
v 

DYNAMIC OBJECT MODEL 

R E Johnson 

Rapporteurs: Dr Robert Stroud and Dr Rogerio de Lemos 

• 

• 



---------:V.2 



• 

Introduction 

V.3 

Ralph E. Johnson 
Department of Computer Science 

University of Illinois at Urbana-Champaign 
johnson@cs.uiuc.edu 

Recently I have seen many examples of a type of architecture that was new to 
me. Half of the demonstrations at OOPS LA '97 were examples of thi s 
architecture. I have not found any descriptions of thi s architecture, yet the 
number of systems that I have seen indicates that it is widely used. This 
architecture leads to extremely extensible systems, often ones that can be 
extended by non-programmers. Like any architectural style, it has costs . It is 
not efficient of CPU time, but is usually used where efficiency isn't important. 
A bigger problem is that the architecture can be hard for new developers to 
understand. I hope thi s paper will help eliminate this problem. 

The architecture has many names, sometimes called just a "reflective 
architecture" or a "meta-architecture". However, it is more specific than just a 
reflective architecture. It was called the "Type Instance pattern" in a tutorial 
at OOPS LA '95 [GHV95). This paper calls it the "Dynamic Object Model 
architecture". Most of the systems I have seen with a Dynamic Object Model 
are business systems that manage products of some sort and are extended to 
add new products, so I have called it the "User Defined Product architecture" 
in the past[J098). 

Most object-oriented systems have a static object model. In other words, the 
object model does not change at run-time, but is fixed when the program is 
designed. A system based on a Dynamic Objec t Model stores an object model 
in a database and interprets it. Changing the object model will immediately 
result in a changed behavior. The object model is usually easy to change 
because there are usually special purpose user interfaces for changing it. 

The Dynamic Object Model has been used to represent insurance 
policies[J098), to bill for telephone call s, and to check whether an equipment 
configuration is likely to work. It has been used to model workflow[DT98) , 
to model documents, and to model databases. 

The Structure of the Dynamic Object Model 
The Dynamic Object Model architecture is made up of several smaller 
patterns. The most important is Type Object, which separates an Entity from 
an EntityType. Entities have Attributes, which are implemented with the 
Property pattern , and the Type Object pattern is used a second time to separate 
Attributes from AttributeTypes. The Strategy pattern is often used to define 
the behavior of an Entity Type. As is common in Entity-Relationship 
modeling, a Dynamic Objec t Model usuall y separates attributes from 



V.4 

relationships. Finally, there is usually an interface for non-programmers to 
define new EntityTypes. 

Type Object 
Most object-oriented languages structure a program as a set of classes. A 
class defines the structure and behavior of objects. Most object-oriented 
systems use a separate class for each kind of object, so introducing a new kind 
of object requires making a new class, which requires programming. 

However, there is often little difference between new kinds of objects. If the 
difference is small enough, the objects can be generalized and the difference 
between them described by parameters. 

For example, consider a factory scheduling system for a factory that makes 
many kinds of products. Each product has a different set of raw materials and 
requires a different set of machine tool s. The factory has many kinds of 
machines, and has varying numbers of each. Each type of product would have 
a plan that indicates how to build it. The plan indicates the types of machines 
that are needed, but not the particular ones that are to be used. The factory 
scheduling system takes a set of orders and produces a schedule that ensures 
those orders are built on time. It assigns each order to a particular set of 
machines, checking that there are enough machines of a particular type to do 
all the work needed in a day. When the factory builds a product, it might 
record its BuildHistory so that quality control inspectors will know the exact 
machines that were used to build it. 

One way to associate plans with products is to introduce a subclass of Product 
for each type of product, and to define an operation in each subclass to return 
the plan. In the same way, there would be a subclass of Machine for each type 
of machine. However, the only difference between MachineTypes is the 
number of instances and their name. Further, a plan needs to refer to machine 
types, and some languages (like C++) make it hard to have an object point to a 
class or to create an object from a class with a particular name. There should 
be a MachineType object that knows all the machines in the factory of a 
particular type. A Plan will refer to a MachineType either by name or by 
direct reference. A system for designing Plans might require more 
information about a MachineType, but a system for scheduling will not. If 
MachineType is a separate class then Machines are general enough that there 
is no reason to subclass them. In the same way, the only difference between 
types of products is probably the plans used to make them. It is not necessary 
to make a subclass of Product for each type of product; make a class 
ProductType and create instances of ProductType instead of subclasses of 
Product. 

