VII

GENERIC ARCHITECTURE DESCRIPTIONS
FOR PRODUCT LINES

D E Perry

Rapporteur: Dr Paul Ezhilchelvan

VII.2

VII.3

Generic Architecture Descriptions
for Product Lines

Dewayne E. Perry

Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974 USA
dep@research.bell-labs.com, www.bell-labs/com /usr/dep/

1 Introduction

Two of the fundamental needs in defining an architecture for a product line are

— to be able to generalize or abstract from the individual products to capture
the important aspects of the product line and

— to be able to instantiate an individual product architecture from the product
line architecture.

In other words, having a product line implies having a generic architecture from
which the individual product architectures can be derived in some manner.

There are a number of different ways in which one might go about defining the
product line architecture so that this desired level of genericity can be achieved.
Five possible ways of doing this are

— use a software architecture style,

— use an under—constrained architecture description,

— define a variance-free architecture,

— use parametric descriptions with varying binding times, and
— use a service oriented description for selective provisioning.

In the end, I think you will need all of these for a systematic and complete generic
product line architecture. I will discuss each of these in turn and delineate their
strengths and weaknesses.

2 A Style as a Generic Architecture

There is a certain intuitive appeal in using a product line specific architectural
style as the generic architecture for a product line. It would capture the essential
characteristics of the product line while ignoring the variations and leave them
to be supplied as needed in the actual product architecture. These essential
characteristics would encompass the necessary components that each instance
must have, the basic minimum interactions that each instance must have and
the basic constraints on these components and interactions.

The utility of a style description is that it represents the minimalist approach
to software architecture in general and product line architecture in specific. Only
the critical aspects of the product line need to be considered in the architectural

ey Sraer

VII.4

specification. One primary advantage is that new products can be added to
the line with ease as long as they conform to the basic product line stylistic
constraints. This provides a wide degree of latitude in the the various products
and what they provide relative to the core essence of the product line.

One of the negative side effects of this approach is the amount of work needed
to refine the product line style into a particular product architecture. With
the intent of a style as capturing only the essential architectural aspects of the
product line, those aspects must be extended and added to in order to create
in individual product architecture. As such the product architecture must be
analyzed for conformity to the product line architecture.

As a result of this lack of completeness other aspects of architectural based
development suffer as well. For example, analysis of the product line architecture
will, of necessity, be less comprehensive. Project planning will be similarly less
comprehensive at the product line level and the majority of planning work will
be delayed until after a complete product architecture has been extended from
the core style.

Further care must be taken in evolving the product line's architectural style
so as not to invalidate existing product architectures. With each change to the
product line style, the individually derived product architectures will have to be
re-analyzed to ensure that the product architectures remain conforming to the
style.

On the whole there are better uses of styles for product line architectures
than defining the generic product line architecture itself. For example, one could
define a set of styles defining such things as initialization, fault recovery, etc that
all the various components in the architecture must adhere to.

3 An Under—Constrained Architecture as a Generic
Architecture

The difference between an architectural style and an under-constrained archi-
tecture is a subtle one. The difference is fundamentally the difference in the com-
pleteness of the architectural description. A style is meant to focus on certainly
critical features and isolate them from non-essential and non-stylistic features.
There is no requirement for completeness of an architectural description in any
way.

With an under-constrained architecture the idea is to capture the product
line as completely as possible but in such a way that the variations are not ruled
out by overly constraining the architecture. The variance is within the confines of
the architectural constraints, not within the aspects that have not been defined.

This approach goes a long way towards solving the weaknesses of the stylistic
approach in terms of analysis and planning at the product line level. Further it is
much easier to create a product architecture from the product line architecture.
However, it is still not a simple matter to produce the product architecture from
the product line architecture (it is still primarily a creative process as with styles

VII.5

but one which has marrower bounds) and one will have to analyze the product
architecture to ensure its conformance to the product line constraints.

This approach seems to be an appropriate one to use if the primary difference
among the products is something like performance and in which the function-
ality is primarily the same. On the negative side, extending the product line is
a significantly more constraining task. Unless you evolve the product line ar-
chitecture, the new products must be definable within the current constraints.
In evolving the under—constrained product line architecture, care must be taken
in its expansion not to inadvertently nullify current products as constituents of
the line through the addition of further components or constraints. Constraint
relaxation, of course, does not cause such a problem.

