
•

VII

GENERIC ARCHITECTURE DESCRIPTIONS
FOR PRODUCT LINES

D E Perry

Rapporteur: Dr Paul Ezhilchelvan

VII .2

I

,

•

•

VII.3

G en eric Architecture D escriptions
for Product Lines

Dewayne E. Perry

Bell Laboratories, 600 Mountain A venue , Murray Hill , N J 07974 USA
dep@research.bell·labs.com, www.bell· labs/com/usr/clep/

1 Introduction

Two of the fun damental needs in defining an architecture for a product line are

to be able to generalize or abstract from the individ ual products to capture
the important aspects of the prod uct line and
to be able to instantiate an individual product a rchi tecture from the product
line architecture.

In other words, having a product line implies having a generic architecture from
whi ch the indi vid ual product architectures can be derived in some manner.

There are a number of different ways in whi ch one might go about defin ing the
product line architectu re so that this desired level of genericity can be achieved.
Five possible \\;ays of doing this are

use a software architecture style,
use an under-constrained archi tecture description,
define a variance-free architecture,
use parametric descriptions with varying binding times , and
use a service oriented description for selective prov is ioning.

In t he end, I think you will need all of these for a systematic a nd complete generic
product line architectu re. I will discuss each of these in t urn and delineate their
strengths and weaknesses.

2 A Style as a Generic A r chitectu re

There is a certain intuitive appeal in using a product line specific a rchitectural
style as the generi c architecture for a product line. It would capture the essential
characte ristics of the product line while ignoring the variations and leave them
to be supplied as needed in the actual product a rchitecture . These essential
characteristics would encompass the necessary components that each instance
must have, the basic minimum interactions that each instance must have and
the basic constraints on these components and interactions.

The utility of a style descrip t ion is that it represents the minimalist approach
to software arch itectu re in general and product line a rchitecture in specific. Only
the criti ca l aspects of the product line need to be considered in the architectural

VII .4

specification. One primary advantage is that new produc ts can be added to
the lin e with ease as long as they conform to the basic product line stylistic
constraints. This provides a wide degree of latitude in the the various products
and wh at they provide relative to the core essence of the product line.

One of the negative side effects of this approach is the amount of work needed
to refine the product line style into a particular product architecture. With
t he in tent of a style as capturing on ly t he essential architectural aspects of the
product line, those aspects must be extended and added to in order to create
in indi,·idual product a rchitecture. As such the product architecture must be
analyzed for conformity to the product line architecture.

As a resu lt of this lack of completeness other aspects of architectural based
development suffer as well . For example, analysis of the product line architecture
will. of necessity, be less comprehensive. Project planning will be similarly less
comprehensive at the product line level and the majority of planning work will
be delayed until after a complete product architecture has been extended from
the core style .

Further care must be taken in evolving the product line's archi tectural style
so as not to invalidate existing product architectures. \\·ith each change to the
product line style, the indiv idually derived product architectures will have to be
re-analyzed to ensure that the product arch itectures remain conforming to the
style.

On the whole t here are better uses of styles for product line architectures
than defining the generic product lin e architecture itself. For example, one cou ld
define a set of styles defining such t hings as initialization , fault recovery, etc that
all the various components in the architecture must adhere to .

3 An U n der-C onstra in ed Architecture as a Generic
A rchi tecture

The difference between an architectural style and an under-constrained archi
tecture is a subtle one. The difference is fundamentally the difference in the com
pleteness of the architectural description. A style is meant to fo cus on certainly
critical features and isolate them from non-essential and non-stylisti c features.
There is no requirement for completeness of an a rchitectu ral description in any
way.

With an under-constrained architecture the idea is to capture the product
line as completely as possible but in such a way that the variations are not ruled
out by Q\·erly constraining the architecture. The variance is within the confines of
the archi tectural constraints , not within the aspects that have not been defined.

This app roach goes a long way towards solving the weaknesses of the stylistic
app roach in terms of analysis and planning at the produc t line level. Further it is
much easier to create a prod uct architecture from the produ ct line architecture.
However. it is still not a simple m atter to produce the product architecture from
the producl line architecture (it is still primarily a creative process as with sty les

(

VII .5

but Olle which has marrower bounds) and one will have to analyze the product
archit c·ct ure to ensure its conformance to the product line const raints.

