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Evidence Fo r Sa fety, Security, 

And O t her D ependa bility P ro pe rt ies 

How is it done for traditiona l systems? 

() E.g .. an airplane w ing 

How is it done for software? 

Or <;oftwarc-intensivc systems 

() E.g .. a flight-control syst em 
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Safety Cases for So ftware Syst em s 

Mostly done by controlling, monitoring, and documenting the 

process used to create the software 

o D ifferent industries have different recommended processes 

(e.g .. 00·1788 for avionics) 

This is process-based certifica t ion 

Provides no direct evidence about the product 

"We cannot show how well we've done, so we'll show 
how hard we tried" 

NB. Testing is product-based, but cannot provide evidence 

beyond 1O-~ because we are CleaUng wi ttl discrete systems 

o Complete testing is infeasible: 114,000 yCiln. tpst fnr \() - , 

() And extrapolation from incomplete tests is unjusti fied 
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VI.3 

O verview 

Assurance for Safety, Security, and other critical properties 

o Process- VS. product· based assurance 

Forma I methods 

Problems with current methods 

Two b ig ideas 

F rom refutation to verification 

Disappearing formal methods 
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Safet y Cases for Trad it ional Syst ems 

Mostly done by mathematical mOdeling and analysis 

Build mathematical mOdels o f the design, its 

environment, and reQuirements 

o Use ca lculation to est<lblish that t he design in the context 

of the environment satisfies the reQuirements 

o Only useful when mechaniz'jd 

E.g., finite elements analysis 

The modeling Is validated by tests 

o Limited testing is sound because we are dealing with 

continuous systems 

ThiS is j)rOduct-caSHl certification 

o It concerns properties of (mathematlc<ll mOdels of) 

the product 
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Formal M etho ds In P ictures 

Testing/Si mulation Fonnni Analysis 

Formal Model 
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Product- Based Certi f ication Fo r So ftware 

Build mathematical models of a aesign, its environment. and 

requirements 

Q Tile .1ppHed m<lth of C.;lmcuter Science is fQrmal logic 

Q So. models are formal descriptions in some logical system: 

Use calculat ion to establish th<lt the design in the context of 

the environment satlsfles the requirements 

Ca lcu lation in formal logic is done by t heorem proving or 

model ch{'cl(ing 

f,V""'i'! ; "'l> ,/( n j .1 "1l.·· ' ·":1I".' , I ~· n "1 " ;"~I,'''I , 

Formal calculations can cover all modeled behaviors, even 

if numerous or Infinite (the power of symbolic reasoning) 

Only useful when mechanized 

Q So need ~utom<ltca theorem proving or mOdel Checking 
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H owever. 

Most problems In continuous m<lthematlcs can be solved In 

polyno m ial time: typically ,,~ or 7!3 

All problems In <lutomated deduction are at least NP-hard, 

most are superexponential (22"), nonelementary (22' .. }"), or 

undecidable 

Why? Have to search a massive space o f discrete possibilities 

Which exactly mirrors why it's so hard to provide assurance 

for algorithmic systems 

Q Have to consider vast number of d ltreren t behaviors 

Q Abseno:: of con ti nuity means E'xtralJ ol,H lon frOf fl finite 

{(,st ing is un rellal)h;· 

And whiCh Is why formal calculations payoff 

Q Practical way to examine all possibilities 
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The Dirtlc u lty With T heorem Proving Is. 

T heorem proving ca n handle accura t e models, but requires 

heuristics and Interactive human guidance 

o Focuses on proof. and idiosyncrasies of the prover and Its 

heurist ics, not on the design being evaluated 

Diflicult to interpret failure (bug, or bad proof?) 