c 

c 



V.S 

Manufacturing model 

ProductType 
1 .. 1 

MachineType 

O .. n requires 
type type 

i-- -

- t-
Product Machine 

built b y 

The Type Object pattern split a class into two classes, one the type of the first, 
and then to replace subclasses of the original with instances of the type class . 
It can be used in the factory scheduling system to replace subclasses of 
Product and Machine with instances of ProductType and MachineType. It can 
be used in an airline scheduling system to replace subclasses of Airplane with 
instances of AirplaneType (Coad 1992). It can be used in a 
telecommunications billing system to replace subclasses of NetworkEvent 
with instances of NetworkEventType. In all these cases, the difference 
between one type of object and another is primarily their data values, not their 
behavior, so the Type Object pattern works well . 

Property 
The attributes of an object are usuall y implemented by its instance variables . 
A class defines the instance variables of its instances. If objects of different 
types are all the same class, how can their attributes vary? 

The solution is to implement attributes differentl y. Instead of each attribute 
being a different instance variable, make an instance variable that holds a 
collection of attributes. 

Property Pattern 

Before 

entity 

-attribule : Any 

Entit y 

After 

O .. n 

attributes 
Property 

-name: String 
-value: Any 



V.6 

The core of a Dynamic Object Model is a combination of Type Object and 
Property. The Type Object pattern di vides the system into Entiti es and 
EntityTypes. Entities have properties. But usually each property has a type, 
too, and each EntityType then specifies the types of the properties of its 
entities. A PropertyType is usually more like a variable declaration than like 
an abstract data type. It often keeps track of the name of the property, and 
also whether the value of the property is a number, a date, a string, etc. The 
result is an object model similar to the following: 

Dynamic Object Model 

EntityType Entity 
O .. n type 

properties O .. n 
properties I O .. n 

PropertyType 
Property O .. n type 

-name: String 
-type : Type 

Sometimes objects differ onl y in having different properties. For example, a 
system that just reads and writes a database can use a Record wi th a set of 
Properties to represent a single record, and can use RecordType and 
PropertyType to represent a table. 

But usuall y different kinds of objects have di fferent kinds of behaviors. For 
example, maybe records need to be checked for consistency before being 
written to a database. Although many tables will have a simple consistency 
check, such as ensuring that numbers are within a certain range, a few will 
have a complex consistency checking algorithm. Thus, Property isn't enough 
to eliminate the need for subclasses. A Dynamic Object Model needs a way 
to change the behavior of objects. 

Strategy 
A strategy is an object that represents an algorithm . The strategy pattern 
defines a standard interface for a family of algorithms so that clients can work 
wi th any of them. If an object 's behavior is defined by one or more strateg ies 
then that behavior is easy to change. 

c 



V.7 

Each application of the strategy pattern leads to a different interface, and thus 
to a different class hierarchy of strategies. In a database system, strategies 
might be associated with each property and used to validate them. The 
strategies would then have one public operation, validateO. But strategies are 
more often associated with the fundamental entities being modeled, where 
they implement the operations on the methods. 

Dynamic Object Model 

EntityType Rule Entity 
O .. n type rule 

+evalualeOO 

properties I O .. n 
6 

properties O .. n I 

O .. n 

I 
PropertyType PrimRule Composite Ru le 

Property O .. n type 
-name: String 
·type: Type 

Entity-Relationship 
Attributes are properties that refer to immutable values like numbers, strings, 
or colors. Relationships are properties that refer to other entities. 
Relationships are usually two-way; if Gene is the father of Carol then Carol is 
the daughter of Gene. This di stinction , which has long been a part of classic 
entity-relationship modeling and which has been carried over into modern 
object-oriented modeling notations, is usually a part of a dynamic object
model architecture. The distinction often leads to two subclasses of 
properties, one for attributes and one for relationships. 

One way to separate attributes from associations is to use the Property pattern 
twice, once for attributes and once for associations. Another way is to make 
two subclasses of Property, Attribute and Association. An Association would 
know its cardinality. A third way to separate attributes from associations is by 
the value of the property. Suppose there is a class Value whose subclasses are 
all immutable. Typical values would be numbers, strings, quantities (numbers 
with units), and colors. Properties whose value is an Entity are associations, 
while properties whose value is a Value are attributes. 

Although thi s is a common pattern, I am not sure why it is used. Perhaps it is 
just a more accurate model. Or perhaps it is used by habit because designers 
have been trained in Entity-Relationship modeling. It is interest ing that few 
language designers seem to fee l the need to represent these relationships, but 
most designers of systems wi th dynamic object models do. 



