
CONSTRUCTING DEPENDABLE WEB SERVICES

S K Shrivastava

Rapporteur: Dr Rogerio de Lemos

VIII. 2

Abstract

VIII . 3

Constructing Dependable Web Services

D. lnghaml, F. Panzieri 2 and S.K. Shrivastm'a 1

I Deparlment 0/ Compllling Science
University o/Newcastle upon Tyne

Newcastle upon TYl1e. HE I 7RU, UK

2 Dipartimento di Scienze dell'!n/ormazione
Universita' di Bologna,

Mum Anteo Zamboni 7, 40127 Bologna, Italy.

This paper discusses the issues involved in supporting high-volume, highly-reliab le,
Web services. Such services pose a number of diverse technical cha llenges. The paper
discusses how recent research ideas from distributed computing can be deployed at the
various levels of the architecrure to yield an overa ll so lution.

Key words: fault -tolerance, re liability, transactions, process groups.

1. Introduction

The majority of to day's Web sites offer read-only access to relatively small amounts
of infrequent ly-changing information. Also, since the load experienced by these sites is
usually small, services can generally be hosted as a background task on a general purpose
workstation. Such services are generally not overly concerned about the levels of quality
of service presented to the ir users. Conversely, there exists a much smaller number of
extremely popular sites that experience very high loads and, in order to maintain their
popularity and reputation, tend to be concerned about the quality of service experienced
by the ir users.

The quality of service (QoS) as perceived by the users of a Web service is dependent
on a number of factors. Perhaps the most important of these relate to performance and
rel iability. Users expect services that are continuously available and appear responsive to
their requests. A service that is frequently unavailable may have the effect of tarnishing
the reputation of the service provider or result in loss of opportunity . Furthermore, from
the user's perspective, a service that exhibits poor responsiveness is virtually equivalent
to an unavailable service. QoS also encompasses the quality of the information provided,
a specific instance being the integrity of hypertext linking between resources.

The users of sites that offer more advanced services, such as electronic shops,
personalised newspapers, customer-support sys tems etc., have additional QoS
requirements. The content provided by such services tends to be dynamically generated in
response to some read/write interaction between the user and the service. From the user's
perspective, it is desirable that the generated content is consistent. Examples of
undesirab le behaviour include forgetting that the user does not like frames or losing items

:

vIn .4

from a user's shopping basket. The issue here is data integri ty; a service must ensure
consistency in the face of concurrent access and occasional system failure. More severe
problems can be envisaged for services that invo lve complex back-office process ing. [t
would not be acceptable, for example, for a component failure within a merchant's service
to cause a customer to be billed for a product that was not delivered.

This paper discusses the issues involved in support ing high-volume, highly-reliable,
Web services. Such services pose a number of diverse technical challenges. The paper
discusses how recent research ideas from distributed computing can be deployed at the
various leve ls of the architecture to yield an overall so lution.

2. Problem Understanding

Service provide rs are looking to computer vendors to provide low-cost, scalable fault
tolerant solutions. The prime requirement is to minimise reliance on specialist equipment
and techniques for delivering core services. Indeed, an ideal solution would make use of
'standard' middleware services (e.g., CORBA services for persistence, transactions etc.).
Research results on distributed objects and software implemented fault-tolerance
techniques hold the promise of providing such solutions. However, the task of
constructing such solutions using general-purpose, low cost components, such as
commodity UNIX servers, middleware services etc. is extremely challenging.

The central problem is that any software implemented distributed fault-tolerance
technique consumes resources (a combination of network bandwidth, processing power
and disk storage) that otherwise would be available for nonmal use. For example, object
replication introduces extra messages between replicas (required fo r replica
synchronisation) and message logging introduces either extra messages or disk writes (or
both). This frequently makes a fault-tolerant solution unacceptably sluggish
(unresponsive) compared to its non-fault-tolerant version. This is particularly so for the
case of Web sites: popular Web sites are heavily loaded with client requests , and the last
thing that one wants to do is to increase the message traffic . Thus software implemented
distributed fault-to lerance techniques must be app lied with care. It is therefore important
to understand the constraints under which solutions to dependable Web services need to
be developed.

