VI

ASSURANCE FOR DEPENDABLE SYSTEMS
(DISAPPEARING FORMAL METHODS)

J M Rushby

Rapporteur: V Khomenko

VI.2

VL3

Assurance for Dependable Systems

2 4 Overview
(Disappearing Formal Methods)

Assurance for Safety, Security, and other critical properties

o Process- vs. product-based assurance

Formal methods

Problems with current methods

John Rushby

Two big ideas

Computer Science Laboratory s From refutation to verification
SRI International

i ing farmal methods
Menlo Park, California, USA +Disappesring;for

\ J o J

John Rushby, SRI Disappearing Formal Methods: 1 John Rushby, SRI Disappearing Formal Methods: 2

a & r

» Mostly done by mathematical modeling and analysis
o Build mathematical models of the design, its

Evidence For Safety, Security, environment, and requirements

And Other Dependability Properties o Use calculation to establish that the design in the context
of the environment satisfies the requirements

o Only useful when mechanized

E.q., finite elements analysis

Safety Cases for Traditional Systems

e How is it done for traditional systems?
o E.g., an airplane wing

e How is it done for software? « The modeling Is validated by tests

o Limited testing is sound because we are dealing with
o E.g., a flight-control system continuous systems

o Or software-intensive systems

s This is product-based certification
o It concerns properties of (mathematical models of)
the product

John Rushby, SRI Disappearing Formal Metheds: 3 John Rushby, SR1 Disappearing Formal Methods: 4

Safety Cases for Software Systems LGl L S R (T

« Mostly done by controlling, monitoring, and documenting the Testing/Simulation Formal Analysis

process used to create the software
o Different industries have different recommended processes
(e.g., DO-178B for avionics)

s This is process-based certification
o Provides no direct evidence about the product

"We cannot show how well we've done, sowe'llshow | | Mieeeeeeemees - -
N Real System Formal Model
how hard we tried”

e NB. Testing is product-based, but cannot provide evidence QO paialvovermge O Cometute eoverspe (of the modeled sysem)
beyond 10~* because we are dealing with discrete systemns

o Complete testing is infeasible: 114,000 years test for 10~
o And extrapolation from incomplete tests is unjustified

_ Y, _ .

John Rushby, SRI Disappearing Formal Methods: 5 John Rushby, SR1 Disappearing Formal Methods: 6

Accurate model: verification

Approximate model: dehugging

~ a

Product-Based Certification For Software
« Build mathematical models of a design, its environment, and
requirements
o The applied math of Computer Science is formal logic
¢ So models are formal descriptions in some logical system:
e Use calcuiation to establish that the design in the context of
the environment satisfies the requirements
o Calculation in formal logic is done by theorem proving or
maodel chacking
aastnpitons + derign L7 regndenints
Formal calculations can cover all modeled behaviors, even
if numerous or infinite (the power of symbolic reasoning)

« Only useful when mechanized

o So need automated theorem proving or model checking
. J

Disappearing Formal Methods: 7

John Rushby, SR

However, . .

Most problems in continuous mathematics can be solved in
polynemial time: typically n?® or n®
All problems in automated deduction are at least NP-hard,

.

most are superexponential (22"), nonelementary (2”‘ }"), or
undecidable
Why? Have to search a massive space of discrete possibilities
Which exactly mirrors why it’'s so hard to pravide assurance
for algorithmic systems

o Have to consider vast number of different behaviors

o Absence of continuity means extrapolation from finite

testing is unreilable

And which is why formal calculations pay off

o Practical way to examine ali possibilities

. J

Disappearing Formal Methods: 9

-

John Rushby, SR1

r N
The Difficulty With Theorem Proving Is. ..

Theorem proving can handle accurate models, but requires
heuristics and interactive human guidance

o Focuses on proof, and idiosyncrasies of the prover and its
heuristics, not on the design being evaluated

o Difficult to interpret failure (bug, or bad proof?)

“Interactive theorem proving is a waste of human talent”

Also, must strengthen invariants to make them inductive

And it’s all or nothing

Payoff is definitive assurance...with caveats
o May also find subtle bugs

o _/

Disappearing Foermal Methods: 11

-

John Rushby, SR1

V1.4

Formal Methods for Product-Based
Assurance and Certification

e Want highly accurate formal models, s¢ that calculations
support strong claims—i.e., verification
« Then, using formal calculations, some activities that are
traditionally performed by reviews
o Processes that depend on human judgment and consensus
can be replaced or supplemented by analvses
o Processes that can be repeated and checked by others,
and potentially so by machine
Language from DO-178B/ED-128B

e That is, formal methods help us move from process-based to
product-based assurance

3 /

Disappearing Formal Methods: 8

John Rushby, SRI

80,
e Full automation of formal calculations is impossible In general

* Must rely on heuristics (guesses) which will sometimes fali
o Heuristic theorem proving
= Or reiy on human guidance
o Interactive theorem proving
e Or trade off accuracy or cornpleteness of the model for
tractability and automation of calculation
¢ Model checking

. y

Disappearing Formal Methods: 10

John Rushby, SRI

Inductive Invariants @
To establish an invariant or safety property (one true of all
reachable states) by theorem proving, we invent another
property that implies the one of interest and that s inductive
o Includes all the initial states
o Is closed on the transitions
The reachable states are the smallest set that is inductive

.