··Interactlve tileorem proving is a waste of human talent"' 

AlSO, must strengthen Invariants to make them Inductive 

And It's all or nothing 

Payoff is delinltive assu rance ... wit h caveats 

Q M ay also lind subtle bugs 
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VI.4 

Formal M etho ds for Product-Based 

A ssurance and Certificat io n 

""'ant hignly accufate form al m OClels, so that C.1lcu lat,ofls 

support strong ClaimS-i.e .. verificatio n 

T hen, using formal calculat ions, some activit ies that are 

t raditionally performed by revi (!VJs 

o Processes that depend on human judgment and consensus 

can be replaced or supplemented by 3!lalys«s 

o P rocesses t hat can be repeated and checked by others, 

and pot entially so by machine 

Language from DO-178B/ED-12!3 

T hat is, formal methods help us move from process- ba5e!l t o 

product-bascd assurance 
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So. 

Full aut om at ion of fOrm al ca lc ul ~tlons Is illlPOss l l> l~ III general 

Must rely on heuristics (guesses) whlCl, w ill sometimes fall 

Q Heuristic theorem proving 

Or rely on human guidance 

Q Interactive t heorem proving 

Or trade off accuracy or cornpleteness of the model for 

tr<lct<lbUity and automation of calculation 

Q Model checking 
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Inductive Invariants ~ 
T o est ab lish an Invariant or safety property (one true o f all 

reachable st at es) by t heorem proving. we invent another 

property t hat Im pUes the one o f Interest and that Is Inductivo 

Q Includes all the initial states 

Q [s closed on tile transitions 

The reachable states are the smallest set tha t is induct ive 

TrOuble is: natufClfly stated invariants are selaom induct ive 

Q T he second condition Is violated 

Postula t e a new Invariant that excludes t he sta t es (so far 

discovered) that take you out side t he desired Invariant 

Iterate until success or exasperation 

Bounded retransmission pro t ocol required 57 SUCh Iterations 
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The Wall o f For mal Verifica t ion 

Knowledge 
about system 

John Rushby, SR! 

Assurance 
for system 

John Rushby, SR! 

Effort 
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Refutation and Verification 

«' 

/ -
.0/,,-

" 
Effo rt 

O lsappearlng Formal MethOdS: 15 

Summarizing 
Refut'n can be cost-effective, but doesn't get you to verif'n 

In t eraction concerns t he model, t he technology is 

automated, it resembles fam iliar activities 

o It is accept able t o practit ioners 

Challenge: WilY cannot tile technology of refu t<it lon 

(oarth:ul arly modal checking) be used for verification? 

Veri f'n ha s high potential paYOff, bu t few interm'd benefi ts 

Interaction concerns the proof and the prover, technology 
is not automated, intimidating 

o it is not acceptable to practitioners 

Challenge: Wily cannot theorem proving be made automatic? 

Overall challenges: wilY call1lot model checl<ing and theorem 

p((Jving ',lIurk toyetrler7 And wi lY carmot we move SrllOt)tllly 

from refutation to ve{lfic<ltion? 
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VI.5 

T he Difficul ty with M odel Checking Is" 

The models (and properties) have to be Simplified to make 

them t ractable to fully automated analysis 

But simplified models may not be fully accurate with respect 

to the property o f interest 

o And that'S why they cannot be used for veri f ication 

However, t hiS approach workS for refu tation (finding bugs) 

Experience indicates we learn more (find more bugs) by 

exploring all behaviors of a simplified model than by 

probing just some of the behaviors of the rea l thing 

(as with testing or simulation) 

But when to stop? 