This approach seems to be an appropriate one to use if the primary difference
among the products is something like performance and in which the function
ality is primarily the same. On the negative side, extending the produ ct line is
a sig,llifl cantly more constraining task. Unless you evolve the product line ar
chit ectu re. the new products must be definable within the current constraints.
In c\'o\ving the under-constrained product line architecture, care must be taken
in it, expansion not to inadvertently nullify current products as constituents of
the lill e through the addition of further components or constraints. Constraint
reiax<tlion, of course , does not cause such a problem.

4 A Variance-Free A r chitectu re as a Generic
Architecture

Agaill the differences between this and the preceding ones are subtle. Here the
architecture is not under-constrained. It is instead a fully described architecture
but OIl C ill whi ch the variances among the products are not considered to archi
tecturally important - that is , the product differences are an issue of design and
irnp\crncntatioll , not an issue of architecture.

Thi s approach is useful when your product line spans a significant range of
opt iOll 5 with respect to a particular aspect. One such example is that of whether
the syst em is centralized or distributed. If the products range from simple cen·
lrali zt"d systems through to complex multi-processor and distributed processor
sys t oms. then this characteristic of the system might well be one that you want
to bury ill the infrastructure and not have as an important architectural issue.
In th is case , you might want to have a distribution independent architecture.
Dist ri bu t ion then becomes an implementation or even a administrative issue,
but fl ot an architectural issue.

\\·hat is interesting in this case is that there is a significant implication for
th e implementation to support this kind of variance independence. To make the
architec ture independent of issues of distribution implies a class of architectural
compo nents which will support that independence.

,\ not her examp le might be platform independence. Here again , there is an
implication about what the structure of par t of the architecture must be in order
to bury the actual platform specific aspects in the design and implementation
rath er than have them visible at the architectural level.

There is a significant appeal in this approach. Analysis and planning can be
done at the product line architecture level. If the righ t product characteristics
are made ind ependent of the architecture, then new products can be derived
fro m th e product line architecture with relative ease merely by providing the
ap p ro priate implementation specifi c components in the design and coding phase
in such a way that they conform to the product line architecture. The individ
ual produ ct architecture is the product lin e architec ture; there is no derivation

VII . 6

involved . Evolution of the product line architectu re implies evolution of the
product architectures.

Because of the identity of the product and product lines architectures , issues
of analysis and planning at the product li ne level apply to the product level.

The downside of this approach is that it may not be possible to isolate all the
variations in this way. Certain properties such as distribution, fault - tolerance,
etc may be amenable to th is, but differing functionality may not be.

Another negative aspect is the standard specification problem of talking
about what is not there.

5 A P arametric Arch it ect u re as a G e n eric A r chitecture

A standard approach for generalizing is that of parametric abstraction. The
parameterized component is then app licable across a wide range of arguments (in
programming languages defined typicall y by types). The limits of applicability
depend on tbe constraints that are checked on those arguments. That partly
depends on tbe type system and what is a llowed as a first class parameter types.
For example , in Ada generics, the range of types usable as parameters is larger
than for functions and procedures. In macro languages there are typically no
constraints at all. But then there is no guaranteed substitution safety either.

The utility of this approach is the same as for packages and operations: the
architecture specification defines a family of possible instantiations and for which
the properties of the product line can be ensured for the various instantiations.
The variations required for each possible product in the line are well-defined
and known. :\Ioreover, the instantiation of a specific product architecture is a
well-understood technology and the instance can be derived automatically from
the argumented product line description.

Here again, analysis and planning are doable at the product line ratber than
the product I€\·el.

Evolution of the parameters may seriously affect individual product archi
tectures. If tbe evolution is limited to broading the types of the parameters,
or perhaps upward-compatibly extending the parameters, then the individual
product architectu res shou ld remain valid.

There are two limiting factors. First the kinds of the parameters allowed may
seriously affect. how well the generic architecture serves to cover the necessary
products. If the kinds of first class objects are too limited , then one may not have
sufficient descriptive power to satisfactorily describe t he product line. Second is
the question of whether parameterization covers all the kinds of variation that
one might need to have among the products in a product line. We bave seen
examples abo\'e that suggest that parametric approaches are not sufficient in
and of themselves.

..

VII.7

6 A Service Oriented Architecture as a Generic
Architecture

One of the typical kin ds of problems found in developing such large and com·
plex systems such as te lephone swi tches is the need to provision the various
products with different features. Provisioning these systems is not the kind of
thing that can be done with parametric or vari at ion in dependent approaches.
One can always of course do it wi th either styles or under-constrained descrip
tions, but that does not help much if one wants these provisioned features to be
architectural features.

