
III. 19

HOW PROBABILISTIC DIVERSITY MODELLING
CAN HELP TO FORMALISE THE SE PROCESS

B Littlewood

Rapporteur: Dr L B Alief

III.20

; ' .

III.21

How probabilistic diversity modelling
can help to formalise the SE process

Bev Littlewood
City University

London ECIV OHB
b.littlewood@csr.city.ac.uk
Phone: +4402074778420

Joint work with Lorenzo Strig;,,;, Peter Popo~, N;ck Shryane: see our paper;1I Dec 2000 Transactions
on Software Engineering Jar details oj some oJthis work

Littlewood - talk

Informal background (1)
• How good are software fault removal techniques?

Much Software Engineering research has focussed on
efficacy of individual techniques
- there is some empirical evidence that allows us to say that one

technique is better than another at finding faults

• In practice, for a single program, several techniques
will be available and applied
- how does such multiple application affect efficacy?

• If procedure A is better than B, should we only use A?
Clearly that is not how people actually behave ...

City University
. I seminar,20ot - slide 2

ID.22

Informal background (2)
• Informally: 'don't put all your eggs in one basket'

- different procedures will target different types of faults with different
efficacy

c.g. in practice we may decide to stop applying proccdurcA (e.g. static
analysis) and apply procedure B (e.g. testing), even though we know A is
better than B overall

• It is not only the effectiveness of the procedures that
matters, but also their diversity (i.e. how 'different' they
are)
- we need to understand this interplay between effectiveness and

diversity

• This work inspired by earlier probability modelling for
design diversity

Littlewood talk 2, Newcastle 2001 • slide 3

The key questions
• What is the best way to use the different fault removal

procedures, taking account of their individual
effectiveness and the diversity between them?

• Can we measure the important parameters so that we
can give advice to practitioners?

• We have developed a probability model that helps
understanding here
- formally, it is exactly similar to models for design diversity

City University

III. 23

Our model
• When a particular fault-finding procedure is applied,

there is uncertaillty about the outcome
- each fault mayor may not be successfully detected

• Key idea is a difficulty fUllctioll for each procedure, A.
For a fault i this is the probability that A willllot detect
the fault, e A (i)
- we can think of this as the difficulty you would have in detecting fault

i using procedure A

- the important point is that this wiU take different values for different
faults

• some faults arc harder to detect (by A) than others

• We have, in addition, probability distributions:
Pi * = P(randomly selected fault is of type i)

University
Littlewood· i

'Ineffectiveness'
• We define ' illeffectiveness' of A as

p eA fails to detect a randomly chosen fault)

= 2:>,*· 8A Ci) = Ep.(8A)

• This can be thought of as the 'unreliability' of the
procedure at finding faults
- it is the average 'difficulty' over all faults

• It represents the ineffectiveness of procedure A in
detecting faults in the following intuitively appealing
and precise way:

City University
I

• slide 5

III.24

Impact on number of faults found
• The ineffectiveness of A is the (expected) proportion of

faults that remain after A has been applied:

E(number of faults in program undetected after the application of A)

= Ep.(e A). E(number offaults in program before the application of A)

• or, alternatively, in terms of 'effectiveness', as the
proportion of faults that you can expect to be removed
byA

E(number of faults removed by application of A)

= (1 - Ep.(e A)) E(number of faults in program initially)

More generally
• Ineffectiveness of more complex applications of fault

finding procedures will also be moments of difficulty
functions

• e.g. for two independent applications of a single
procedure, A:

P(A, and A2 fail to detect a randomly chosen fault)

= L,p,*.e/ (i)= Ep.(8 /)
I

- examples of 'two applications' could be spending twice as much time
(effort) on static analysis, or on operational testing

- slide 7

2001 • slide 8

III.2S

More interesting: multiple procedures
• If we have two procedures, A and B, the difficulty

functions wiII be different
- the more different, the better?

• Then, for joint independent application of two
procedures, A and B:
peA and B fail to detect randomly selected faull)

= LP, * .8A(0· 8.(0 = Ep.(0A ·0 .)