Fig. I shows a typical non-redundant system, where clients have low bandwidth paths to
the Web server. The service will be unavailable to a given client if the server is down, or
there is an internet routing problem that prevents the client from contacting the server.
The service will not be responsive to a given client if the route is congested or the server
is overloaded.

VI II. 5

low-bandwidth path

Clients

Web Intern~-e-t"" ----------:;---E server

high-bandwidth path

Fig. 1: A non-redundant system

How can the service be made responsive and available? We will assume that message
routing and bandwidth allocation within the Internet itself is not entirely under our
contro l, so a practical way of handling unavailability and the unresponsive problems
would be to inrroduce redundancy, namely by replicating the server at distinct sites and
ensuring that a client (somehow) gets bound to the 'nearest' lightly loaded server (see fig.
2).

II
Web Server . 'iI'
(replica 3) -'

Internet

Fig. 2: Redundant system

Web Server
(replica 1)

Web Server
(replica 2)

The success of the above solution will depend on how well we succeed in achieving
the fo llowing two goals :

(i) Load sharing/distribution: Dynamically binding the client to the ' right' Web site
replica. Where 'right ' web site choice would be based on: the need to distribute the

VIII.1 2

may be remote from the invoker by using remote procedure call s (RPCs). All operation
invocations may be controlled by the use of transact ions which have the well known
properties of (i) serialisability, (ii) / ai/ure atomicity, and (iii) permanence 0/ effect. Atomic
transactions can be nested.

Serialisabi/ity ensures that concurrent invocations on shared objects are free from
interference (i.e. , any concurrent execution can be shown to be equivalent to some serial
order of execution). Some fo rm of concurrency control policy, such as that enforced by
two -phase locking, is reqUired to ensure the serialisability property of transactions.
Failure atomicity ensures that a computation wi ll either be terminated normally
(committed), producing the intended results (and intended state changes to the objects
involved) or aborted producing no results and no state changes to the objects. This
atomic ity property may be obtained by the appropriate use of backward error recovery,
which can be invoked whenever a fai lure occurs that cannot be masked. Typical failures
causing a computation to be aborted include node crashes and communication fai lures
such as the continued loss of messages. It is reasonable to assume that once a top-leve l
transaction terminates normally, the results produced are not destroyed by subsequent
node crashes. This is ensured by the thi rd property, permanence 0/ effeCl, which requires
that any committed state changes (i.e., new states of objec ts modified in the transaction)
are recorded on stable (crash-proof) storage. A commit protocol is required during the
termination of a transaction to ensure that either all the objects updated within the
transaction have their new states recorded on stable storage (committed), or, if the
transaction aborts, no updates get recorded.

It is assumed that, in the absence of failures and concurrency, the invocation of an
operation produces consistent (c lass specific) state changes to the object. Transactions
then ensure that only consistent state changes to objects take place despite concurrent
access and any failures.

The above ' object and atomic action model' provides a natural framework for
designing fault-to lerant systems with persistent objects [2]. In this model, a persistent
object not in use is normally held in a passive state with its state residing in an object
store or object database and activated on demand (i.e., when an invocation is made) by
loading its state and methods from the object store to the volatile store, and associating a
server process for receiving RPC invocations. Normally, the persistent state of an object
resides on a single node in one object store, however, the availability of an object can be
increased by storing its state in more than one object store. Transactions can be used for
ensuring that states of the replicas remain mutually consistent. A number of replica
consistency techniques have been developed [3].