Trouble is, naturally stated invariaints are seldom inductive
o The second condition is violated

Postulate a new invariant that excludes the states (so far
discovered) that take you outside the desired invariant

[terate until success or exasperation L

e Bounded retransmission protocol required 57 such iterations

-

John Rushby, SR1

Disappearing Formal Methods: 12

(" The Wall of Formal Verification h
/
Knowledge
about system
Effort
o J
John Rushby, SR1 Disappearing Formal Methods: 13
(" Refutation and Verification R
A
Assurance
for system
M!IH;M.
relutston
Effort
. _J/

John Rushby, SR

Disappearing Formal Methods: 15

°

|

~N

Summarizing
Refut'n can be cost-effective, but doesn’t get you to verif'n

o Interaction concerns the model, the technology is
automated, it resembles familiar activities
o It is acceptable to practitioners

Verif'n has high potential payoff, but few interm’'d benefits
o Interaction concerns the proof and the prover, technology
is not automated, intimidating
o It is not acceptable to practitioners
Challenge: why ¢znnot theorem proving be made automatic?
Overall challenges: why cannct model checking and thecrem
proving work together? And why cannot we move smoothly
from refutation to verification?

J

John

Rushby, SR1 Disappearing Formal Methods: 17

VL5

e

The Difficulty with Model Checking Is. ..
The models (and properties) have to be simplified to make
them tractable to fully automated analysis
But simplified models may not be fully accurate with respect
to the property of interest
o And that's why they cannot be used for verification

However, this approach works for refutation (finding bugs)

o Experience indicates we learn more (find more bugs) by
exploring =il behaviors of a simplified model than by
probing just some of the behaviors of the real thing
(as with testing or simulation)

But when to stop?
e Lack of refutation is not the same as verification

o _/
John Rushby, SR1 Disappearing Formal Methods: 14
f \
Formal Methods in Current Practice

e Model checking saved the reputation of formal methods
(Daniel Jackson)
s Formal methods have achieved a modest degree of
acceptance in some areas
o E.g., hardware, protocols
= But mainly for purposes of refutation
o That is, looking for errors
o E.g., debugging, testing
e Verification is much less practiced
o That is, showing the absence of errors
o J/
John Rushby, SR1 Disappearing Formal Methods: 16

.

Abstraction is a Bridge
Between Deductive and Algorithmic Methods
And Between Refutation and Verification

Model
Checking

S

John Rushby, SRI

Disappearing Formal Methods: 18

\

Using Model Checking For Verification
Model checking requires simple models (e.g., finite state)

But can be used to verify properties of a complex model if it
has a simple property-preserving abstraction

Trouble is, it usually requires theorem proving to justify the
abstraction

o 45 of the 57 invariants required for BRP

First Big Idea: use theorem proving to caiculate the
abstraction

J

John

Rushby, SRI Disappearing Formal Methods: 19

o

Abstraction

Given a transition system G on S and property P, a
property-preserving abstraction yields a transition system G
on § and property P such that

GEP=GEP
Strongly property preserving abstraction:
CEPsGEP

A good abstraction typically (for universal properties)
introduces nondeterminism while preserving the property

Remaining problem: Construction of reasonably precise G
and P given G and P

J

John

Rushby, SR1 Disappearing Formal Methods: 21

N

Predicate Abstraction [Graf-Saidi]

Abstracts out relations between variables, e.g., z <y,
z+y==z

Variables ranging over infinite datatypes can be replaced by
Boolean variables representing the predicates on those
variables

Predicates can be extracted from guards, assignments, and
the property of interest

Guessing predicates is easier than invariant strengthening
(and is also more general [Rusu & Singerman, TACAS 99])

Mechanized in PVS (SRI)

F,

John

Rushby, SR1 Disappearing Formal Methods: 23

V1.6

Making Theorem Proving More Automatic

The general theorem proving problem is undecidable
o So full automation requires heuristics
o Which will sometimes fail
Classical verification poses correctness as a single
“big theorem"
o So failure to prove it (when true) is catastrophic

Second Big [dea: “fallure-tolerant” theoram proving
o Prove lots of small theorems Instead of one big one
o In 2 context where some failures can be tolerated

Aha! Automated abstraction provides this context

J

John Rushby, SR1

Disappearing Formal Methods: 20

Data Abstraction [Cousot & Cousot]