Thus an approach to describing a product line architecture is one in whi ch
the various architectural services that may be provisioned are defined as part
of the architecture and are then selected in an instant iat ion process to define a
particular product. One advantage of this approach is t hat th e possibil ities are
explicit in a more tangible way th an in a parametric approach. Moreover, if done
properly, t he architectural dependencies of these servi ces a re also made expli cit
and the impli cations of choices are thus more explicit.

As with the parametric approach , instantiation is accomplished with well
un derstood tech nology. Analysis and planning both can be done relative to the
product line desc ription with the added advantage that the planning of a specific
product can be derived from the product line planning itself via the selection
m echanism of provisioning.

As long as the evolution of the product line arch itecture is done via the ad
dition of new services , exist ing product architectures will rem ain valid instances
of the new product line architecture.

While this goes a long way towards a useful approach for provisioned prod
ucts, it is likely to be insuffi cient in itself for a complete product line specification.

7 Putt ing The Pieces Together

I think it is clear at this point that a comprehensive approach to definin g a
generic architectu re for a product li ne requires all of these different ways of
address ing various product line issues.

Styles are certainly needed for aspects of the product line that are orthogonal
to the specifi c component structu re. For example, one may want to define a style
for in itialization or fault handling that must be satisfied by all the components
in a product line to ensure appropriate cross-product use.

Unde r-constrained descr iptions always provide a wider degree of flexib ility
than over- constrained ones. Clearly some aspects of a product line will be best
served by this approach where large degrees of design and implementation free
dom are useful to respond to such things as changes in tech nology.

The var iat ion-independent archi tecture is certainly needed where you want
to delay such considerations as platform or distribution until build time or even
execution time .

VII . S

Parametric and provisioning approaches are again obviously useful for various
kinds of generic descriptions and provide the most direct means of deriving their
product architecture from the product line architectures.

8 Summary

I have considered a variety of useful ways of 'genericizing' architectural descrip
tions (or prescriptions). I claim that a generic architecture is a fundamental
requirement for a product line and that each of these approaches is needed as a
means of defining some important elements in such a generic architecture .

This article was processed using the L-\TEX macro package with LLNCS style

• •

Generic Software Architecture
Descriptions

Scp'cmber 1998

Dewayne E. Perry

Beil Laboratories
Room 2A-429

600 MOllnta in Ave
Murray Hill NJ 07974

dep@ research. hell-Iabs.com
www.be!{· fahs.coml -depl

Newcastle '98

Outline

• Software Architecture - Overview

'-' ... T h~O

• Product Line Architecture - Overview

• PLA Description Issues and Generic
Approaches

Sc:p'cml:>c. l?'llt Newcastle '98 '-"~~.rl:!::!..~ 0

Models of SW Architecture

• Perry & Wolf 89/92 model of SW A

• SW A = (Elements, Form, Rationale)

• Elements: process, data and connecting

• Form is the set of properties of, and
relationships among, the elements

• Rationale is the justification for the
elements and form

September 1998 Newcastle '98 '--"LI~~ 0

Styles

• An incomplete architectural prescription

• Focuses on certain aspects of the architecture
- architectural elements

- fonnal characteristics

- constraints on architectural elements

- constraints on formal characteristics

5<'p,embc-r 1998 Newcastle '98 ~"'1"''''''''' 0

<:
H
H

'"

Styles

• Problem: Restrict the arch itectural structure

- for example. strict layering of the archi tecture

• Solution: layered architecture sty le
- constrain the interactions

• any interact ion at elements on the same level

• no interactions at more lhan one le vel away

• le ve l below: initiate interactions only

• level above: react interactions only

S<:,,~mbcr 1998 Newcastle '98 ~~]""~o

Styles

• Useful ru le of thumb: a style for a domain

• 1'i6b1em: multiple domains in any significant
architecture

• Challenge: integrating the styles consistently

So:p.ernbof.I')ql.l Newcastle '98 ~.,,~""" 0

- ...

