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Computing near-optimal schedules

Jan Karel Lenstra
Dept of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
The Netherlands

For many NP-hard optimization problems there are polynomial-time algorithms for finding
solutions that are provably quite close to the optimum. For others certain performance
guarantees are unlikely to be attained, in the sense that if there is such a good algorithm, then
P = NP. We survey a number of positive and negative results on computing near-optimal
solutions for machine scheduling problems, with an emphasis on multiprocessor scheduling
and shop scheduling.

Job shop scheduling by local search

Jan Karel Lenstra
Dept of Mathematics and Computing Science
Eindhoven University of Technology
P.0O. Box 513
5600 MB Eindhoven
The Netherlands

The job shop scheduling problem is one of the most difficult problem types in combinatorial
optimization. Even relatively small instances of the problem are hard to solve to optimality.
Recently some progress has been made in finding good approximations of the optimum by a
variety of local search techniques, such as iterative improvement, simulated annealing, tabu
search, variable-depth search, and genetic algorithms. We survey this work.



II.4

SHORT SCHEDULES

JAN KAREL LENSTRA

EINDHOVEN UNIVERSITY OF TECHNOLGGY
CWI, AMSTERDAM

LESLIE HALL

HAN HOOGEVEEN

COR HURKENS
ALEXANDER RINNOOY KAN
SERGEY ZEVASTUANOVY
DAVID SHMOYS

EVA TARDOS

RART VELTMAN

DAVID WILLIAMESON



—rr vy

“a S

L e b e —— e iy

1I:5

BIN PACKING

N ITEMS OF SIZE 64,0,,:0: 50, > O

BINS OF CAPACITY & > O
PACK ALL ITEMS IN MINIMUM 2 BINS

3 PACKING IN 2 BINS 7
IS NP-COMPLETE  [KARP 1972]

H POLYNOMIAL ALGORITHM A
WITH V INSTANCE I : —A(Q) o 3

OPT(I) 2
UNLESS P = NP
SUPPOSE JA
e OPT(I)L 2 = A(I<Z0T(I)<3 = A <2
e OPT(I)23 = A(l) =2 3

—> A ANSWERS 2-BIN RUESTION [N POLYNOMIAL TIME
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EFD(I) < .’:_;.. OPT(I) + 4 [ JOHNSON 19767

+ 3 [ BAKER 1985]

+ 1 [YUE 1990]
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COMBINATORIAL OPTIMIZATION PROBLEM
@ CLASS OF INSTANCES

® POLYNOMIAL ALGOR|THM:
INSTANCE I & OBJUECT F
—> IS F A FEASIBLE SOLUTION FOR I 7

@ FPOLYNOMIAL ALGORITHM:
INSTANCE I & FEASIBLE SoLuTioN F
—> NONNEGATIVE & INTEGRAL VALUE OF F

® |INSTANCE I
2> FEASIBLE SOLUTION OF MINIMUM VALUE OPT (I)
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ALGOR|THM A :

INSTANCE I —> FEASIBLE SOLUTION OF VALUE A(T)

PERFORMANCE RATIO OF A:

R(A) = tpir|r21, VI: oﬁfrlgl) ...r}

A IS POLYNOMIAL Y-APPROXIMATION ALGORITHM IF

e R(A) = »
o A RUNS IN TIME POLYNOMIAL IN |I]

{AL} IS POLYNOMIAL APPROXIMATION SCAEME IF Vr>1
o R(A) < 7
o Ay, RUNS IN TIME POLYNOMIAL IN | I]

{AL} 15 FULLY FOLYNCMIAL APPROXIMATICN SCHEME IF Yr>1

o RA,) <

o A, RUNS IN TIME POLYNOMIAL IN [I] & —— r_,
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T

t IMPOSSIBILITY THEOREM

1o IF 45ce N

= FEASIBLE SOLUTION OF VALUE < ¢ ?
IS NFP-COMFLETE

THEN
| o # POLYNOMIAL ALGORITHM A WITH R(A)< &
d UNLESS F= HP
| o
J SUPPOSE J A
| e OPTM S c => A OPT(D S e+l =» A < ¢
| @ o OPT(I) 2 ¢c+1 = A(l) = e
=> A ANSWERS < c-QUESTION IN POLYNOMIAL TIME
= F=HNF
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BIN PACKING