4 A Variance—-Free Architecture as a Generic
Architecture

Again the differences between this and the preceding ones are subtle. Here the
architecture is not under—constrained. It is instead a fully described architecture
but one in which the variances among the products are not considered to archi-
tecturally important — that is, the product differences are an issue of design and
implementation, not an issue of architecture.

This approach is useful when your product line spans a significant range of
options with respect to a particular aspect. One such example is that of whether
the system is centralized or distributed. If the products range from simple cen-
tralized systems through to complex multi-processor and distributed processor
systems. then this characteristic of the system might well be one that you want
to bury in the infrastructure and not have as an important architectural issue.
In this case, you might want to have a distribution independent architecture.
Distribution then becomes an implementation or even a administrative issue,
but not an architectural issue.

What is interesting in this case is that there is a significant implication for
the implementation to support this kind of variance independence. To make the
architecture independent of issues of distribution implies a class of architectural
components which will support that independence.

Another example might be platform independence. Here again, there is an
implication about what the structure of part of the architecture must be in order
to bury the actual platform specific aspects in the design and implementation
rather than have them visible at the architectural level.

There is a significant appeal in this approach. Analysis and planning can be
done at the product line architecture level. If the right product characteristics
are made independent of the architecture, then new products can be derived
from the product line architecture with relative ease merely by providing the
appropriate implementation specific components in the design and coding phase
in such a way that they conform to the product line architecture. The individ-
ual product architecture is the product line architecture; there is no derivation

|

VII.6

involved. Evolution of the product line architecture implies evolution of the
product architectures.

Because of the identity of the product and product lines architectures, issues
of analysis and planning at the product line level apply to the product level.

The downside of this approach is that it may not be possible to isolate all the
variations in this way. Certain properties such as distribution, fault-tolerance,
etc may be amenable to this, but differing functionality may not be.

Another negative aspect is the standard specification problem of talking
about what is not there.

5 A Parametric Architecture as a Generic Architecture

A standard approach for generalizing is that of parametric abstraction. The
parameterized component is then applicable across a wide range of arguments (in
programming languages defined typically by types). The limits of applicability
depend on the constraints that are checked on those arguments. That partly
depends on the type system and what is allowed as a first class parameter types.
For example. in Ada generics, the range of types usable as parameters is larger
than for functions and procedures. In macro languages there are typically no
constraints at all. But then there is no guaranteed substitution safety either,

The utility of this approach is the same as for packages and operations: the
architecture specification defines a family of possible instantiations and for which
the properties of the product line can be ensured for the various instantiations.
The variations required for each possible product in the line are well-defined
and known. Moreover, the instantiation of a specific product architecture is a
well-understood technology and the instance can be derived automatically from
the argumented product line description.

Here again, analysis and planning are doable at the product line rather than
the product level.

Evolution of the parameters may seriously affect individual product archi-
tectures. If the evolution is limited to broading the types of the parameters,
or perhaps upward-compatibly extending the parameters, then the individual
product architectures should remain valid.

There are two limiting factors. First the kinds of the parameters allowed may
seriously affect how well the generic architecture serves to cover the necessary
products. If the kinds of first class objects are too limited, then one may not have
sufficient descriptive power to satisfactorily describe the product line. Second is
the question of whether parameterization covers all the kinds of variation that
one might need to have among the products in a product line. We have seen
examples above that suggest that parametric approaches are not sufficient in
and of themselves.

VII.?7

6 A Service Oriented Architecture as a Generic
Architecture

One of the typical kinds of problems found in developing such large and com-
plex systems such as telephone switches is the need to provision the various
products with different features. Provisioning these systems is not the kind of
thing that can be done with parametric or variation independent approaches.
One can always of course do it with either styles or under—constrained descrip-
tions, but that does not help much if one wants these provisioned features to be
architectural features.

Thus an approach to describing a product line architecture is one in which
the various architectural services that may be provisioned are defined as part
of the architecture and are then selected in an instantiation process to define a
particular product. One advantage of this approach is that the possibilities are
explicit in a more tangible way than in a parametric approach. Moreover, if done
properly, the architectural dependencies of these services are also made explicit
and the implications of choices are thus more explicit.

