
v

FACING UP TO FAULTS

B Randell

Rapporteur: Professor M Koutny

V.2

I
I

V.3

Facing Up to Faults

Brian Randell

"'-i Newcastle, September 2001 I

The Menu

• In the Beginning

• On Dependability Concepts

• On Fault Assumptions

• On Structure

• On Diversity

• Coda

~ Newcastle, September 2001

UNI\'EI~SJTYOf
NlOWCASTLE

IJNIVf.RSITY Of
N ~·"'CAS-n£

.,

V.4

An Early Lesson (1960)

U N IVt:RS 1TYO~'
N£wc..\Sru

• The need - programs that could cope well with
whatever strange data they were given, whatever
mistakes were made by the operators, etc

• In fact at English Electric Atomic Power Division we
had a very effective, albeit ad hominem, "formal"
definition of compiler robustness -

"the ability to cope with programs written by William
White , and key-punched by Barbara Black, running
on a computer being operated by Gerald Green"

~ Newcastle, September 2001

UNIY~:NStTYm'

N!:WCASTI.E -------------. ~
Software Validation (1949)

A.M. Turing. "Checking a Large Routine ," in Report
on a Conference on High Speed Automatic
Calculating Machines, pp. 67-69, Cambridge,
Univerity Mathematical Laboratory, 1949.

F.L. Morris and C.B. Jones, "An Early Program Proof
by Alan Turing," Annals of the History of Computing,
vol. 6, no. 2, pp.139-143, 1984.

~ Newcastle, September 2001

V.S

Software Diversity (1837)

UNIVIORSITYOf
NF.WC Sl1£

"". if care is demanded from the attendants for the insertion of
the numbers which are changed at every new calculation of a
formula, any neglect would be absolutely unpardonable in
combining the proper cards in proper order, for the much more
important purpose of constructing the formula itself. ..

When the formula is very complicated, it may be algebraically
arranged for computation in two or more distinct ways, and two
or more sets of cards may be made. If the same constants are
now employed with each set, and if under these circumstances
the results agree, we may then be quite secure of the accuracy
of them all."

Charles 8abbage

~ Newcastle, September 2001

Our 1970 Survey of
Several Large Online Systems

UNIVf.RSITYOf
N!:WCASTLE

~"\
~

• A significant fraction of the code in the systems was
aimed at detecting and recovering from errors caused
by hardware and operational faults,

• This code was ad hoc and limited in its capability,
e.g. concerning the possibility of concurrent faults, or
of further errors being detected while error recovery
was already being attempted, yet

• Nevertheless, essentially by accident, these error
recovery facilities did in fact help to provide a useful
measure of design (software) fault tolerance.

~ Newcastle, September 2001

V.6

UNI\'tJ~s rrYO ~'
NtWCASTLE

A First "Result" - the Recovery
Block Scheme (1974)

• A coherent general backward
error recovery strategy,
capable of handling multiple
errors, including during error
recovery

• Basically just for internal
storage, but later extended to
handle programmer-defined
types, input/output, exception
handling (forward error
recovery) and concurrency

~ Newcastle, September 2001

ensure <acceptance test>

by <primary block>

else by <alternate block 1 >

else by <alternate block 2>

else by <alternate block n>

else error

UN IV~; IISni' Of
N~:wosru:

On Dependability Concepts

• Originally, hardware designers used a set of
definitions of basic reliability concepts based on a
small set of fault types

• This proved an inadequate basis for discussing
design faults

• Our alternative set, based on the notion of a system
failure, (of whatever type), resulted in over-
general ising the word "reliability"

• "Dependability" is now used instead - it includes as
special cases such properties as availability,
reliability, safety, confidentiality, integrity, etc.

~ Newcastle, September 2001

Y.7

Failures, Errors and Faults

UN IVI::H SITYOi'
NeWCASTLE

• A system failure occurs when the delivered service
deviates from fulfilling the system function, the latter
being what the system is aimed at.

• An error is that part of the system state which is
liable to lead to subsequent failure: an error affecting
the service is an indication that a failure occurs or
has occurred. The adjudged or hypothesised cause
of an error is a fault.
(Note: errors do not necessarily lead to failures; component
failures are not necessarily faults to the surrounding system)

...., Newcastle, September 2001

The Failure/FaulVError "Chain"

UNIVf.NSITYOF
NEWCASTI.f.

• A failure occurs when an error "passes through" the
system-user interface and affects the service
delivered by the system - a system of course being
composed of components which are themselves
systems. Thus the manifestation of failures, faults
and errors follows a "fundamental chain":

· . . -7 failure -7 fault -7 error -7 failure -7 fault -7 ...

i.e.