<2 [kARP1972) => £ 2

SYMMETRIC TSP

— e e ——

GRAPH G =(V,E), d: E—->Nu{0}
FIND HAMILTON CYCLE OF MINIMUM TOTAL WEIGHT

1 <0 [kaRP 1972) => <41 FOR ANY T > 1
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MULTIPROCESSOR SCHEDULING

m IDENTICAL MACHINES M,,..0, M
n INDEPENDENT JOBS Jyseeesdy,
PROCESSING J; REQWIRES TIME p; € N

SCHEDULE = ASSIGNMENT OF EACH JOB TO A MACHINE
LENGTH OF SCHEDULE = max; X, ,m. P5

FIND SCHEDPULE OF MINIMUM LENGTH

1.
R(LS) = 2-+= [&RAHAM 1966]
1
R(LPT) = %- 5 [GRAHAM 1969]
PAS [HOCHBAUM & SHMOYS 1987 ]
NO FPAS UNLESS F=cN& [GAREY & JOHNSON 19787

® DEPENDENT JOBS
PRECEDENCE RELATION ON JOR SET

e NONIDENTICAL MACHINES
PROCESSING J; ON M; REQUIRES TIME pg;
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PRECEDENCE-CONSTRAINED SCHEDULING

R(LS) = 2-2% [GRAHAM 1966 ]

<3 = £ % [L& RK 1978]
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CLIQUE
GRAPH G=(V,E), k€N
DOES G HAVE A COMPLETE SUBGRAPH ON k VERTICES?

CLIQUE o <£3

G : m LARGE ENOUGH
Zm UNIT-TIME JOBS

2 23 M; | 3 |24| 45}
3 24 4134 @|
4 34 . lel1le
5 45 " |lels|e
M. ®|©|®

vi E] 1
o 1 2 3

k=3 m-k  mk-t m-L

A

k'= V] -k :>$oé:
™

= CLIQUE —> 3 SCHEDULE
OF SIZE k OF LENGTH £ 3
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PRECEDENCE -CONSTRAINED SCHEDULING
WITH COMMUNICATION DELAYS

M IDENTICAL MACHINES

n UNIT-TIME JOBS

IF J;» Jg AND J; & J, ON DIFFERENT MACHINES
THEN UNIT-TIME DELAY BETWEEN J, & J,

m RESTRICTED m UNRESTRICTED
x <3 X <5
! 54 => £2 1 56 = ¢7%

[HOOGEVEEN, L, VELTM!}N, 1992 ]

R(GREEDY) = 3 R(LP) = %
[RAYWARD-SMITH] [MUNIER, KONIG]

R jo purnication (LS) = 2
[PAPADIMITRIOU, YANNAKAKIS]

FOOTNOTE
m RESTRICTED GENERAL TREE m=2
DELAYS O 1 <3 * *

DELAYS A1 ' < 4 ! 7
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SCHEDULING UNRELATED MACHINES

R(LP+M) = 2 [L,SHMOYS, & TARDOS 1940]
<3 = 4%
<2 = 42
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UNRELATED MACHINES

POTTS' LP-BASED ALGORITHM

(1) SOLVE LP

INPUT : ppy = PROCESSING TIME OF JOB  ON MACHINE 1

l

OUTPUT: %y = FRACTION OF JOB j ASSIGNED TO MACKINE 4

2 £ OPT (= MINIMUM SCHEDULE LENGTH)

MINIMIZE Z
SUBJECT TO 20 %ps = 1, j=1.0n

ZJ‘ P{J 'H.,‘J' .S 2, 1= 1,..0yMm

11.5 ? 0) 1121,-..,'“’ 321,..-)"

l

—> AT MOST m-1 SPLIT JOBS

(2) ASSIGN UNSPLIT JOBS BY ROUNDING DOWN LP-OUTPUT:
PUT FRACTION |2g] OF JOB j ON MACHINE 1

—>» SCHEDULE OF LENGTH £ Zz £ OPT

(3) ASSIGN SPLIT JOBS OPTIMALLY BY COMPLETE ENUMERATION:
crneck O(m™ ") PoSSIBILITIES

—>» SCHEDULE CF LENETH < OPT

RCLP) =2

RUNNING TIME POLYNCMIAL FCR FIXED m
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2DM oC