Replace concrete variable z over datatype C by an abstract
variable z' over datatype A through a mapping k: [C— Al

Examples: Parity, mod N, zero-nonzero, intervals,
cardinalities, {0, 1, many}, {empty, nonempty}

Given f:[C—C), construct f : [A—set[A]]:
(observe how data abstraction introduces nondeterminism)

be fla) & 3z:a=hz)Ab=h(f(x))
b ¢ fla) e FVz:a=h{r)=b£h(flz)

Theorem-proving fallure affects accuracy, not soundness

» Mechanized in Bandera (Corbett, Dwyer and Hatcliff, KSU)

.

j

7

John Rushby, SR1

Disappearing Formal Methods: 22

—

Construction of Predicate Abstractions

s Given ¢:[S-35) induced by the abstracted predicates,
construct G by

G(31,82) & 351,80 : §) = $(s1) A d3 = ¢(92) A G(s1, 52)
~G(51,82) & F Yoy, 801 5y # B(81) V da # b(s0) V =G (81, 82)
e Theorem-proving fallure affects accuracy, not soundness

e There is another method (exponentially more efficient)
[Saidi & Shankar, CAV 99]

« More powerful than data abstraction, but construction is
more complex .

.

7

John Rushby, SRI

Disappearing Formal Methods: 24

~

Automated Abstraction

original (for a given property of interest)
o The reduced model can by analyzed by model checking
o And failure to detect bugs does certify their absence
e These reduced models can be constructed automatically by
mechanized data or predicate abstraction
o The construction is done by trying to prove lots of little
theorems
» If a proof fails, the abstracted model will be more
conservative, but often still good enough

s But still the construction often requires auxiliary invariants

(.

e Can often construct a simplified model that is faithful to the

N

J/

John Rushby, SRI

Disappearing Formal Methods: 25

" N
Integrated, Iterated Analysis
N
=t P
§ ’
—t
\ pa
3 :}’_I‘
]
. J

John Rushby, SR1

Disappearing Formal Methods: 27

g

Truly Integrated, Iterated Analysis!

e Recast the goal as one of calculating and accumulating

properties about a design (symboiic analysis)
» Rather than just verifying or refuting a specific property
« Properties convey information and insight, and provide

leverage to construct new abstractions

o And hence more properties
* Requires restructuring of verification tools

o So that many work together

o And so that they return symbolic values and properties
rather than Just yes/no results of verifications

s This is what SAL is about: Symbolic Analysis Laboratory

_

_/

John Rushby, SRI

Disappearing Formal Methods: 29

VL7

The Bridge Goes In Both Directions @

Model checkers often calculate the reachable stateset

o Which is the strangest invariant
And then throw it away
The concretization of the reachable states of an abstraction
is an invariant of the concrete system

o And often a strong one
S0 modify a medel checker to return the reachable states as
a formuia that a theoram prover can manipulate

Has been done (by Sergey Berezin) for CMU SMV and is
used in InVeSt [Bensalem, Lakhnech & Owre, CAV 99)

J

John

Rushby, SR1 Disappearing Formal Methods: 26

V5

.

Even More Integrated, Iterated Analysis! @

(Approximations to) fixpoints of weakest preconditions or
strongest postconditions also generate Invariants and can
strengthen those extracted from an abstraction
o Mechanized by theorem proving
o (Strongest postconditions are equivalent to symbolic
simulation, which is independently useful)

Counterexamples from failed model check help distinguish

bugs from weak abstractions, and also help refine the

abstraction

o Suggest additional properties (invariants) that will heip
the theorem prover construct a tighter model

o Suggest additional predicates on which to abstract

7

John

Rushby, SR1 Disappearing Formal Methods: 28

’~

From Refutation to Verification
By allowing unsound abstractions
GEPAGEP
We can do refutation as well as verlification

By selecting abstractions (sound/unsound) and properties
(little/big) we can fill in the space hetween refutation and
verification

Refutation lowers the barrier to entry

Provides economic incentive: discovery of high value bugs
o Can estimate the cost of each bug found
o And can directly compare with other technologies

Yet allows smooth transition to verification

)

John

Rushby, SR1 Disappearing Formal Methods: 30

VL8

From Refutation To Verification
Filling the Remaining Gap
Model checking for refutation and (via automated

abstraction) for verification imposes a much smaller barrier
to adoption than old-style formal verification

A
Assurance

for system
But the barrier is still there

What about really low cost/low threat kinds of formal
analysis?