State of Current Work

• Pretty much agree about process, data and
connecting elements as first class entities

• Models differ primarily with respect to
Form

• Few models pay attention to rationale

• Styles tend to focus on element and form
restrictions

ScpImIbtr 1998 Newcastle '98
"" • .1~ 0

Current Approaches to Form

• Configurations

• Types

• Patterns

• Properties

S<:p .. :mbcr 1m Newcastle '98 ""~]~""'" 0

- - - ~

<
H
H

~

o

• .. •

Configuration as Form
• Characterization

- Basic box and lines approach

- Components may be processes, subsystems, etc

- Connections are defmed by ProvideslRequires
clauses

• Approach to Style
- Tend not to be interested in styles

- Except in the context of dynamic arch's

September I 'J'JII Newcastle '98 ~"l1"-~O

Types as Form

• Characterization
- Typically, an historical approach

- Look for types and classes of architectural
objects

- Often organized hierarchically

ScpIcmbcr 1m Newcastle '98 Loon"'T.-....~ 0

Types as Form

• Approach to Style
- Emphasis on the basic classes or types of

components and connectors

- Perhaps, a slight more emphasis on connectors

- Eg, pipes and fi lters; blackboard architecture

$eplCmt... 1998 Newcastle '98 lv«n!1t!::.~ 0

Patterns as Form

• Characterization
- Emphasis on patterns of interactions

- Tendency to focus on connections with
components as endpoints

• Approach to Style
- Architectu ral instances are special izations of

styles

September 1m Newcasll e '91$
t...c. ... T«!'~O

<
H
H

~

~

Properties as Form
• Characterization

- Properties of (or constraints on) data, process
and connecting elements

- Relationships among data, process and
connecting elements

• Approach to Style
- Selection of some critical elements

- Selection of some properties and relationships

- Constraints on properties and relationships

Scpscml;cr 1998 Newcastle '98 ~',1"-.""..,, 0

Outline

• Software Architecture - Overview

• Product Line Architecture - Overview

• PLA Description Issues and Generic
Approaches

Scp,emb:r 19911 Nt!wcaslJe '98 lM<cn!1~~ 0

•

Product Line - Overview

Sc:",~mb", 199$ Newcastle '98
lMn .. T« ~ 0

Product Line - Basic Aspects

• Begin with product instances

- legacy based

- use architecture recovery processes

• Focus on appropriate business domain
- use domain specific architectural processes

- map from recovered to domain architecture

• Abstract/General ize to Product Line
Architecture

Scp'cmt>c:. 19'JlI Newcastle '98
LJ,,!!':::!..~ O

-

<
H
H

~

tv

• • •

Product Line - Issues

• Product Line Reference Architecture

• Product Line Processes

• Asset Base

• Supporting Technology

• Organizational Issues

Sc pocmb<:r 1998 Ntwcastle '98 ,~.!."' .. .""" 0

Outline

• Software Architecture .. Overview

• Product Line Architecture .. Overview

• PLA Descriptions Issues and Generic
Approaches

Scpocmb.:r 1998 Newcastle '98
i.oonr~~O

PLA Description Issues

• What generic features do you need

• Relationships between PLA and PIA
- Deri varion

- Confo rmity

- Analysis

- Planning

• How is evolution of PLA supported

Scplcmbc:r 1998 Newcastle '98
~

~_"'T«~f>OI~ O

PLA and Generic Descriptions

Claim:

Generic descriptions are necessary for
product line architectural descriptiolls

SCp<c I 99~ Newcastle '98 '"rI"~O

...

<
H
H

~

w

Generic PLD Approaches

• Style description

• Under-constrained description

• Variance-free description

• Parametric description

• Service/provision oriented description

Sc:p<ember 1m Newcastle '98

Style

• Intuitive appeal

• Captures essential characteristics

- basic components

- minimum interactions

- basic constraints

• Ignores variation

September 1998 Newcastle '9g

~ • .rr-=..: 0

'-<J~~O

Style - Advantages

• Minimalist approach

• Add new products easily

• As long as they confonn to sty le

• Some project planning for the PLA applies to
the product instance architecture (PIA)

ScplCrnbcr 1998 Newcastle '98 ~.M=O

Style - Disadvantages

• Not easy to refine PLA into PIA

- by extension, addition

• PLA conformity analysis required

• When PLA evolves, must revalidate PIA
conformance

Scpl"mbcr 19911 Newcastle '9~
1._ ... r«IIN>I~O

~

<
H
H -"..