Industry backed Common Object Request Broker Architecture (CORBA) has
adopted transactions as the application structuring paradigm for manipUlating long-lived
objects. Main features of CORBA are: (i) Object Request Broker (ORB) , which enables
objects to invoke operations on obj ects in a distributed, heterogeneous environment.
Internet Inter-ORB-Protocol (lIOP) has been specified to enable ORBs from different
vendors to communicate with each other over the Internet. (ii) Common Object Services, a
co llection of ' middleware ' services that support functions for using and implementing
objects. Such services are considered to be necessary for the construction of any

VIII.l3

distributed application. These include transactions (the Object Transact ion Service),
concurrency control, persistence, and many more [4] .

4.2. Process Grollps

Process groups \\iith ordered group communications also provide a set of facilities for
building avai lable distributed app lications. The bui lding of such app lications is
cons iderab ly simpli fied if the members of a group have a mutually consistent view of the
order in which events (such as message delivery, process failures) have taken place.
Design and development of fau lt-tolerant group communication protocols for distributed
systems sati sfy ing certain order properties has therefore been an active area of research
[e.g., 5,6,7]. Below we present some relevant concepts pertaining to process groups.

A group is defined as a collection of distributed processes in which a member process
can communicate with other members by multicasting to the full membership of the
group. A given process can be a member of more than one group. Let g = {P I , P2, ... P nl
be a process group. When Pi E g multicasts (or del ivers) a message m it actually does so

only to (or from) those processes which it views as funct ioning members of g. Pi delivers

its own messages also by executing the protocol in operation. We require the property
that members of a group deliver identical messages in identical order. In particular, th is
means that a given multicast is atomic: either all the functioning members are delivered the
message or none. Clearly, this would be an ideal property for rep licated data management:
each process manages a copy of data, and given the above property, it is easy to ensure
that copies of data do not diverge. However, achieving this property in the presence of
fa ilures is not simple.

F or example, a multicast made by a process can be interrupted due to the crash of that
process; this can result in some connected destinations not receiving the message. Process
crashes should ideally be handled by a fault-tolerant protocol in the fo llowing manner:
when a process does crash, all funct ioning processes must promptly observe that crash
event and agree on the order of that event relative to other events in the system. In an
asynchronous environment this is impossible to achieve: when processes are prone to
failures, it is imposs ible to guarantee that all non-faulty processes wi ll reach agreement in
finite time [8]. This impossibility stems from the inabi li ty of a process to distinguish
slow processes from crashed ones. Asynchronous protocols can circumvent this
imposs ibili ty result by permitting processes to slispect process crashes and to reach
agreement only among those processes which they do not suspect to have crashed.

A process group therefore needs the services of a membership service that executes an
agreement protocol to ensure that functioning processes w ithin any given group will have
identical views about the membership. When g is initially formed, each function ing Pi

installs an initial view yOi, say, yOi = {P I> P2, ... P nl. If Pi is unable to communicate w ith

some Pk E yOi its membership service installs a new view that does not include Pk. Let

yOi, y li , y2i, ... yri be the series of views Pi has thus sequentially installed over a period

of time, until it crashes or leaves the group g. The membership service ensures that the
sequence of views installed by any two function ing member processes of g that do not
suspect each other are identical. View updates must not interfere with normal multicasts :

. I

...

VIII. 14

we require that message de livery be 'atomic' with respect to view updates. As a
consequence, any two func tioning processes de liver the same set of messages between
two consecutive views that are identical. This atomic property has been called virlllai
synchrony [5]. Fig. below illustrates th is: a crash occurs dwing a multicast: view V2 is
installed either after (fig. S(a)) or before (fig. 5 (b)) the de livery of the multicast message.
Viruml synchrony enables dynamic control over group membership : new members can be
brought in without causing interference with on-going multi casts.