IN
W

3n ELEMENTS —» 3n JOBS

Lo ONOXNO) {1 IF j € TRIPLE 1
Pgy =

2 2 Z ANORO) 3 OTHERW|SE
3 3 3 @0 G
+ 4 ¢4 @ @ @
m TRIPLES —> m MACHINES & m-n DuMMY Jo8S
JoJo)o. 00O
1 2 3 7 Ll
| & | Uit vz,
2 | 3 iz,
KK C 2742 T
2 3 4 L1, 7L
r@ ®O rz;
JoYoXo! 0
3 3 4 77757/ /% Pi= 3
¢ | 2
JOIONG)]
4 4 |
2 n TRIPLES &> 3 SCHEDULE
CONTAINING OF LENGTH £ 3

3n ELEMENTS
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3DM x <2

3n ELEMENTS —> 2n JOBS

Lo OXO, 1 IF § € TRIPLE {
2 2 2 @ @ Pij:{s OTHERWISE
3 3 3 ® 0
4 & ¢4 @ @
m TRIPLES —> M MACHINES & m-n DUMMY JOBS
» [0 O @) l 2 FOR { OF TYE |
[ 2 3 | ) P‘FL OTHERWISE
2 |3 2 i) 2 FOR{ OF TYPE 2
2 2 2 V7. /L, "3:{3 STHERWISE
2 3 4 TR T

Wl {z FOR 1 OF TYPE 3
Psj=

3 3 &4 __@ " [2 CTHERWISE

¢ 1 2 4 {z FOR ¢ OF TYPE ¢
»®0 @ W 3 GTHERWISE

I n TRIPLES &> 3 SCHEDULE
CONTAINING OF LENGTH £ 2

3n ELEMENTS
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SCHEDULING
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o INTEGRAL PROCESSING TIMES
e MINIMIZE SCHEDULE LENGTH
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Oc OPEN SHO?
Fc  GIVEN AN FLOW SHOP INSTANCE £ A ¢ € N,
Je JOB S$HOP
DOES THERE EXIST A SCHEDULE OF LENGTH < ¢ ?

* 02 ¥ F2 * J2 [FOLKLORE]

* O3 * F3 x J3

[WILLIAMSON- He H+H+ LS ]
' O4 ! Fa4 ' J4

IMPOSSIBILITIES (UNLESS = N P):
o POLYNOMIAL ALLZORITHM A WITH R(A) < %
@ POLYNOM(AL APPROXIMATION SCHEME

POSSIBILITIES

O: R(GREEDY) = 2. [RACSMANY ]
J: R(:ee) = OUog'(m-m,,,)) [SHMOYS-STEIN -WEIN 1449:]
F, MFIXEP: PAS [HALL 1995]

O, M_FIXED: PAS [SEVAST'JANOV: WOEGINGER 1996]
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JOB SHOP SCHEDULING

JAN KAREL LENSTRA

EINDHOVEN UNIVERSITY OF TECHNOLOGY
CWI1, AMSTERDAM

— LIMIT TO APPROXIMABILITY

Williamson - Hall- Hoogeveen - Hurkens - L+ Sevast’janov - Shmoys

+ APPROXIMATION BY LOCAL SEARCH

Vaessens - Aarks- L
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SET OF MACHINES

SET OF JOBS
EACH MACHINE e IS AVAILABLE AT TIME O

o CAN HANDLE <1 JOB AT A TIME

EACH JOB ® IS A CHAIN OF OPERATIONS

EACH OPERATION REQUIRES UNINTERRUPTED PROCESSING
ON GIVEN MACHINE
FOR GIVEN AMOUNT OF TIME

EXAMPLE: JOBA: 88— 2 —4
JOB B: 1 — 6 — 2 —>10

JoBC: 7—  —9Q

SCHEDULE = ALLOCATION OF OPERATIONS
“TO TIME INTERVALS ON MACHINES

EXamPLE: ML _A [ B | € |

M Bl (A1 e —
M | BTAT]
M | [ ¢ T B8 1

o 45

OPTIMAL SCHEDULE = SCHEDULE OF MINIMUM LENGTH
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DISJUNCTIVE PROGRAM

SET M. OF MACHINES

SET ] OF JOBS

SET O OF OPERATIONS

OPERATION 1€ O o BELONGS To JoB J;& [
® REQU(RES PROCESSING ON MACHINE M, & M
® DURING TIME p; € IN

BINARY RELATION —» ON O

® DECOMPOSING O INTO CHAINS (= JOBRS)