As with the parametric approach, instantiation is accomplished with well-
understood technology. Analysis and planning both can be done relative to the
product line description with the added advantage that the planning of a specific
product can be derived from the product line planning itself via the selection
mechanism of provisioning.

As long as the evolution of the product line architecture is done via the ad-
dition of new services, existing product architectures will remain valid instances
of the new product line architecture.

While this goes a long way towards a useful approach for provisioned prod-
ucts, it is likely to be insufficient in itself for a complete product line specification.

7 Putting The Pieces Together

I think it is clear at this point that a comprehensive approach to defining a
generic architecture for a product line requires all of these different ways of
addressing various product line issues.

Styles are certainly needed for aspects of the product line that are orthogonal
to the specific component structure. For example, one may want to define a style
for initialization or fault handling that must be satisfied by all the components
in a product line to ensure appropriate cross—product use.

Under-constrained descriptions always provide a wider degree of flexibility
than over-constrained ones. Clearly some aspects of a product line will be best
served by this approach where large degrees of design and implementation free-
dom are useful to respond to such things as changes in technology.

The variation-independent architecture is certainly needed where you want
to delay such considerations as platform or distribution until build time or even
execution time.

Parametric and provisioning approaches are again obviously useful for various
kinds of generic descriptions and provide the most direct means of deriving their
product architecture from the product line architectures.

8 Summary

I have considered a variety of useful ways of ‘genericizing’ architectural descrip-
tions (or prescriptions). I claim that a generic architecture is a fundamental
requirement for a product line and that each of these approaches is needed as a
means of defining some important elements in such a generic architecture.

This article was processed using the INXTEX macro package with LLNCS style

f

Descriptions

Dewayne E. Perry

Bell Laboratories
Room 2A-429
600 Mountain Ave
Murray Hill NJ 07974

dep@research.bell-labs.com

k www. bell-labs.com/~dep/

Generic Software Architecture\

September 1998 Newcastle ‘98 . 0
P : Lucen Teshoslogie

f QOutline

® Software Architecture - Overview
* Product Line Architecture - Overview

» PLA Description Issues and Generic
Approaches

N\

f

Models of SW Architecture

Perry & Wolf 89/92 model of SWA
SWA = (Elements, Form, Rationale)
* Elements : process, data and connecting

* Form is the set of properties of, and
relationships among, the elements

* Rationale is the justification for the

Kelements and form

/

3
September 1998 Newecastle ‘98 T — O
Lol

(

* An incomplete architectural prescription

Styles

— architectural elements
— formal characteristics
— constraints on architectural elements
— constraints on formal characteristics

J

.
Seprember 1998 Newcastle ‘98 e — O
Locen, Techirologies 8

-

 Focuses on certain aspects of the architecture

N

J

[
September 1998 Newcastle ‘98 Lucens Technologies O
----- Rl

6'IIA

4 A

» Problem: Restrict the architectural structure

Styles

— for example, strict layering of the architecture

» Solution: layered architecture style
— constrain the interactions
* any interaction at elements on the same level
* no interactions at more than one level away
« level below: initiate interactions only

k « level above: react interactions only)

September 1998 Newcastle ‘98 Lucent Technologies O
ek

4 A

 Useful rule of thumb: a style for a domain

Styles

2

« ‘Problem: multiple domains in any significant
architecture

 Challenge: integrating the styles consistently

[]

\

State of Current Work

Pretty much agree about process, data and
connecting elements as first class entities

Models differ primarily with respect to
Form

Few models pay attention to rationale

Styles tend to focus on element and form
restrictions

J

September 1998 Newcastle ‘98 T O

(

. /

September 1998 SSfaer s Locen Trshoolese O

.