> time

v 1 v2 v 1 v2

PI PI m m
P2 P2
P3 P3 crash crash P4 P4

(a) (b)

Fig. 5: Virtual synchrony

Finally, a few words on the treatment of partitions. Despite efforts to minimise
incorrect suspicions by processes, it is possible for a subgroup of mutually unsuspecting
processes to wrongly agree (though rare it may be in practice) on a functioning and
connected process as a crashed one, leading to a 'virtual' partition. There is thus always a
possibility for a group of processes to partition themselves (either due to virtual or real
network partitioning) into several subgroups of mutually unsuspecting processes.
Modem membership services are capable of maintaining view consistency in the presence
of real or virtual part itions by ensuring that: (i) the functioning processes within any
given subgroup will have identical views about the membership; and (ii) the views of
processes belonging to different subgroups are guaranteed to stabilise into non
intersecting ones.

Process groups can be implemented as a middlware service, and there are many
research efforts to build such a service on top of ORBs. Unlike transactions, no standard
has yet been developed, a situation that we expect wi ll change in the near future.

5. Applications of Transactions and Process Groups

We discuss below how transactions and process groups can be used for providing
better class of so lutions.

5.1. Fault-tolerant clusters

Process groups provide a generic so lution to decentrali sed configuration management
of arb itrarily large processor clusters. Membership service, at the granularity of
processors, can be used for enabling each functioning processor to maintain mutually
consistent membership and processor load information. Any deterministic algorithm can
be used by each of the processors to determine how the incoming requests can be shared.

VIIL1S

In a simple scheme, the router/gateway (that uses NAT technique) trans lates the incoming
packet addresses to a broadcast address and broadcasts them on the cluster LA N, and can
leave it to the machines to decide who should serve the request. An alternative scheme
would require the router/gateway also to be a member of the processor group, and thus
maintain membership and load information; based on thi s information, the router can
forward the incoming request to a member processor.

5.2. Wide area load distribution

The techniques di scussed above can also be used for creating general purpose, open
solutions for wide area load distribution in place of rather specialised, proprietary
solutions exemplified by the DistributedDirector product discussed earlier. The DNS
server and Web servers can be made members of a group to enable the DNS server to
maintain membership and load information. This way the probability of the server
directing requests to failed or overloaded Web servers is minimised. A generalisation is
possible where by a number of DNS servers can be incorporated in the group for
maintaining mutually consistent membership and load information, therby obtaining
to lerance against DNS server failures and partitions.

5.3. Replica management

Object replicas must be managed through appropriate replica-consistency protocols
to ensure that object copies remain mutually consistent. Consistency could be either strict
(an update at any replica is propagated to other copies 'straight away') , or lazy (updates
are propagated in background). A major advantage of strict consistency is that clients
always get consistent , fresh information. Unfortunately, strict consistency reduces
update performance, so does not scale well. Lazy consistency on the other hand can scale
well, but freshness of information at any given replica cannot be guaranteed.

Any practical system is likely to contain a mixture of the two [9]. For example, one
could imagine maintaining strict consistency within a 'primary ' cluster, with remaining
clusters being updated lazily. However, certain data items across all the replicas may well
need to be kept strictly consistent. Lazy updates could be carried out as a series of
transactions initiated by the primary. Both transactions and process groups provide
complementary mechanisms for implementing rep lica consistency. Nevertheless, work is
required in developing scalable mixed consistency solutions.

5.4. End to end reliability

So far in our discussions, we have concentrated on issues concerning reliability of Web
servers. However, this is only a part of the story. Typically, a distributed application
will also involve process ing at a client's side, so issues of client side reliability need to be
taken in to account. For example, if a user purchases a cookie (a token) granting access to
a newspaper Web site, it is important that the cookie is delivered and stored if the user's
account is debited; a failure could prevent either from occurring, and leave the system in
an indeterminate state. Providing end-to-end transactional integrity between the client
(browser) and the Web server is important: in the previous example, the cookie must be
delivered once the user's account has been debited. Providing such a guarantee was

,
.'

.,

-

VIII. 16

difficult with the original " thin" client model of the Web, where browsers were
functionally barren. With the advent of Java it is now possible to empower browsers so
that they can fully participate within transac tional applications [I Oj.