Q Lack o f refutation is not the same as verificat ion 
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Formal M ethods in Current Practice 

Model clICcklng saved the reputation of formal metlJods 

(Daniel Jackson) 

Formal methods have achieved a modest degree of 

acceptance in some areas 

o E.g., hardware, protocols 

But mainly for purposes of rGfuttltion 

o That is , looking for errors 

o E.g., debugging, test ing 

Verification is much less practiced 

o That is, showing the absence of errors 
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Abstraction Is a Bridge 

B etween Deductive and Algori t hmic Methods 

And Between Refutation and Verif ication 
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U sing M o del Checking Fo r V erification 

Model checking requires simple models (e.g., f inite state) 

But can be used to verify propert ies Of a complex model If it 

has iI simple p,."pe,"ty-oreserving abstract ion 

T rouble is, it usually requires theorem proving to just ify the 

abstraction 

o 45 of the 57 invariants required for BRP 

First Big Idea: use theorem proving to c il lcul<lte t he 

abstraction 
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Abstra ctio n 

Given a t ransi t ion system G on S and property P. a 

property- preserving abstraction yields a transition system C 
on 5 and property P such that 

Strongly property preserving abstraction : 

A good abstfolc.tion typic.any (for universal pr¢pe'"t1es) 

lntroducc-$ nondetermhllsm w hile pm5t'rving the property 

Remaining problem: Construction o f reasonably precise C 
and P given G and P 
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Predica te Abstraction {Graf-Sai"d l} 

Abstracts out r ~! a tions between variables, e.g .• :I; < y, 

:r+y=: 

variables ranging over in fini t e dat a types can be replaced by 

Boolean variables represent ing t he predicates on t hose 

variables 

Predicates can be extracted from guards. assignmentS, and 

the property of interest 

Guessing predicates Is easier t han Invariant strengthening 

(and Is also more general [Rusu &. Singerman. TACAS 99]) 

Mechani zed in PVS (SRI) 

Jolin RuShl!y. SR 1 O luppu,lng Formal Me illods: 23 

VI.6 

M ak ing Theorem Proving M ore Automatic 

The general theorem proving problem is undecidable 

o So fu ll automation requires heuristics 

o Which will somet imes faii 

Classical veri f ication poses correctness as a single 

"big theorem" 

o So failure to prove it (when t rue) Is catastrophic 

Second Big Idea: "failure- t o l()fJrl t " t heorem proving 

Prove lot s o f sma ll theorems Instead of one big one 

o in a context where some failures can be tolerated 

Aha ! Automated abstraction provides this context 
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Data A bstraction [Cousot &l Co usot) 

Repl ace concrete variable l: over data type C by an abst rac t 

variable x' over datatype JI through a mapping h: IC-+Al. 

Examples: Parity, mod N . zero-nonzero, Intervals. 

cardinali t ies, {O, 1. many}, {empty, nonempty} 

Given f : IC-+Cl, construct j : !A-l-Id!A!I: 
(observe how dat;;! abstraction introduces nondeterminism) 

be j{a) ~ 3x: a = h{:c) II II = II(/(x)) 

b¢j{a) ~ ~V:J: : a = h(;r)-c;. b l-h(/ (.r» 

T I1(!Qr(!l11-proving failure arrc--c ts accur;;!cy, not S¢IJI)uness 

MeChanized In Bandera (Corbett, Dwyer and Hatcli f f. KSV) 
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Construct ion Of Predicate A bstractio ns 

Given,,: [S ..... SJ induced by the abst racted predicat es. 

construct C by 

C(SIo .I,) -= 3~ 10 1, ; SI ::;: ,,(IL) lI.h '" ,,(12) II G{~I' ~,) 

..... C(SIoS2) <:) .... V.YII I~ :;1 #- 41(.)"1) v .i~ I- ¢ (.I'2) V -.G(.YI. ,z} 

T he<ll"em··provJ,19 failure affECtS acc.uracy, not soundness 

T here is another method (exponent ially more effic ien t ) 

{SaIdi &. Shankar, CAV 99J 

M ore powerful t han data abstraction, but const ru ction is 

more complex 
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Automa ted Abstraction 

Can often construct a simplif ied model that is fa i thful to the 

original (for a g iven property of interest) 

T he reduced model can by analyzed by model cllecklng 

And failure to det ect bugs does certify their absence 

These reduced models can be constructed automatically by 

meChan ized d.:lta or predicate absto·act lon 

o The construct ion is done by trying to prove lots of little 

theorems 

ty if a proof fails, the abstracted model wi1l be more 

conserva t ive, but often still good enough 

But stUI the constructlon often reQuires auxiliary invariants 
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I ntegrated, Iterated Analysis 

JOhn RuShby, SR I 

T ruly Integrated, Iterated AnalySiS! 

