in geometric databases ;
Proc. 4th International Conference on Data Engineering. Los Angeles. 496-
503
Six H.-W .. P. Widmayer (1992): Spatial access structures for geometric
databases: in: Data Structures and Efficient Algorithnl5. Ed. B. Monien.
T. Ottmann, Final Report on the DFG Special Joint Initiative. Lecture Notes
in Computer Science, Vol. 594, 214-232.
Smith. T.R. , P. Gao (1990): Experimental performance e\'aluations on spa
tial access methods; Proc. 4th International Symposium on Spatial Data
Handling. Zurich, 991-1002
Stoyan. D .. W.S. Kendall , J. Mecke (1987): Stochastic geometry and its ap
plications: Wiley, New York. 1987.
Subramanian, S .. S. Ramaswamy (1995): The P-range tree: A new data
structure for range searching in secondary memory: in Proc . Sixth Annual
ACM-SL\:\I Symposium on Discrete Algorithms, San Francisco , CA, 378-
387
Tamminen, M. (1982): The extendible cell method for closest point prob
lems; BIT. Vol. 22 , 27-41
Tamminen. M. (1984): Metric data structures - an oveniew; Helsinki Uni
versity of Technology, Laboratory of Information Processing Science, Report
HTKK-TKO-A25
Tamminen, M. (1985) : On search by address computation: BIT Vol. 25 , 135-
147
Trop£' H. , H. Herzog (1981): Multidimensional range search in dynamically
balanced trees; Angewandte Informatik, Vol. 2, 71-77
van Oosterom, P. (1990): Reactive data structures for geographic informa-

•

•

V.59

tion systems; Proefschrift , Rijksuniversiteit Leiden
van Kre"eld . ~LJ. (1992): New results on data structures in computational
geometry: Prafschrift, Rijksuniversiteit Utrecht
van Oosterom, P., E. Claassen (1990): Orientation insensitive indexing meth
ods for geometric objects; Proc. 4th International Symposium on Spatial
Data Handling, Zurich , 1016-1029
van Oosterom, P. (1990): Reactive data structures for geographic informa
tion systems: Proefschrift, Rijksuniversiteit Leiden Wang, J.-H., T.-S . Yuen,
D.H.-C. Du (1987): On multiple random access and physical data placement
in dynamic files; IEEE Transactions on Software. Engineering, Vol. 13. No. 8,
977-987
Waterfeld. \Y. (1991): Eine erweiterbare Speicher- und Zugriffskomponente
fur geo"-issenschaft liche Datenbanksysteme; Dissertation, Fachbereich Infor
matik. Technische Hochschule Darmstadt, Germany
'vVidmayer. P. (1991): Datenstrukturen fur Geodatenbanken; in: Entwick
lungstendenzen bei Datenbank-Systemen, ed. G. Vossen, K.-U. Witt. Old
enbourg Verlag Miinchen Wien , 317-361
Willard. DE. (1978): Balanced forests of k-d* trees as a dynamic data struc
ture. TR-23-78, Aiken Computation Lab., Harvard University.
Xu. X .. J. Han, W. Lu (1990): RT-tree: an improved R-tree index structure
for spatiotemporal databases; Proc. 4th International Symposium on Spatial
Data Handling, Zurich, 1040-1049

V.60

•

•

•

•

V. 61

DISCUSSION

Rapporteur: Michael Elphick

Professor Randell remarked that in his introduction, the speaker had omitted the whole
history of the development of punched-card processing techniques.

Later, Dr Goldberg asked how well the data-structures described by the speaker coped with
the problems posed by animation, virtual reality and the like, where the need for coherent
movement imposed rather strong requirements. Professor Nievergelt said that this was an
area about which he had little to say; however, he would suggest that one must have some
kind of "coarse" object model, for representing such objects as a train moving at constant
speed. His data-structures certainly didn't solve all problems.

Professor Randell then referred to the problems faced by mapping organisations (such as the
British Ordnance Survey), who had initially simply inserted the unstructured data previously
held on paper into their early databases. Professor Nievergelt responded that in one sense
these were simpler problems, in that the data was largely static. However, they had to deal
with many more types of relationship than the purely geometrical. He also noted that in
typical GIS applications, the total amount of data was not staggeringly large; perhaps of the
order of several hundred thousand basic items.

As a separate point, Professor Randell observed that in talking to other colleagues, there
seemed to be two distinct types of GIS: one principally concerned with representing and
visualising physical data, and the other with the correlating of different kinds of data
(perhaps relating ZIP codes with administrative divisions) .

Professor Nievergelt felt that this was to go way beyond the problems of structuring spatial
data, and dealt with areas about which he had no particular knowledge. His talk had dealt
with a restricted area, and this might well be only a minor part of the whole problem in such
cases.

V.62