5.4. Advance application bllilding environ ments

Middleware services such as COREA services referred to earlier provide generic
facilities for the construction of fault-tolerant distributed applications in the Internet
environment. A number of fac tors need to be taken into account in order to make these
applications fault-to lerant.

First, most such applications are rarely built from scratch; rather they are constructed
by composing them out of existing applications. It should therefore be possible to
compose an application out of component applications in a uniform manner, irrespective
of the languages in which the component applications have been written and the operating
systems of the host platforms. Second, the resulting app lications can be very complex in
structure , containing many temporal and data-flow dependencies between their
constituent appl ications. However, constituent applications must be scheduled to run
respecting these dependencies, despite the possibility of intervening processor and
network fai lures . Third, the execution of such an application may take a long time to
complete, and may contain long periods of inactivity (minutes, hours, days, weeks etc.) ,
often due to the constituent app lications requiring user interactions. It should be poss ible
therefore to reconfigure an app lication dynamically because, for example, machines may
fail, services may be moved or withdrawn and user requirements may change.

Recent work on transactional workflow systems has shown that they provide the right
set of facilities for application composition and execution enabling sets of inter-related
tasks to be carried out and supervised in a dependable manner [11,12]. Further, they can
be designed and implemented as a set of COREA services to run on top of a given ORB.
Wide-spread acceptance of COREA and Java middleware technologies make such
systems idea lly suited to building dependable Internet applications .

6. Concluding Remarks

We have reviewed current approaches to building high-volume, highly-reliab le, Web
services. These approaches either use proprietary so lutions and/or ad hoc techniques that
do not scale well. Service providers are looking to computer vendors to provide low-cost,
scalable fau lt-tolerant solutions. The prime requirement is to minimise reliance on
specialist equipment and techniques for delivering core services. We have discussed how
software implemeted fault-to lerance techniques (transactions and process groups) can be
applied for creating scalable solutions.

Acknowledgements

This work has been supported in part by Hewlett-Packard Laboratories, Bristo l, the
Italian Consiglio Nazionale delle Ricerche (CNR), the Italian Gruppo Nazionale
Informatica e Matematica (GNIM) and ESPRIT L TR working group Broadcast (project
No . 22455).

VIII .1 7

References

[I J Microsoft Corporation, "How Microsoft manages www.microsoft.com ... Microsoft
TechNet, vol.5 no.6, June 1997. Available at
<URL:http://www.eu.microsoft.comlsyspro/technetltnnews/features/mscom.htlT'.>

[2J G.D. Parrington, S. K. Shrivastava, S.M. Wheater and M.C . Little, "The design
and implementation of Arjuna", USENIX Computing Systems Journal , vol. 8 (3) ,
pp. 255 -308, Summer 1995.

[3J P.A. Bernstein et ai, "Concurrency Control and Recovery in Database Systems",
Addison-Wesley, 1987.

[4] R. Orfali , D Harkey and J. Edwards, "The essential distributed objects", John
Wiley and Sons Ltd., 1996.

[5] K. Birman, "The process group approach to reliable computing", CACM, 36, 12,
pp. 37-53, December 1993 .

[6] L.E. Moser, P.M. Melliar-Smith et aI , "Totem: a Fault-tolerant multicast group
communication system" , CACM, 39 (4), pp. 54-63, April 1996.

[7] P. Ezhilchel van, R. Macedo and S. K. Shrivastava, "Newtop: a fault-tolerant group
communication protocol", 15th IEEE IntI. Conf. on Distributed Computing
Systems, Vancouver, pp. 296-306, May 1995 .

[8] M. Fischer, N. Lynch and M. Paterson, "Impossibility of Distributed Consensus
with One Faulty Process", J . ACM, 32, pp 374-382, April 1985.

[9] J . Gray, P. Helland, P. O'Neil and D. Shasha, "The dangers of replication and a
solution", ACM SIGMOD Record , 25 (2), pp. 173- 182, June 1996.