· .. -7 event -7 cause -7 state -7 event -7 cause -7 ...

~ Newcastle, September 2001

V.8

Dependability -
the "standard" definition

UNIVERSITY Of
NI::Wt:ASTJ.E

.~

Dependability is defined as that property of a
computer system such that reliance can justifiably be
placed on the service it delivers. (The service
delivered by a system is its behaviour as it is
perceptible by its user(s); a user is another system
(human or physical) which interacts with the former.)

~ Newcastle. September 2001

Failure and Dependability
- The Role of Judgement

UtnVf.MSITYOF
NEWCASnf.

A given system, operating in some particular
environment (a wider system) , may fail in the sense
that some other system makes, or could in principle
have made, a judgement that the activity or inactivity
of the given system constitutes failure.

then
The concept of dependability can then be more
simply defined as: "the quality or characteristic of
being dependable", where the adjective
"dependable" is attributed to a system whose failu res
are judged sufficiently rare or insignificant.

~ Newcastle. September 2001

V.9

Concepts & Terminology

UN lVI::RSI1} m"
NE WCAS11..1:::

• Note the generality of the definitions of fault,error,
failure and dependability, and their wide applicability

• What matters are concepts, rather than terminology
• Differing research communities (reliability, safety,

survivability, security, etc.,) use differing terminology,
and definitions, unfortunately

• But what is critical is a fully general notion of failure,
and of the three different concepts: fault, error, failure

• (to deal properly with the complexities (and
realities) of failure-prone components, being
assembled together in possibly incorrect ways, so
resulting in failure-prone systems.)

~ Newcastle, September 2001

On Fault Assumptions

• Regarding the nature and likelihood of faults

UNIVEliS1TV OF
NEwer.s"n.1i

.~

• and the effectiveness of fault masking - possibly obviating
the need for error recovery

• Regarding the ability to validate inputs and ouputs
• and the practicality of various types of error recovery

• All these greatly influence the system designer's task
including that of the designer of the facilities and processes
used for system design

~ Newcastle, September 2001

V.lO

Fault Assumptions
- the possible "domino effect"

• • • • • • • •

• • • • I Inter·thread communication I checkpoint

~ Newcastle, September 2001

A "solution"
- nested conversations

l l ,nter.thread communication I I I checkpoint

D I conversation boundary I q acceptance lest I

T1

T2

UN [Vt:RSIn' Of
Nt:: WCASTJ..E

.~

UN IVER51"!1' Of
Nt:WCASTll

But these deal only with co-operative, not competitive concurrency

Newcastle, September 2001

Y.ll

Co-ordinated Atomic Actions

UNIVERS1TYm'
N!:::WCAST1J:::

A mechanism/protocol for (forward and/or backward) error
recovery for systems and their environments in the presence of
both cooperative and competitive concurrency.

In effect a programming discipline for nested mu lt i-threaded
transactions with very general exception handling provisions

To cooperate in a CA action a group of concurrent threads must
come together to perform the roles of the action collectively. They
enter and leave the action in real or virtual synchrony
Inside a CA action, roles can be involved in (nested CA actions.
If an error is detected inside a CA action, recovery measures must
be invoked co-operatively, by all the roles, in order to reach some
mutually consistent conclusion (success, exception , or failure)
External objects, which are in effect being competed for by the CA
action, must behave atomically with respect to other CA actions
and threads so that they cannot be used as an implicit means of
"smuggling" information into or out of a CA action.

~. Newcastle, September 2001

A Co-ordinated Atomic Action

IJNIYf.HS1TYOf
NI:WCASn.E

entry points CA action exit points

raised exception e
exception handler HI

Role! return to normal abnormal control no:!

Thread I--I-_r-__ --,r-_-'''''=p.t~d~ ~on:::'ro""_"n,'".,L.j--<l~ . \ I txception handler lU exit wilb success

Thread

External
Objects

Role abDonnai control fl ow 1

e SU5pf~~ ~ntn)l nn". return 10 normal

V accesses

start transaction

V repa irs

commit transaction

Time

~ Newcaslle , September 2001

' 1

V.12

On Structure

UN[VERSITYOr
NEWCASTI.£

"The price of reliability is utter simplicity - and this is a
price that major software manufacturers find too high
to afford!" - Hoare

~ Newcastle, September 2001

On Structure

lJNIVENSITYOf
Nf:WCASTLE

"The price of reliability is utter simplicity - and this is a
price that major software manufacturers find too high
to afford!" - Hoare

But

"Everything should be made as simple as possible,
but not simpler" - Einstein

-: Newcastle, September 2001

V.13

On Structure

UN1V!::I~51TI OF
NEWCASTLE

~~
~

"The price of reliability is utter simplicity - and this is a
price that major software manufacturers find too high
to afford!" - Hoare