FIND STARTING TIMES S; (1€ 0)

5 MINIMIZING

o LENGTH: . max. o {5 +p;}
s SUBJECT TC
o AVAILABILITY:  S; 30 (1eO)
® PRECEDENCE:  S;-S; > p; (1,j€0, 1—>3)
e CAPACITY: S:f- Si2p Vv S{"Sj Z Py (1::3.609 Mi.:' MJ)
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DISJUNCTIVE GRAPH & = (0O, A, E)

® VERTEX SET O

e ARC SET A = {(4,j)|]t—j} ... DIRECTED!
o EDGESET E = {{{,j}|M;=M;} ... UNDIRECTED!
e WEIGHT P: FOR EACH 1€ 0

EXAMPLE:

CAPACITY CONFLICT: EDGE {1,j}€E

SCHEDULING DECISION: REPLACE {i,j} BY ({,j) OR (5,%)
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DISJUNCTIVE GRAPH &G = (0, A, E)

® VERTEX SET O

e ARCSET A = {(1,j7)[t—>j} ... DIRECTED!
e EDGESET E = {{i,j}/|M;=M;} ... UNDIRECTED!
e WEIGHT  p; FOR EACH 1€ 0

S S~ S, SRS e e 4 NPT W PG 78 i A

;iz'sﬂ_:_ﬁilﬁ(AMPLE:

CAPACITY CONFLICT: EDGE {{,j}€E
SCHEDULING DECISION: REPLACE {{,j} BY (1,j) OR (4,1)

FEASIBLE SCHEDULE : ORIENTATION E OF E SUCH THAT
DIGRAPH G =(O,AVE) 1S AcycLic

-

LENGTH OF SCHEDULE:  LONGEST PATH LENGTH IN G

PROBLEM: FIND ORIENTATION E OF E
| THAT MINIMIZES LONGEST PATH LENGTH IN G



=

OFPTIMAL

SOLUTIONS

APPROXIMATE
SOLUTIONS

LL.26

POLYNOMIAL

ALGORITHMS

FAST

OPTIMIZATION

FAST

APPRCXIMATION

EXPONENTIAL

ALGORITHMS

ENUMERATION:

DP, B4B

LOCAL
SEARCH
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COMPUTATIONAL COMPLEXITY

POLYNOMIAL TIME NP-HARD
2 MACHINES

5 IMACHINES <3 OPERATIONS/JOB
< 2 OPERATIONS /JOR
2 MACKHINES

2 MACHINES ALL p; € {1,2]

ALL pi=1 3 MACHINES
ALL Pe = 1

2 JORS 3 JOBS

IA
KN

LENGTH < 3 LENGTH
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J4 FIND SCHEDULE OF LENGTH £ 4 NP-HARD

I

EIND SCHEDWLE OF LENGTH < £XOPTIMUM  NP-HARD

(s
ln

J4 e J2

SUPPOSE A 1S POLYNOMIAL ALGORITHM FOR J2

TAKE ANY INSTANCE I

o.OPT(I);S' = A(1) 2 5 %
e OPTD < 4 = AMKL-0PT(D S S = Al £ 4
— A IS POLYNOMIAL ALGORITHM FOR J&

<
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BRANCH & BOUND

NODE: SOME E'c E HAS ORIENTATION E’

LOWER BOUNDS

LBO e IGNORE EDGES IN E=~E'
e COMPUTE LONGEST PATH LENGTH IN (O, AVE")

LB1 e CHOOSE M¥ |
o |GNORE EDGES IN E-E' NOT ON M¥*
o SOLVE 1-MACHINE PROBLEM WITH FOR EACH i ON M¥:
e HEAD 1, = LONGEST PATH LENGTH UP To 1
o BCDY p; = PROCESSING TIME

e TAIL g; = LONGEST PATH LENGTH FROM i

STRENGTHEN LBA
e PRECEDENCE CONSTRAINTS ¢ ()—>E)
e PRECEDENCE DELAYS: a—2 5

o ADJUSTEY HEADS & TAILS: Ty= max (8+7,1+6+7) —> = 8+6-
o L3k, k>1

SURRDZATE DUALITY BOounvDds

POLYHEDRAL BAUNDS
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LOWER BOUND VALUES