N

Current Approaches to Form

Configurations
Types

Patterns
Properties

Sepr

€
ember 1998 Newcastle ‘98 p—— 6

OT"IIA

R

» Characterization

» Approach to Style

Configuration as Form

— Basic box and lines approach
— Components may be processes, subsystems, etc

— Connections are defined by Provides/Requires
clauses

— Tend not to be interested in styles
— Except in the context of dynamic arch’s /

Seprember 1998 Newcastle ‘98 Lucen} Trshoologies O

r

N _/

N

Types as Form

Characterization
— Typically, an historical approach

— Look for types and classes of architectural
objects

— Often organized hierarchically

Scptember 1998 Newcastle 98 Lucen Tchoologis O

(

» Approach to Style

Types as Form

components and connectors

g

— Emphasis on the basic classes or types of

— Perhaps, a slight more emphasis on connectors
— Eg, pipes and filters; blackboard architecture

\

J

September 1998 Newcastle ‘98

Lucesy Trchptlogin O

(

Patterns as Form

e Characterization

— Empbhasis on patterns of interactions

components as endpoints
» Approach to Style

k styles

— Tendency to focus on connections with

— Architectural instances are specializations of

\

J

Seprember 1998 Newcastle ‘98

Luceny Technolopies o

TT°IIA

(\ / Product Line - Overview \

Properties as Form
» Characterization

— Properties of (or constraints on) data, process
and connecting elements

— Relationships among data, process and
connecting elements
» Approach to Style
— Selection of some critical elements

— Constraints on properties and relationships J

k — Selection of some properties and relationships

Sepiember 1998 Newcastle ‘98 A 0 September 1998 / .
Lucent Techalogics piember Newcastle ‘98 .

4 Outline h (Product Line - Basic Aspects A

» Begin with product instances

» Software Architecture - Overview
— legacy based

e Product Line Architecture - Overview _
o) - use architecture recovery processes
i iLA ([))aecs];:é;pnon I5gues A aant Focus on appropriate business domain
I : - ;
PP — use domain specific architectural processes

— map from recovered to domain architecture

» Abstract/Generalize to Product Line

\) \ Architecture)
Newcastle ‘98 Bl g O September 1993 Newcastle ‘98 e gl O

September 1998

CT'IIA

7

Product Line Processes

Asset Base

Supporting Technology

L]

Organizational Issues

N

Product Line - Issues \

Product Line Reference Architecture

W

September 1998 Newecastle ‘98

Lucen Tehpologs 0

e

Outline

= Software Architecture - Overview

Approaches

\

» Product Line Architecture - Overview
e PLA Descriptions Issues and Generic

N

J

September 1998 Newcastle ‘98

Lucenf Trchoslogies O

i)

PLA Description Issues

» What generic features do you need

« Relationships between PLA and PIA
— Derivation
- Conformity
— Analysis
— Planning

\° How is evolution of PLA supported /

.
Scptember 1998 Newcastle ‘98 Lucens Techpologe O
s Teshpele

i PLA and Generic Descriptions\

Claim:

Generic descriptions are necessary for
product line architectural descriptions

- J

Scptember 1995 Newcastle ‘98 Lucers Teshpologie o

€1 1IA

e s

Generic PLD Approaches

* Style description
 Under-constrained description
 Variance-free description

 Parametric description

Service/provision oriented description

-

~

/

(

* Minimalist approach

\

Style - Advantages

Add new products easily

As long as they conform to style

* Some project planning for the PLA applies to
the product instance architecture (PIA)

\—

Sepiember 1998

Newcastle ‘98

i O

Seprember 1998

Newcastle ‘98

4

* Intuitive appeal

Style

« Captures essential characteristics
— basic components
— minimum interactions
— basic constraints

* Ignores variation

N

5

September 1998 Newcastle ‘98

Luceog Tichaiogie O

(

\-

Style - Disadvantages

* Not easy to refine PLA into PIA

— by extension, addition
PLA conformity analysis required

conformance

* When PLA evolves, must revalidate PIA

J

»

Scptember 1998 Newcastle *98

Luceng Trchastogs O

71 1IA

S =

~N

4 Style - Evaluation \ (Under-Constrained - Advantages

* Easier to create PIA from PLA than Styles
Analysis at PLA level applies to PIA level
Planning at PLA level applies to PIA level
* Evolution via constraint relaxation easy