But

"Everything should be made as simple as possible,
but not simpler" - Einstein

• Good system structuring allows one to deal with the
added complexity that result from more realistic fault
assumptions - its quality is measured by its:
• coupling and cohesion (for performance)

• strength (for dependability)

~ Newcastle, September 2001

An Example-
Triple Modular Redundancy

v

v

v

UN !V~:H5[TY Of
NEWCASTLIi

A strongly-structured system is one in which the structuring
exists in the actual system, not just its description or design,
and helps to limit the impact of faults

Newcastle, September 2001

V.14

On Diversity

UN IVERSITYot"
)II I:WC\SlU

• All fault tolerance involves the use of redundancy- of
representation and/or activity - whose consistency
can be checked

• Design fault tolerance requires design diversity

• The issue of non-independence of faults in
"independently-designed" software

• Design diversity nevertheless useful , but difficult to
assess

• The dangers of lack of diversity - "monoculturalism"

~ Newcastle, September 2001

And now deja vu
- thirty years on

lINIVf.NSITYOf
Nt:WCASTLf.

The EU 1ST project MAFTIA - "Malicious- and Accidental- Fault­
tolerant Internet Applications":

Concerns systems that should ideally remain operational,
protecting all confidential information from unauthorised access, in
spite of malicious faults, Le., attacks, as well as accidental faults.
The main objective of MAFTIA is thus to investigate the tolerance
paradigm in security.
It is assumed that attacks can happen, and some of them can be
locally successful. But the overall system should nevertheless
remain dependable, even if some subsystems are successfully
attacked.
Partners: University of Newcastle upon Tyne - UK; FCUL, Lisboa -
Portugal; DERA, Malvern - UK; Universitat des Saarlandes -
Germany; CNRS-LAAS - France; IBM Zurich Research Lab -
Switzerland

~-Newcastle, September 2001

V.IS

By Way of Summary:

It is very important to have, and to use:

UN fVf.RS1TY Of
NJ::W(ASTl£

a concept which is associated with a fully general notion of failure -
not just ones that are restricted to particular types, causes or
consequences of failure

separate terms for the three essentially different concepts: '1ault",
"error" and ''failure''

And to understand the "fundamental chain":
........ failure fault error failure fault

Then one has a chance of designing rationally, even
successfully, for situations involving complex badly-specified
systems, with uncertain boundaries, where judgements as to
possible causes or consequences of failure are difficult, and
provisions for preventing faults from causing failures are likely to
be fallible, i.e. with reality!

~. Newcastle , September 2001

A thought for today. __

~ Newcastle, September 2001

IJN1V~:HSITYO~·

NEWCASTLE

V. 16

UN IVI:':RSITY Of
}II I;WCASTU:

"Are you sure that you will want your
grand-children to know that you worked

in computing?"

~ Newcastle, September 2001

V.17

DISCUSSION

Rapporteur: Professor M Koutny

Mr Warne asked whether Professor Randell 's research was focused on the problem of
malicious attacks, which can change a system so that it 'thinks' that it works without errors,
even though it is in fact not working correctly.

Professor Randell answered that his own research did not address this issue directly, but that
there are approaches in which a solution is derived by attempting to define a very small central
core of a system that cannot be corrupted. In any case, he stressed that one has to make some
fault assumptions before a solution can be found. Another aspect of this problem, pursued
within the MAFfIA project, is the design of dependable systems where different subsystems
do not trust that other subsystems work correctly, and therefore take appropriate measures.

Professor Malek stated that, at the present time, the general public is not aware of the issues
and problems relating to dependability. He contrasted this with the situation in the area of
computer performance, where a new advancement in processor speed can find its way to the
headlines of national newspapers. He then asked what could be done in the future to improve
this situation.

Professor Randell answered that the best way seems to be to 'frighten' the general public. He
then recalled the case of the Y2K problem, which mobilised a huge amount of effort and led to
a very successful preventative measures. This success has in turn led to voices that the cost of
the whole operation was excessive. Thus, in some sense ' success breeds failure', and 'failure
breeds success'. But, in general, many systems have been improved because there were
failures in the first place.

Professor Kopetz asked what, in Professor Randell's view, was the impact of academic based
research projects on the industrial practice.

Professor Randell answered by giving an example of software development processes within
Microsoft, which have been carried out with the help of several fault tolerant techniques
developed in academia, such as error recovery schemes and fault masking. His point was that
such techniques make significant though still insufficient impact, but at the same time this fact
is not in widely publicized.

V. I S

I