FOR 10X 10 INSTANCE [Fischer, Thompson, 1963]
OPTIMUM 930 [Cariler, Pinson, 1484 ]
LB1 808 [McMahon, Flonan, 1475]

LB1 WIiTH ADJUSTED HEADS & TAILS  T[cariier, Finson, 1994]

868
LBS 907 [Logeweg, 1484]
SIARROGATE DUALITY - [Fisker, Lagewey, L, Rinnoty Kan, 1483
- 8413 >1 HR
CLYHEDRAL BOUNDS . [Appleqate, Cock, 1991]

o CUTS 4 823 § SEC

e CUTS2 824 § MIN

e CUTS 2 827 >2HR
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BRANCHING RULES

(a) GENERATE °ACTIVE SCHEDULES’
(&) ORIENT CRUCIAL EDGE

(e) APPLY °BLOCK APPROACH’

IMPLEMENTATIONS

e UB: APPROXIMATION ALGORITHM, E.G-, SHIFTING BOTTLENECK
e LB: PREEMPTIVE LB1

e BRANCHING: (&) OR (Ce)

o ELIMINATION CRITERIA: MANY !

RESULTS FOR 10x10 |NSTANCE

® 22021 NODES, 300 MIN [Coriier, Finson, 1984)

e 16055 NOPES, 6 MIN [Applegake, Cook, 1941]

® 4242 NODES, 19 MIN [ Brucker, Junisch, Sievers, 1992)

o 37 NODES, 8 MIN [Carlier, Pinson, L444]

MAJOR ISSUE
o FIND BETTER (LP-BASEP?) LOWER BOUNDS
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APPROXIMATION ALGORITHMS: CONSTRUCTION

PRIORITY RULE
® SCHEJULE OPERATIONS ACCORPING TO SOME PRIORITY FUNCTIC

ACTIVE SCHEDULES

DEFINITION: A SCHEDULE |S ACTIVE’

I\F MOVING& BACK ONE OPERATION WILL DELAY ANOTHER OMNE.

THEOREM . AT LEAIT ONE OPTIMAL SCHEDULE (S ACTIVE.

CONSTRUCTION :
® LET S; = EARLIEST POSSIBLE STARTING TIME OF < ({€0O)
LET O'= SET OF UNSCHEDULED OPERATIONS
o DETERMINE j €O' SUCH THAT
Si*tpj = mingeoiSirpi
® SELECT OPERATION FROM SET
{‘(— li&O, Mi"'Mj) St-< SO+PJ}
ACCORDING TO SOME PRIORITY FUNCTION
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LOCAL SEARCH

F ¢ SET OF FEAS\BLE SOLUTIONS 2%
c(x) e R : CoST OF %

N(x)c F : NEIGHBORHOOD OF =

ITERATIVE IMPROVEMENT

 ® GENERATE % € F
® AS LONG AS Jy €N(x) WITH ¢(y)<c(x), DO X «— Yy

| ® ® % IS LOCALLY OPTIMAL WITH RESPECT To N

NEW VARIANTS

| ® SIMULATED ANNEALING
! ® THRESHOLD ACCEPTANCE
@ e TABU SEARCH
® VARIABLE-DEPTH SEARCH
® GENETIC ALGORITHMS

) ® o o0

HYBRID VARIETIES

LOCAL SEARCH COMBINED wWITH
® CONSTRUCTIVE RWULE

® e OTHER LOCAL SEARCH METHOP

e BACKTRACKING SCHEME
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SMALL-CHANGE NEIGHBRBORHOODS

S SWAP: REVERSE MACHINE ARC ON LONGEST PATH

e

e SWAP ELSEWHERE WILL NOT GIVE IMPROVEMENT

e SWAP CON LONGEST PATH WILL NOT CREATE CHCLE

e VSCHEPUE 3 PATH To OFPTIMAL SCHEDULE

S+ SWAP CRITICAL ARC O AND ARCS -t £ 1
—_—@ e @
—® s @

J JUMP: REINSERT OVERATICN oM LONGEST PATH ELIEWHERYE

P PESRMUTE 3 OR MORE OPERATIONS ON LONGEST PATH

BlG - CHANGE NEIGHBORHOCODS
R1 RESCHEDULE 1 MACHINE  +-¢ BY COMPUTING LB1

Rt RESCASDULE £ MACHINEL . BY JOB SHOP SCHEDULING
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SMALL-CHANGE NE|GHBORHOODS