V.8 

User Interface for Defining Types 
One of the main reasons to design a Dynamic Object Model is to extend the 
system by defining new types without programming. Sometimes the goal is 
to enable users to extend the system without programmers. But even when 
onl y the developers will define new types, it is common to build a speciali zed 
user interface for defining types. For example, the insurance framework at the 
Hartford has a user interface fo r defining new kinds of insurance, including 
the rules for calculating their price. Innoverse, a telephone billing system, has 
a user interface for defining geographical regions, monetary units, and billing 
rules for different geographical regions expressed in various monetary units. 
The Argos school administration system lets has a user interface for defining 
new document types and workfl ows. 

Types are often stored in a centrali zed database. This means that when 
someone defines new types, applications can use them without having to be 
recompiled. Often applicat ions are able to use the new types immediately, 
while other times they cache type information and must refresh their caches 
before they will be able to use the new types. 

The alternati ve to having a user interface for creating and editing type 
information is write programs to do it. In fact , if programmers are the only 
ones creating type information then it is often easier to let them do it by 
writing programs, since they can use their usual programming environment 
for this purpose. But the onl y way to get non-programmers to maintain the 
type info rmation is give it a user interface. 

Advantages of Dynamic Object Models 

If a system is continually changing, or if you want users to be able to extend 
it. then the Dynamic Object Model architecture is often useful. The 
alternati ve is to pick a simple programming language that is flexible and easy 
to learn . In fact, a Dynamic Object Model is a kind of programming 
language. Visual Basic could be thought of as based on a Dynamic Object 
Model, though its internals are hidden and it is hard to be sure. 

Systems based on Dynamic Object Models can be much smaller than 
alternatives. One architect told me that hi s 50,000 line system had more 
fea tures than systems written without a dy namic object model that took over 3 
million lines of code. I am working on replacing a system with several 
millions lines of code with a system based on a dynamic object model that I 
predict will require about 20,000 lines of code. This makes these systems 
easier to change by experts, and (in theory) should make them easier to 
understand and mainta in. 

Disadvantages of Dynamic Object Models 

A Dynamic Object Model is hard to build. The systems that I 've seen use it 
have all been designed by experi enced architects. What happens when the 
system is maintained by less experienced programmers? These systems are 



• 

• 

• 

V.9 

often hard for less experienced developers to understand. This is by far the 
biggest di sadvantage of this architecture, and architects should choose it 
cautiously and plan to spend more than usual on documentation and training. 

A system based on a Dynamic Object Model is an interpreter, and can be 
slow. Most of the systems I 've seen have been fast enough with only a little 
optimization. However, I've also seen a few in which some of the features 
were too slow. 

A system based on a Dynamic Object Model is defining a new language. It is 
a domain-specific language that is often easier for users to understand than a 
general-purpose language, but it is still a language. When you define a new 
language, you have to define support tools like a debugger, version control, 
and documentation tools. This is extra work. If you let users define their own 
types, you have to teach them good software engineering practices like 
test ing, configuration control, and documentation. Is it worth the effort? 
Some designers do not worry about this and their projects usually come to a 
bad end. Others avoid these problems by only allowing developers to define 
new types. Others train their users. There are many ways around this 
problem, but it is a problem that should be faced and not ignored. 

Summary 
A Dynamic Object Model provides an interesting alternative to traditional 
object-oriented design. Like any architecture, it has both advantages and 
di sadvantages. The more examples we study, the better we will understand its 
strengths and weaknesses. Please contact me if you have used thi s 
architecture in the past and can provide more examples or if you know of any 
papers that describe thi s architecture or aspects of it. 

Bibliography 
[Coad 92] Peter Coad, "Object-Oriented Patterns". Communications of the 
ACM. 35(9):152- 159, September 1992. 

[DT98] Martine Devos and Michel Tilman, Repository-based Frallleworkfor 
Evoilltionary Development, 1998. http://www.argo.be/OoFrame/ 

[FY98] Brian Foote and Joseph Yoder, Metadata and Active Object-Models, 
At PloP'98, Allerton Park, August 1998. Also http://www-
ca t. n csa. u i uc. ed u/ - yoder/papers/pattern s/M etadatal metadata. pd f 

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, 
Design Patterns: Elements of Reusable Object-Oriented Software, Addison
Wesley, 1995. 

[GHV95] Erich Gamma, Richard Helm, and John Vli ss ides, Design Patterns 
Applied, tutori al notes from OOPS LA '95. 