Make the formal methods disappear inside traditional tools
and methods

o Invisible formal methods, or

o Ubiquitous formal methods

\ Effort P - y

John Rushby, SR1 Disappearing Formal Methods: 31 John Rushby, SR1 Disappearing Formal Methods: 32

4 N\
Examples of Disappearing Formal Methods \ (Tools To Realize These
* Extended static checking (ESC) for Java (Compaq SRC) e Abstraction and model checking
¢ Automated theorem proving built on powerful decision
procedures
o Combination of: propositional satisfiability, equality over
uninterpreted function symbols with (linear) arithmetic,
arrays, datatypes
o Quantifier elimination for decidable fragment of the above

e PVS-like type system (predicate subtypes) for any language
o Traditional type systems have to be trivially decidable
o But can gain enormous error detection by adding a
component that requires theorem proving (lots of small
theorems, failure generates a warning)

=« Completeness/Consistency checkers for tabular specifications
(cr. Ontario Hydro, RSML, SCR)

We are making these available as ICS
+ Also decision procedures for more powerful thecries

« Statechart/Stateflow property checkers (cf. OFFIS) (e.g., Mona for WS18S, available in PVS)
o Show me a path that activates this state * These can be extended to model checking
o Can this state and that be active simultaneously? o E.g., Lossy-Channel Systems (LCS)
o Test case generators (cf. Verimag/IRISA TGV) o Just as ordinary model checking builds on BDDs and SAT
\. A N J
John Rushby, SR Disappearing Formal Methods: 33 John Rushby, SR1 Disappearing Formal Methods: 34
"
(What We Are building é Disappearing Formal Methods ki
SAL
531 : Assurance
e —

for system
PVS

ICS = Integrated Canonizer-Solver (= [CanSolve) J Effort

\

John Rushby, SR1I Disappearing Formal Methods: 35 John Rushby, SR1 Disappearing Formal Methods: 36

Acknowledgments

« N. Shankar, Sam Owre, Harald RueB, Hassen Saidi

Saddek Bensalem, Jean-Christophe Fillidtre, Klaus Havelund,
Friedrich von Henke, Yassine Lakhnech, César Mufioz, Holger
Pfeifer, Vlad Rusu, Eli Singerman, and many others

|\ J

John Rushby, SR1

Disappearing Formal Methods: 37

VI.9

.

To Learn More

Check out papers and technical reports at
http://uww.csl.sri.com/programs/formalmethods
Information about our verification system, PVS, and the
system itself are available from http://pvs.csl.sri.com

o Freely available under license to SRI

o Built in Allegro Lisp for Solaris, or Linux

o Version 2.3 includes predicate abstraction

Released ICS in July 2001: http://www.ICanSolve,com

Plan to release SAL in late 2001

J/

John Rushby, SRI

Disappearing Formal Methods: 38

VIL.10

DISCUSSION
Rapporteur: V Khomenko

Lecture One

Dr Horning asked who develops abstractions. Dr Rushby replied that ideally it is the designer,
since he knows how things work inside. But a lot of the content of an abstraction can be seen
from the description, by looking at the predicates present there. Therefore, even without
understanding the description, it is sometimes possible to build an approximation which is
good enough to do the job.

Then a question was asked about the role of simulation checkers. Dr Rushby replied that there
are many sub-problems inside the overall testing approach, e.g. test case generation,
construction of oracles, and finding feasible paths of the program. Almost all these require
theorem proving, solving inequalities etc. Therefore, significant fragments of the theorem
proving technology can be applied. Traditional testing of non-reactive (transformation)
programs requires generating test data, whereas the real problem is the testing of concurrent
reactive systems, where the tester is not just data but a program driving the system to the state
it wants to get it into. And it can be hard to control the environment.

Professor Malek mentioned that the gap between the refutation and verification is immense,
and he doubts that automated abstraction can fill it. Dr Rushby replied that automated
verification is computationally very expensive and usually it is impossible for non-trivial
systems. But safety-critical systems are usually explicitly constructed to be simple, and it is
often possible to calculate automatically their critical properties. Having enough time, patience
and skill, one can theorem-prove almost anything, though it may require too much time,
patience, and skill.

Professor Schneider mentioned that the problem of getting good specifications was completely
ignored, and that it seems that light-weight verification methods make certain assumptions
about how easy it is to write down those specifications. Dr Rushby replied that many well-
known techniques, e.g. type systems, can be efficiently used. One can assume that the code to
be verified is mostly correct and mine it. In this way, many bugs can be found. Therefore, even
without specification, one can deliver some interesting results. Also, sometimes designers are
prepared to write some kind of a specification or comments to give a clue what is going on in
the system.

Dr. Moszkowski mentioned that commercial companies use temporal logics for testing. Dr
Rushby agreed that there are many approaches in-between testing and model checking.

Professor Littlewood asked how this approach is related to probabilistic safety. Dr Rushby
replied that there are works on probabilistic model checking, but they are quite complicated.
There is a belief that in discrete design we deal with errors, and the probabilistic part comes
from what the environment does to your system and how likely certain external events are.