S SWA? REVER.SE MACH.INE ARC ON LONGEST PATH

s e et e e i P RV LT e TP SyEE W [ -

>

= L e e e 5t e e+

& SWAP ELSEWHERE WILL HO“" Ger€ IMPRDVEMENT

e SWAP ON LONGEST PATH WILL NOT CREATE CHCLE

o VSCHEPULE T PATH TO OPTIMAL SCHEDULE
S+ SwApP CRITICAL ARC © AND ARCS =t & 1
—_— v gD
N LR
—@ ca e
J JUMP: REINSERT OVERATIEM oM LONGEST PATH ELSEWHERYE

P PERMUTE 3 OR MORE OPERATICNS ON LONGEST PATH

BlG - CHANGE NEIGHBCORHOODS
R1 RESCHEDULE 1 MACHINE  «-¢ BY COMPUTING LB1

Rt REfCAEDULE £ MACHINES .. BY JOB SHOP SCHEDULING
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SHIFTING BOTTLENECK [Adaws, Balas, 2awack, 1988]

FOR k «— 1 TO m DO:
® CONSTRUCTION:

SCHEDULE MACHINE MAXIMIZING LB1 AMONG UNSCHEPULED MACHINES
® |[TERATIVE IMPROVEMENT USING R1:!

REOPTIMIZE PARTIAL SCHEPULE BY RETCHEPULING 1 MACHINE AT A TIME

VARIATIONS

~

® SB 4+ DELAYS [Balas, L, Vazacopoulss, 1945]

SCHEDULE MACHINE MAXIMIZING LB1 INCORPORATING PRECEDENCE DELAYS

e SB + GUIDED LoCAL SEARCH [Balas, Vazacopoulos, 1994]

REOPTIMIZE BY YARIABLE-PEFTH SEARCH USING JUMPS

HYBRIDS

® PARTIAL ENUMERATION [Adams, Balas, Zawack, 1488]

SUB-BRANCH & SUFPER-BOUNTD, APPLYING SB IN EACH NODE

® BoTTLE -t [_Arrtc_%g,&e.’ Cook, 1991]
FOR k > m-t: BRANCH, CUNSIDERING EACH MACHINE IN TURN

o SHUFFLE (Applegake, Cook, 19a1]
e CONSTRUCT SCHEPULE USING BCTTLE-5

e |TERATIVELY IMPROVE |T USING Rt

RESULTS

()
tQ
N
\Y4
A
N
b2
\ =)
T
!“
K=
-
U
g
n
-
Lya
9
per’
.
n
]
-F
‘U )
»
Loro
Loy
A
-
1]
n
v
]
\'A
V
L
ta
i
:
v
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I ITERATIVE IMPROVYEMENT  [Aarts, viaarheves, L, Ulder, (9947
ACCEPT y IF c(y)-e(x) < O

TA  THRESHOLD ACCEPTING [Aarts, vlaarhoven, L, Ulder, 19947

ACCEPT Y IF c(y)-cx) <t wWIiTH t40

SA  SIMULATED ANNEALING [vlaarhoven, Aarts, L, 1992]
ACCEPT Y IF c(y)-c(x) <O OR WITH PROBABILITY ¥ 0

SAll BI-LEVEL VARIANT [Maksuo, Suk, Sullivaw, 1488]
© ACCEPT Y AS IN SA
¢ OTHERWISE, SUBJECT y TO !! TO OBTAIN Z

ACCEPT z AS IN_!!

RESULTS
@ TIME EQUIVALENT

ig > llgy D> TAg >> {PE, SRg, SRt > SHUFFLE D> SAl oy
® TIME OF NO CONCERN

SHURFLE >> SA¢ ()

CONCLUSIONS
o RANDOMIZATION HELPS
0 EXPLOITING PROBLEM STRUCTURE HELPS
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TABOO SEARCH
e SELECT BEST NEIGHBOR

(UNLESS IT 1S FORBIDDEN (UNLESS [T IS GOOD ENOUGH))
e MAINTAIN FORBIDDEN SET

(OFTEN DEFINED IN TERMS OF FORBIDDEN MOVES)