 Possible, but not adequate
* better uses of styles than for PLA

Scptember 1998 Newcastle ‘98
Lucen, Techaclogies O L Lucent Technoloics

Seplember 1998 Newcastle ‘98

4 _ \ 4 Under-Constrained - N\
Under-Constrained Disadvantases
5
» Difference in completeness :
. q . * Extending the PLA is a significantly more
— style focus: critical features, eliminate non- PP —
essential, non-stylistic =
« Capture PL as completely as possible ¢ May not be. pc'>551b1e to c.:letme all new
; N products within constraints
e With variations not ruled out by overly bl _
constraining the architecture » PLA evolution may cause conformity
; i . . problems
e Variance within constraints, not within the
\aspects not defined / \ J

- WIS o
September 1993 Newcastle *98 Luceng Technolowes o

September 1998 Newcastle ‘98 Lucent Technologies O
et i 2

C1'IIA

» Seems appropriate where primary difference
is something like performance where the
functionality remains the same

 Too confining for variance often needed for
individual products

rUnder—Constrained - Evaluation\

_ /

Sepiember 1998 Newcastle ‘98 Looens Tochma O

’*

« Architecture is not under-constrained

Variance-Free

 Variance is not considered architecturally
important
— product difference a design or implementation
issue not an architectural one
— eg, platform or distribution independence

» There are implications for the PLA

.

~

(Variance-Free - Advantages)

* Analysis and planning at the PLA level

* Product variance depends on implementation
and not on architecture

PLA is the PIA

Evolution of the PLA means evolution of the
PIAs

L]

- J

Sepiember 1998 Newcastle ‘98
Loceny Techpuloges

7

« Standard specification problem of talking
about what is not there

Variance-Free - Disadvantages\

» May not be able to isolate all variance this
way

%

3 » o g
Scptember 1998 Newcastle 98 et T O
L Itipps

Seprember 1998 Newcastle 98 o
Lonsg Teshpirges

91" I1A

e e " - - _ z —

v =] - - = g P ~
4 Variance-Free - Evaluation X (Parametric - Advantages o
« Useful for range of options for a particular * Variations well-defined and well-known
aspect (eg, fault tolerance, distribution ...) « Instantiation of PIA from PLA is well-
» But may not be able to account for variance understood (possibly automatic)
in functionality Analysis at PLA level

* Planning at PLA level

» Evolution by relaxing constraints or by
upward compatible extensions OK

- _/ % J

‘ September 1998 : .
Scptember 1998 Newcastle ‘98 Leceny Teshpalogcs o ptember Newecastle ‘98 Luceny Technologes 6

4) (-)

Parametric Parametric - Disadvantages
« Standard approach: parametric abstraction * Kinds of parameters allowed may seriously
« Limits depend on the constraints on the affect how well the PLA covers the necessary
arguments variance
» Defines a family of possible instantiations * Incompatible parameter evolution generates
conformance problems

g ” T PRy Seprenibee 1Y Newcastle *98
Scpiember 1998 Newcastle *98 Luceny Techpolegie O M IIs CWEDne Lucens Technoimpes

LT IIA

Parametric - Evaluation \

Means of abstraction well-understood

Instantiation well-understood

Good analysis and planning properties

* May not cover all forms of variance

\— 7

September 1998 Newcastle ‘98 : O
Eucan; Tichpologies

(

* In large complicated systems often need to
provision individual products with different
features

~

Service-Oriented

» Not doable with parameters or variation
independence

¢ Architectural features selectable

September 1998 Newecastle ‘98 = O

Lucent T

et Lo

(

* Instantiation is by selection

Service-Oriented - Advantages\

* Possibilities are explicit

* If done properly, architectural dependencies
among services are explicit

» Analysis at PLA level

* Planning derived from PLA via selection

» Evolution via addition OK

J

—
Sepiember 1998 Newcastle ‘98
i -

(s

ervice Oriented - Disadvantages\

* Evolution via change/deletion causes
conformity problems

* May not know all the services needed in
advance

_ Y,

September 1998 Newcastle ‘98
Lucent T«nr--lnm

8T IIA

4 Service-Oriented - Evaluation \ (Putting It Together h
» Parameters where the ranges of solutions are
 Simple/effective way of managing product well understood
line

* Provisioning where the possibilities are
» Likely to be insufficient for complete PLA enumerable