R(;c.:lSt the goa l as one of c.:l lcul1l tin9 and accumul.1tlng 

proot'rties about a design (symDolic analysis) 

Rather t han j ust veri fying or refuting a speci f ic property 

Properties convey informa t ion and insight, and provide 

leverage t o construct new abstractions 

o And hence more properties 

Requires restructuring of verilication tools 

So that many work together 

o And so that they ret urn symbolic values and properties 

rather tllan Just yes/no results of verifications 

This is what SAL is about: SymbOliC Analysis L a!)or<ltory 
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VI.7 

The Bridge Goes In Both D irect ions ~ 

Model checkers often calculate the reachable stateset 

o Which is the strongest Invilrlan t 

And then throw it away 

The concretization of the reachable states o f an abstraction 

is an invariant of the concrete system 

o And often a strong one 

So 1IlC<lity a lTlodel checker t<l re turn tl lll re:lctlablH state;; as 

<I formula that a theorem !)I'OVer Ciln Illanlpuliltc 

Has been done (by Sergey Berezin) for CMU SMV and is 

used in InVeSt jBensalem, L akhnech &< Owre, CAV 99} 

John Rushby. SR I OlsapptarlnQ FPI'mal MethOdS: 26 

Even More Integrated, Iterat ed Analysis! ~ 

(Approximations to) IIxpolnts of weakest preconditIons or 

strongest postconditions also generate Invariants and can 

strengthen those extracted from .:In abstraction 

o Mechanized by theorem proving 

o (Strongest postcondit ions are eQuiva lent to symbolic 

simulation , w hich is independently useful) 

Counterexamples f rom failed model chec k help distinguish 

bugs from weak abstractions, and also help refine the 

abstraction 

o Suggest additional properties (Invariants) that will help 

the theorem prover construct a tighter mOdel 

Suggest addit ional predicates on which to abstract 
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From Refutation to Verification 

By allowing unsound abstractions 

We can do refutation as well as verllicatlon 

By select ing .:.bStrilctlons (sound/unsound) and propertl~ 

(little/ big) we Ciln IiII In t he space between ro:' fu tation and 

verification 

Refutation lowers t he barrier t o entry 

Provides economic incent ive: discovery o f high value bugs 

Can estimate the cost o f each bug fo und 

o And can directly compare with other t echnologies 

Yet allows smooth transition to verification 
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Assurance 
for system 

F ro m R efu t ation T o Verif icat ion 

Effort 
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E xamples o f D isappearing Forma l M ethods 

Ext ended sta t ic checking ( ES C) for Java (Compaq SRC) 

P VS·like t ype system (predicat e subtypes) for any language 

o T radi t ional type syst ems have to be trivially decidable 

o But can gain enormous error detection by adding a 

component that requi res theorem proving (lots o f small 

theorems, failure generates a warning) 

Completeness/Consist ency checkers for tabular specificat ions 

(cf, Otltarl<') Hydro, RSML , SCR) 

Statechart/Stateflow property checkers (cr, OFF[S) 

o Show me a path that activates this state 

o Can this state and that be act ive Simult aneously? 

T est case generators (cf, Verimag/IR ISA T GV) 
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What We Are build ing 

!C S = Integra t ed Canonize!'·Solver (= !CanSolve) 
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VI. 8 

Filli ng t he Remaining Gap 

Model checking for refut at ion and (via automated 

abst raction) for verifica t ion imposes a much smaller barrier 

to adoption t han old·style formal veri f ication 

Bu t the barr ier is still there 

What about really low cost /low threat k inds o f formal 

analySiS? 