----

V.10 

[J098) Ralph E. Johnson and Jeff Oakes, The User-Defined Product 
Framework, 1998. http: //st.cs.uiuc.edu/pub/papers/frameworks/udp 

[JW97) Ralph Johnson and Bobbie Woolf, Type Object, In Patttem 
Languages of Program Design 3, Robert Martin , Dirk Riehle, and Frank 
Buschmann ed., Addison-Wesley, 1997, pp. 47-66. 

c 

f 



• 

DISCUSSION 

Rapporteur: Dr Robert Stroud 

Lecture One 

V.11 

During hi s presentation, Professor Johnson remarked that it was well known that multiple 
inheritance was a bad solution to a particular problem. Given that thi s was community 
knowledge, Professor Balzer wanted to know how a pattern would point people away from 
using multiple inheritance. Professor Johnson replied that the circumstances for using 
multiple inheritance were domain specific - it was known that multiple inheritance could 
get you into trouble but it could also work nicely in some circumstances and perhaps rules 
could be written to explain this. 

Professor Balzer wasn't sati sfied with thi s answer and wanted to know how thi s 
knowledge was documented. Mr Jackson rephrased the question in the following way -
each pattern describes the circumstances in which it is applicable but what about the 
circumstances when it wasn't applicable and would be a bad design choice? Professor 
Johnson replied that everything was bad in some circumstances and you could usually 
figure out what the drawbacks were for a given pattern by thinking about it. However, he 
agreed that it was important to describe the drawbacks as well as the advantages of each 
pattern. 

Commenting furth er on the issue of multiple inheritance, Professor Johnson said that 
plenty of people had written about multiple inheritance and when it was useful. Java put 
sensible restrictions in the language to constrain the use of multiple inheritance - in 
particular, you could use multiple inheritance for different interfaces but not for merging 
implementations where you needed more control. In contrast, the Lisp community liked 
automatic merging of implementations but whilst thi s might be OK for an MIT PhD 
student, it wasn't something for the average C++ programmer which was why the C++ 
gurus say "don ' t do thi s". Java went further and put the rules into the language. MIT PhD 
students might find this limiting but it was probably a good design decision for Java. 

Returning to the original question, Professor Johnson said that there was knowledge and it 
could probably be generalised but tended to be domai n specific. A programmer in the 
insurance industry needed to know what was useful and worked well in their particular 
domain. 

Professor Shaw had a question about the exposition of patterns. She agreed that there was a 
place for describing the circumstances in which a pattern was applicable but it was also 
necessary to talk about the domain. How should thi s information be organised - by pattern 
or by domain? Professor Johnson replied that the material should be organised in whatever 
way communicated it best to the reader. However, you shouldn ' t try and put too much into 
a pattern - the Design Patterns book probably represented an upper limit of what people 
could handle. But you needed to figure out how to organise the descriptions so that people 
could easily access the useful bits. 

Mr Jackso n sa id that thi s wasn't just a matter for the writer - it was important that the 
exposition should match the reader' s expectations. Professor Johnson felt that the problem 
was how to find useful patterns, some rough, some polished. If you wanted to get some 
information abou t what was on at the movies , you tended to ask people who liked the same 
kind of thing that you did . So hav ing this kind of guide was useful. Professo r Rande ll 
remarked that the ACM collections of subroutine libraries represented nearl y SO years 
experi ence of thi s kind of thing in Computing. 

Later in the talk , Professor Johnson described the Strategy pattern and Professor Balzer 
asked if the change of strategy was just a switch and didn ' t in volve changing details. 
Professor Johnson agreed that the Strategy pattern did not help you to choose the algorithm 



V.12 

- you could parameterise strategy objects but thi s would be a different use of the pattern. 
Professor Randell remarked that these all sounded like binding issues and Professor 
Johnson agreed that binding was a very important part of many patterns. 

Dr Kay remarked that the Acti ve Object-Model architec tu re that Professor Johnson had 
described was identical to the schema for ICL's data dictionary which had been shipped 20 
years ago. Professor Johnson agreed that the architecture could be used to solve that kind 
of problem but said that it had the drawback of taking more bits, being less efficient, and 
being harder to understand because it was more abstract. Dr Kay said that the biggest 
di sadvantage was that query optimisers didn't understand it. Professor Johnson agreed but 
said that thi s hadn ' t been a problem for the particular instance of the pattern he had been 
describing because the programmers had been using an OODBMS and wri ting queries in a 
high level language. 

Professor Shaw asked for clarification about the relationship between components and 
their children . She was concerned that the diagram was structural but had a behavioural 
interpretation. 