[10] M.e. Little and S. K. Shrivastava, "Java Transac tions for the Internet", 4th
USENIX Conf. on Object Oriented Technologies and Systems, COOTS, Santa
Fe, April 1998.

[II] D. Georgakopoulos, M. Hornick and A. Sheth, " An overview of workflow
management: from process modelling to workflow automation infrastructure", IntI.
Journal on distributed and parallel databases, 3(2), pp. 119-153, April 1995.

[12] F . Ranno, S.M. Wheater and S.K. Shrivastava, "A System for Specifyi ng and Co
ordinating the Execution of Reliable Distributed Applications", Distributed
Applications and Interoperable Systems, eds: H. Konig, K. G. Geihs and T.
Preuss, Chapman and Hall , ISBN 0 412 82340 3, pp . 281-294,1997.

I

...

vIn.18

DISCUSSION

Rapporteur: Dr Rogerio de Lemos

During the talk Professor Vogt asked how a client was able to know whether a particular
server replica had the lowest bandwith. unless the choice of server could be hidden from the
client. Professor Shrivastava answered that the configuration that was described was a
system that one would like to have. and for that. it should incorporate some of the features
that he had previously referred to as 'magic'. He continued by saying that there were a lot of
techniques to implement the magic. however. in practice they have not worked very well.

Professor Lobelle questioned whether the assumption of having few hundreds of replicas
was realistic since what is usually needed is at most half a dozen replicas. Professor
Shrivastava agreed with the statement saying that the need for maintaining consistency in a
few hundred of replicas. perhaps. might not be a problem.

Mr Kay asked if it was not the case that load balance could be achieved by exploiting the
randomness of the workload. Professor Shrivastava agreed with the comment and added that
one hoped that it would work because there was no means to control load balancing.

While Professor Shrivastava was talking on how to maintain mutually consistent copies of
data. Professor van Roy queried whether the strict consistency could be considered
synchronous while lazy consistency was asynchronous. Professor Shrivastava agreed with
the statement. and stressed that any practical solution would involve a mixture of the two.

Mr Kay asked if during a transaction service. once a transaction has started and suddenly
there was a line break. the user would not know whether the transaction had successfully
finished or not. Professor Shrivastava replied that that was what he meant by "end-to-end
reliability" because it was not enough to start a transaction and forget about its outcome.
there was a need to implement on either side of a transaction the correct protocols. Mr Kay
then enquired whether it was not the case of having the screen involved with the transaction.
to which Professor Shrivastava agreed.

After the talk Professor Kopetz asked to what extent the presented middleware technique was
consuming resources that otherwise would be available for normal use. Professor
Shrivastava answered that at the middleware level the problem was not computing power but
on message traffic.

Professor van Roy enquired what kind of transaction support within Java was being
advocated because Java does not have any "hooks" to support transactions. Professor
Shrivastava answered that there already existed a Java standard JTS that complies with
CORBA OTS almost one to one. allowing the transaction services to be implemented in
Java.

Professor Vogt asked how easy it was to extend the cluster previously presented with more
workstations. Professor Shrivastava answered that although he had no first hand experience
in doing this. he believed that if a system. such as ISIS which gives group membership
services. is used. then the solution would be straight forward. however. the real problem
would be to put the application together. Professor Vogt continued by asking whether the
problem was being transferred to the application level. Professor Shrivastava replied that he
had presented a collection of techniques that could be used. rather than giving a specific
solution .

VIII .1 9

Professor Randell enquired whether the provision of dependable services had been
exacerbated by early decisions on Web protocols, which were taken without exploiting what
was already known from the world of transaction processing. Professor Shrivastava
answered that they did not cause any deep technical problem, he was of the opinion that the
real problems were at application level, or at the intra-trust level: for example, to obtain the
right business models, which perhaps was not a computing science problem.

VIII. 20