TS5g  SWAP CRITICAL ARC [Barnzs, Chambers, 14457]
TSp  PERMUTE MORE CRITICAL OPERATIONS [Pell'Amico, Trubian, 1943]
TS¢BT BACKTRACKING TO REJECTED MOVES [Nowick(, Smuknicki, 1445]

TSs > SAg() > TS, > T54BT

VARIABLE-DEPTH SEARCH
e X —> CHAIN OF SOLUTIONS, MAKING SMALL GREEDY MOVES
o Y 4— BEST SOLUTION IN CHAIN |

GL3,  GUIDED LOCAL SEARCH [Balas, Vazacopowios, 1994]
@ TREES INSTEAD OF CHAINS, BCUNDED BY HEURISTIC RULE!
o MOVES ARE JUMPS

IGLS ITERATED GLZE
SBGLS — [GLS ON m-1 MACHINES —

GLS ON M MACHInES T%

1GLS = [GLS ON m-Vm MACHINES —>
SB To ADD Vim MACHINES —

LGLS ON m MACHINES 1%

GLE > 1GLE > TigBT > R&Li-5; TigET 15 FASTER
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GENETIC ALGORITHMS
® CHOOSE POPULATION OF SOLUTIONS, SPLIT IN PAIRS
® FOR EACH PAIR, GENERATE TWO HYFERNEIGHBORS

e REDUCE POPULATION TO ORIGINAL SIZE

VARIETY OF HYPERNEIGHBORHOODS
ALLOWING USE OF

. STRING REPRESENTATIONS

. MUTATIONS

. CROSSOVERS

BILEVEL VARIANTSE
SUBJECTING HYPERNE|&HBORS TO, E.G., I!

RESULTS
. OFTEN POOR
. AT BEST IN RANGE [SB,SHUFELE]
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CONSTRAINT SATISFACTION

SOLVE FEASIBILITY PROBLEM BY TREE SEARCH USING
® [BRANCH] VARIABLE AND VALWUE SELECTION

@ [ BOUND] CONSISTENCY ENFORCING

&— COMFLETE ENUMERATION TRADITION OF LOGIC PROGRAMMIN G

—> COMBINATION WITH TECHNIQUES FROM MATH. PROGRAMMING

RESULTS
RANDOMIZED RCS IS OK BUT SLOW

NEURAL NETWORKS

Z
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8% . ® [] '] Py
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7% L ¢ i . e ® ° .
6"0 Jb e ° ® ° e
5% 1 L4 L '] ° o
4% 3 . e DELAYS o :
PE
SAs
3% ¢ e e o SHUFFLS o
SAllgs
2% . . . . . RC
1
!
|
!
2ohaLs TSs
' [] L ] * L ] -
1 ! TSp SALw)
: s
TSS8T T peiss
6% - R i
10° 0! T 00 0% "

3£ NORMALIZED
CPU SECONDS
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DISCUSSION
Rapporteur: Martin Beet
Lecture One

Referring to the TSP problem mentioned in the talk, dr Arne Andersson inquired about the
alleged success of the neural network approach compared to the use of linear programming
or other techniques. Professor Lenstra was somewhat sceptical about this, and replied that in
his opinion this kind of combinatorial problem did not lend itself to effective solution by
neural nets. In his view many researchers were uncertain about the great power and wide-
ranging applicability of linear programming.

Professor Nievergelt inquired about scheduling research concerning the problem of disturbed
schedules, as might be encountered in transport management; for example how to handle a
delayed train or airline flight while causing as little disturbance to the remaining schedule as
possible. Professor Lenstra stated that this robustness of a schedule seemed to be highly
dependent on the initial schedule, but that most researchers in scheduling had concentrated
on static problems. Mr Ainsworth supported this view. Both agreed on the importance and
the demand for techniques to solve these problems.

Lecture Two

In answering a query from the audience, Professor Lenstra stated that the comparison of the
running time of different local-search algorithms relied solely on empirical findings, as a
unifying theory was not available.

Professor Mehlhorn was curious as to why the linear programming approach was not also
used for job shop scheduling (JSS). Professor Lenstra explained that in his experience the
LP approach with relaxations did not provide satisfactory results, due to the difficulty of
dealing with the disjunction in the formulation of the precedence constraints. He added that
local-search algorithms were a valid approach, since there seemed to be little demand for
algorithms to solve large-scale JSS problems.