A member of the audience commented that the diagram was useful for run-time type 
checking and that thi s was appropriate if you were happy to do your own type checking. 
Professor Randell drew an analogy with hi s earlier remarks about binding. Professor 
Johnson agreed, saying that another way of thinking about thi s was that you were 
effectively inventing a new language. However, people were reluctant to think of it in 
these terms, especially in traditional DP shops. 

Professor Hall remarked that back in the old days of traditional databases, thi s might have 
been called a meta schema. There was a need to talk abou t the processes underl ying an 
arch itec ture, levels of architectural description and choices about binding decisions . The 
issue was whether to do thi s automatically or manually by encoding the rules in the 
schema. Professor Johnson agreed that thi s was an important issue and something that he 
saw a lot. However, it wasn't clear to him how thi s could be raised to a principle and 
taught. 

Professor Dobson observed that in many cases you might find that the rules encoded in the 
model were owned by some separate regulatory authority rather than being properties of 
the types themselves - you might want to make thi s c lear in the model. Professor Johnson 
felt that the rules belonged to variables and should be kept together with them. Rules 
needed to be expressed as constraints on things and it might be necessary to change 
variable names to keep things consistent. However, he accepted that the different points of 
view were an important issue and remarked that a related Telephone Company example 
was more complicated because it involved different levels and issues of who owned the 
meta information. 

Dr Kay remarked that one of the reasons that people built such models was because their 
programming languages didn ' t have reflection. Professor Johnson agreed but observed that 
ironically thi s work had been done in Small talk wh ich was probably the most reflecti ve 
programming language used in business ! Programmers were reluctant to accept that what 
they were do ing was inventing another OOPL. Although they did use some of the 
refl ec ti ve facilities in Small talk , they tended to apologise for do ing so - in any case, these 
patterns didn ' t depend on the use of refl ec tion. He thought thi s was a cultural thing - C++ 
programmers wouldn't do thi s. 

Dr Kay repli ed th at some people tri ed to do computation in SQL. Professor Randell 
observed that people used whatever tool they were used to. He recalled the joke about an 
engineer being someone with hammer looking for a nail and sa id that we shouldn ' t be 
ashamed about thi s but should be prepared to lea rn the limitati ons of our tool s. For 
example, it wou ld not be appropriate to install windows using a hammer. To general 

c 



• 

• 

V.13 

laughter, Dr Perry joked that on the contrary, in stalling (Microsoft) Windows with a 
hammer was probably about the best thing to do with it' 



V.14 

DISCUSSION 

Rapporteur: Dr Rogerio de Lemos 

Lecture Two 

During the talk Professor Randell mentioned that twenty or thirty years ago in order to solve 
a problem, it was fashionable to invent a new language or to incorporate into an existing 
language new mechanisms that would encapsulate features that before were programmed by 
hand, and it was noticed at the time that in the design of fashionable languages very few 
people could do it very well while the rest did some dreadful things. He continued by 
querying whether there was a degree of similarity with the process of identifying and 
publishing new patterns. Professor Johnson agreed with the statement, and added that once a 
language has been around for a long time it is difficult to make people use new features that 
were created in a research environment. 

After Professor Johnson presented the way in which Christopher Alexander's architectural 
patterns had influenced the ideas around design patterns, Professor Brooks emphasised that 
patterns reall y worked. Professor Randell made the comment that Christopher Alexander, in 
one of hi s book "Notes in the Synthesis of Form", had made an attempt to produce a logical 
framework to solve problems that would only work if the solution to the problem was 
known beforehand. He al so said that years after of the book was published , Alexander 
himself admitted that some of ideas of the book were impractical. Professor Brooks added 
that the power in pattern languages is the knowledge associated with patterns. 

Mr Jackson asked the speaker to clarify the following conflicting view: on the one hand, . 
there was the impress ion that the twenty three patterns described originally in the book 
"Patterns in Concurrent Programming" plus the two or three patterns presented on the 
previous talk by the speaker appeared to be sufficient, while on the other hand, there was 
thi s ambition to identify and publish even more patterns. Professor Johnson answered that 
the aim was to write patterns that can be used by everyone, perhaps a thousand patterns, but 
he did not know the right number, he al so mentioned that the patterns described in the book 
were specifically for object-oriented programming. 

After Professor Johnson presented the benefit s of using design patterns, Dr de Lemos asked 
whether the speaker could al so enumerate some negative aspects. Professor Johnson 
answered that there were a lot of people using patterns without understanding them, and that 
patterns have been defined without a coherent form of organisation. 