Melke the formeli mettlods disappear Inside tr.3ditJonal tools 

and metllods 

Invisible formal methOdS, or 

Ubiquitous formal methods 
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T oolS T O R ealize T hese 

Abst raction and mOdel checki ng 

Automa t ed t heorem proving buil t on powerful decision 

procedu res 

o Com binat ion of: proposi t ional satis f lab illty, equali ty over 

un int erpre t ed funct ion symbols wi t h (linea r) arithmetic, 

arrays, datatypes 

Quantifier el imination for decidable fragment of t he above 

We are making these available as ICS 

AlSO decision procedures for more powerful theories 

(e,g., Mona for WS l S, available In PVS) 

These ca n be extended to model checking 

o E.g., Lossy·Channel Syst ems ( L CS) 

o Just as ordinary model checking builds on BODs and SAT 

JOhn RuShby, SR I Olsapp-ar lng FOtmal MethodS: 34 

D isa ppearing FOl'"mal M e t hodS 

Effort 
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VI.9 

To Learn More 

Cheek out papers and technica l reports at 

bttp: I hww. csl. sri. com/progr=s/forr.lal~ethods 

Information about our verification system, PVS, and the 

system itself are available from http://p·'s.esl srl.eom 

o Freely available under license to SRI 

o Built in Allegro Lisp for Solaris, or Linux 

o Version 2.3 includes predicate abstraction 

Released ICS in July 2001; http:// ... ww ICanSolve eo:!! 

P lan to release SAL in late 2001 
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VI.lO 

DISCUSSION 

Rapporteur: V Khomenko 

Lecture One 

Dr Horning asked who develops abstractions. Dr Rushby replied that ideally it is the designer, 
since he knows how things work inside. But a lot of the content of an abstraction can be seen 
from the description , by looking at the predicates present there. Therefore, even without 
understanding the description, it is sometimes possible to build an approximation which is 
good enough to do the job. 

Then a question was asked about the role of simulation checkers. Dr Rushby replied that there 
are many sub-problems inside the overall testing approach, e.g. test case generation, 
construction of oracles, and finding feasible paths of the program. Almost all these require 
theorem proving, solving inequalities etc. Therefore, significant fragments of the theorem 
proving technology can be applied. Traditional testing of non-reac tive (transformation) 
programs requires generating test data, whereas the real problem is the testing of concurrent 
reactive systems, where the tester is not just data but a program driving the system to the state 
it wants to get it into. And it can be hard to control the environment. 

Professor Malek mentioned that the gap between the refutation and verification is immense, 
and he doubts that automated abstraction can fill it. Dr Rushby replied that automated 
verification is computationally very expensive and usually it is impossible for non-trivial 
systems. But safety-critical systems are usually explicitly constructed to be simple, and it is 
often possible to calculate automatically their critical properties. Having enough time, patience 
and skill, one can theorem-prove almost anything, though it may require too much time, 
patience, and skill. 

Professor Schneider mentioned that the problem of getting good specifications was completely 
ignored, and that it seems that light-weight verification methods make certain assumptions 
about how easy it is to write down those specifications. Dr Rushby replied that many well­
known techniques , e.g. type systems, can be efficiently used. One can assume that the code to 
be verified is mostly correct and mine it. In this way, many bugs can be found. Therefore, even 
without specification, one can deliver some interesting results. Also, sometimes designers are 
prepared to write some kind of a specification or comments to give a clue what is going on in 
the system. 

Dr. Moszkowski mentioned that commercial companies use temporal logics for testing. Dr 
Rushby agreed that there are many approaches in-between testing and model checking. 

Professor Littlewood asked how this approach is related to probabilistic safety. Dr Rushby 
replied that there are works on probabilistic model checking, but they are quite complicated. 
There is a belief that in discrete design we deal with en'OfS, and the probabilistic part comes 
from what the environment does to your system and how likely certain external events are. 