X _/ N /

—— .
Seprember 1998 Newcastle ‘98 ST O Sepiember 1998 Newcastle *98 Lucen; Trchsotoges 0

e)

Putting It Together

» Comprehensive approach would require all
1 .these forms of generic description

« Styles useful for aspects distributed across
sets of architectural components

* Under-constrain where flexibility is needed
such as changes in technology

 Variations independence for delayed binding

_ ’,

‘
September 1998 Newcastle ‘98 Lucens Techoatogis 6

61 IIA

o ————

VII.20

DISCUSSION
Rapporteur: Dr Paul Ezhilchelvan
Lecture One

When Professor Perry was presenting the usefulness of Asset Base (AB) in developing
Product Line Architecture (PLA), Professor Randell questioned about the problems and the
difficulties involved in building an AB can pose, when a big organisation is developing a
PLA. The speaker replied by pointing out that AB is meant to contain components that are re-
used and deemed to be reusable. When building a multi-media application involving v-mail,
e-mail etc, some operations remain identical throughout. Also, different interfaces have
different implementations. Such components are accumulated in the AB during the PLA
development. To Professor Randell's observation that PLA and AB are not directly
connected in the Life-cycle figure presented, Professor Perry pointed out that the relation is
indirect and mainly via the PL Processes Box.

Professor Brooks wondered about the effects of inevitable inconsistencies among the pieces
in the AB. Professor Perry attributed these inconsistencies to different standards among
products of same type which the PLA must take into account. Ideally, one would prefer a
platform that is independent of communication architecture. But each communication
medium has different standards which lead to different implementation.

Dr Kay wanted to know who the PLA is being developed for. It is primarily for the company
who is responsible for products in product line; it also remains useful for project personnel
managing the project. Basically, the aim of PLA is to disseminate much information about
the product and its development so that the interval taken to produce and market the product
is shortened. Professor Shaw observed that while one benefit of PLA to the company is
faster production and marketing, it also simplifies incorporation of upgrade paths. Mr
McVitie, observing the discussions on the usefulness of PLA, wondered whether PLA is to
be developed with both AB and product line in mind. Dr Perry stopped short of endorsing
the view, reiterating his view that PLA is to describe how best a product can be built.

Professor Randell compared the certain aspects of under-constrained PLA to specifying
systems in terms of what they should not do (negatively) rather than what they should do
(positively). The speaker opined that negatively specifying things work very well in certain
cases.

Professor Johnson wanted to know how Product Instance Architecture (PIA) is described:
formally or in terms of a programming language. The speaker replied that it can also be done
in terms of constraints involving notations.

Dr Kay wondered how certain restrictions, such as a product which can only be run on some
versions of Unix, can be expressed. It can be done through constraints, the speaker replied
and elaborated on that point.

Professor Randell was of the opinion that it is the level of abstraction that distinguishes
functional properties against non-functional ones. As an example, he cited, some of what can
be non-functional aspects for a network user are functional aspects for a network manager.
The speaker used these terms in the following sense: system activities/properties that can be
clearly stated come under functional aspects, and others under non-functional aspects.
Professor Johnson recalled that Fault Tolerance issues were once regarded as non-functional
aspects some twenty years ago. Now, as we know how to specify them, they are a part of
functional aspects of a system.

Professor Johnson opined that what is being proposed is the right thing and weighed the cost
versus benefit. He said that many companies cannot and do not develop a PLA before
production. They often have PLA in the form of power-point slides. He wanted the speaker

Al

VII.Z21

to shed light on the cost of developing PLA and the relative difficulties in working with it.
The speaker replied that the cost incurred is not much in his own company and advantages
are far more, and the architecture is thought to be an important ingredient in the development
process. What is often missed is the architecture update as the product undergoes changes.
Professor Shaw observed that the integration of new technologies into the development
process may also be simplified.

Professor Malek observed that often there is a compromise between the rush to product
marketing and maintaining product quality. He wondered whether having PLA enables or
prevents such compromises. The speaker replied that PLA improves both and avoids the
need to make such compromises. Professor Vogt wanted to know the influence of the new
Telecom architecture TINA had in the speaker's thinking and considerations. The speaker
was not aware of the TINA details and it was agreed to pursue further discussions about
TINA off-line.

VIii.22