• •

Style - Evaluation

• Poss ible, but not adequate

• better uses of sty les than for PLA

September 1998 Newcastle '98 ~",M~O

Under-Constrained

• Difference in completeness
- style focus: critical features, eliminate non

essential, non-stylistic

• Capture PL as completely as possible

• With variations not ruled out by overly
constraining the architecture

• Variance within constraints, not within the
aspects not defined

Scl'lcmbc r 1998 Newcastle '98 '-",.1I2~O

Under-Constrained - Advantages

• Easier to create PIA from PLA than Styles

• Analysis at PLA level applies to PIA level

• Planning at PLA level applies to PIA level

• Evolution via constraint relaxation easy

xp",mbc. 1998 Newcastle '98 iM«"'T«nn.,l~ 0

Under-Constrained -
Disadvantages

• Extending the PLA is a significantly more
constraining task

• May not be possible to define all new
products within constraints

• PLA evolution may cause confo rmity
problems

ScPlcmbc, l'J'!S Nt!w<::lSlle '98
lv«n' r«n,,",~ 0

<
H
H

~

U>

Under-Constrained - Evaluation

• Seems appropriate where primary difference
is something like performance where the
functionality remains the same

• Too confining for variance often needed for
individual products

Scpocmb« IWiI Newc:lStJe '98 ~'J"-~O

V ariance-Free

• Architecture is not under-constrained

• Variance is not considered architecturally
important
- product difference a design or implementation

issue not an architectural one
- ego platform or distribution independence

• There are implications for the PLA

.xplc not>c, 19')11 Newca!>lle '9g
Lu<!~=-"1:: 0

Variance-Free - Advantages

• Analysis and planning at the PLA level

• Product variance depends on implementation
and not on architecture

• PLA is the PIA

• Evolution of the PLA means evolution of the
PIAs

ScpLCmbc:. 1998 NeWC3Slle '98!~==O

Variance-Free - Disadvantages

• Standard specification problem of talking
about what is not there

• May not be able to isolate all variance this
way

S<l"cnlOo<' I'N~ Newcastle '98 L..,;~"'..!c;!'t:!.-s:: 0

<
H
H

~

'"

•

Variance-Free - Evaluation

• Useful for range of options for a particular
aspect (eg, fault tolerance, distribution ...)

• But may not be able to account for variance
in functionality

Scp,embc. I Y98 Newcastle '98 t...w"!!~~O

Parametric

• Standard approach: parametric abstraction

• Limits depend on the constraints on the
arguments

• Defines a family of possible instantiations

Sc:p""mbe1 !WlI Newcastle ''J~ t.-""'.!f!..~ 0

Parametric - Advantages

• Variations we ll-defined and well-known

• Instantiation of PIA from PLA is well-
understood (possibly automatic)

• Analysis at PLA level

• Planning at PLA level

• Evolution by relaxing constraints or by
upward compatible extensions OK

Scpl"n1b.:.I!I98 Newcastle '98
l...c."' T«" !l!!: 0

Parametric - Disadvantages

• Kinds of parameters allowed may seriously
affect how well the PLA covers the necessary
vanance

• Incompatible parameter evolution generates
conformance problems

~p .. n oOc f ,""':1 Newcastle '91)
'--'" r« h :s: 0

<
H
H

~

--J

Parametric - Evaluation

• Means of abstraction well-understood

• Instantiation well-understood

• Good analysis and planning properties

• May not cover all forms of variance

Sepiembcr 199$ Newcastle '98 ~'J~O

Service-Oriented

• In large complicated systems often need to
provision individual products with different
features

• Not doable with parameters or variation
independence

• Architectural features selectable

s.:ptcmlxt 1998 Newcastle '98 LooaM..r~O

Service-Oriented - Advantages

• Instantiation is by selection

• Possibilities are explicit

• If done properly, architectural dependencies
among services are explicit

• Analysis at PLA level

• Planning derived from PLA via selection

• Evolution via add ition OK

September L'N8 Newcastle "98
L "!.!.'!!:::2!..~O

Service Oriented - Disadvantages

• Evolution via change/deletion causes
conformity problems

• May not know all the services needed in
advance

xplcnlbc,l9')g Newcastle "98 ~"T"'~""~O

...

<
H
H

~

00

• •

Service-Oriented - Evaluation

• Simple/effective way of managing product
line

• Likely to be insufficient for complete PLA

S<'p4ctnb<;t 1998 Newcastle '98 ~-.!~o

Putting It Together

• Comprehensive approach would require all
. ~se forms of generic description

• Styles useful for aspects distributed across
sets of architectural components

• Under-constrain where flexib ility is needed
such as changes in technology

• Variations independence for delayed binding

ScplCmber 1991l Newcastle '98 ~-.!~~o

wi

Putting It Together

• Parameters where the ranges of solutions are
well understood

• Provisioning where the poss ibilities are
enumerable

-"., Newcastle "93 ~-'""""""o

'"

<
H
H

~

'"

VII . 20

DISCUSS ION

Rapporteur: Dr Paul Ezhilchelvan

Lecture One

When Professo r Perry was presen ting the usefulness of Asse t Base (AB) in deve loping
Product Line Arch itecture (PLA), Professor Randell questioned about the problems and the
d ifficul ties in vo lved in bu ilding an AB can pose, when a big organisat ion is deve loping a
PLA. The speaker replied by pointing out that AB is meant to contain components that are re
used and deemed to be reusable. When building a multi-media application involving v-mail ,
e-mail e tc, some operations remain ide ntical throughout. Also, different interfaces have
different implementat ions. Such components are accumulated in the AB duri ng the PLA
deve lopment. To Professor Randell's observa tion that PLA and AB are not directly
connected in the Life-cyc le figure presented, Professor Perry pointed out that the re lation is
indirect and mainly via the PL Processes Box .

Professor Brooks wondered about the effects of inevitable inconsistencies among the pieces
in the AB. Professor Perry attributed these incons istencies to different standards among
products of same type which the PLA must take into account. Ideally, one wo uld prefer a
platform that is independent of communica tion architecture. But each communica tion
medium has different standards which lead to diffe rent implementation .

Dr Kay wanted to know who the PLA is being developed for. It is primarily for the company
who is responsible for products in product line; it also remains useful for project personnel
managing the project. Basica lly, the aim of PLA is to disseminate much in formation about
the product and its developmen t so that the interval taken to produce and market the product
is shortened. Professor Shaw observed that while one benefit of PLA to the company is
fas ter production and marketing, it also simplifies incorporation of upgrade paths. Mr
McVitie, observing the discussions on the usefulness of PLA, wondered whether PLA is to
be developed with both AB and product line in mi nd. Dr Perry stopped short of endorsing
the view, reiterating his view that PLA is to describe how bes t a product can be built.

Professor Rande ll compared the certain aspects of under-constrained PLA to specifying
sys tems in terms of what they should not do (negati ve ly) rather than what they should do
(positively) . The speaker opined that negative ly specifying things work very well in certain
cases.

Professor Johnson wanted to know how Product Instance Architecture (PIA) is described:
formally or in terms of a programming language. The speaker replied that it can also be done
in terms of constraints involv ing notations.

Dr Kay wondered how certain restrictions, such as a product which can only be run on some
versions of Unix, can be expressed. It can be done through constraints, the speaker replied
and elaborated on that point.

Professor Randell was of the opinion that it is the level of abstraction that distinguishes
functional properties against non-functional ones. As an example, he cited, some of what can
be non-functional aspects for a network user are functional aspects for a network manager.
The speaker used these terms in the following sense: sys tem acti vities/properties that can be
clearly stated come under functional aspects, and others under non-functional aspects.
Professor Johnson recalled that Fault Tolerance issues were once regarded as non-functional
aspec ts some twenty years ago. Now, as we know how to specify them, they are a part of
functional aspects of a system.

Professor Johnson opined that what is being proposed is the right thing and weighed the cost
versus benefit. He said that many companies cannot and do not deve lop a PLA before
production. They often have PLA in the form of power-point slides. He wanted the speaker

t

1

•

VII.21

to shed ligh t on the cos t of developing PLA and the relative difficu lties in working with it.
The speaker replied that the cos t incurred is no t much in hi s own company and advantages
are far more, and the architecture is thought to be an important ingredient in the development
process. What is often missed is the arch itecture update as the product undergoes changes.
Professor Shaw observed that the integration of new technologies into the developmen t
process may al so be simplified.

Professor Malek observed that often there is a comprom ise between the rush to product
marketing and maintaining product qual ity. He wondered whether having PLA enables or
prevents such compromises. The speaker replied that PLA improves both and avoids the
need to make such compromises. Professor Vogt wanted to know the influence of the new
Telecom architecture TINA had in the speaker's thinking and considerations. The speaker
was not aware of the TIN A details and it was agreed to pursue further discussions about
TINA off- line.

VII . 22

1