- example could be both operational testing afld static analysis

• Similar intuitively obvious definitions for
'ineffectiveness' (and thus effectiveness) of more than
two procedures

Liulewood· talk 2,

Why is this model useful?
• It gives precise probability meanings to previously

informal notions of efficacy

• In principle we can compare effectiveness of different
fault finding strategies (combinations of procedures)
and identify the best one

• Points the way towards general advice on 'best
practice', general principles, etc

• The key measures of 'ineffectiveness' may be estimable
from experiments and/or case studies of real software
development

City University

ill.26

Illustrative example
• Railway signalling application (details of experiment

reported elsewhere)
- designed by psychologists who were investigating cognitive diversity

between different ways of finding faults

• Two programs, each seeded with 8 faults (these came
from real-life examples - 16 faults in all)

• Two fault finding procedures: 'code checking' (A) and
'functional testing' (B)

• 27 'checkers', 36 'testers' - all students

Estimated difficulty functions

Prog 1 Prog2

Fault id Proportion Proponion Fault id Proportion Proportion
in checking in testing in checking in testing
(A) (8) (A) (8)

FII .7778 Al68 F21 .2222 .0833
FI2 .0000 .1389 F22 .8148 .2778
FIJ .2593 .5556 F23 .5926 .5000
FI4 .4815 .4722 F24 .1481 .9444
Fl5 .7778 .1944 F25 .4444 .2778
FI6 .3704 .7222 F26 .2963 .7778
FI7 .1 852 .3611 F27 .2222 .8056
FI8 .4444 .9161 F28 .7778 .2778

Littlewood - 200 1 - slide 12

III.27

Results for Program 2

Ep. (8 A) = 0.440, Ep. (8 .) = 0.493

Ep. (8 /)= 0.253, Ep .(8 .')= 0.329

Ep.(8 A .8.)=0.179, Ep.(8 A)Ep.(8.)= 0.217

Cov p.(8 A ,8 .)= -0 .0381

- applying A and B is better than 2As or 2Bs (expect only 17.9% of
faults to remain, rather than 25.3%, 36.9 % respectively)

- this is true even though A is better than B (and, more importantly,
AA is better than BB)

- assuming independence underestimates AB efficacy

- note negative covariance here suggests that the procedures are 'quite
diverse'

Newcastle

Comments
• Of course, this is an after-the-event analysis of a single

program

. slide 13

• We really need to be able to predict what would happen
for a flew program

• If we are prepared to believe that these two programs
are typical examples (a sample) of a class of programs,
we could pool the data from them to obtain estimates of
effectiveness of procedures for the class

• These can then be used to advise on best practice for a
flew program from the class

- this is the kind of reasoning used milch more informally for existing
software cost models

LiUlcwood - i . Newcastle seminar, 2001 - slide 14

III. 28

Results from pooled data
Ep. (0 A) = 0.426, Ep' (0.) = 0.483

Ep. (0 /)= 0.244, Ep' (0 .')= 0.306

Ep. (0 A .0.)=0.1 89, Ep.(0')Ep.(0 .)= 0.206

Cov
P
. (0 A ,0 .)= - 0.0168

- again A better than BJ and AA better than BB

- but AB better than either AA or BB

- assuming independence would wrongly underestimate the
effectiveness of AB

- notice small negative covariance

UuJewood i talk 2, Newcastle

Analysis using fault classes

• A practical problem: Faults are likely to be 'sparse' • if
we see only a few programs, each fault probably occurs
on at most one program, thus cannot estimate the
probabilities P*j for a novel program

• Possible solution: deal with classes of faults rather than
faults themselves

• See paper for how to do this
- plus example using two fault classes in the railway example

City University
i talk Newcastle seminar. 2001 - slide 16

III. 29

General results
• Is there any general advice that can be given, even

when we cannot measure any of the 'effectiveness'
parameters of the detailed model?

• Some of the following results are surprisingly similar to
those that have been obtained for diversity in software
desigll

City University
. I

Dangerous to assume independence
• As we saw in the examples, naive assumptions of

indepelldence can give misleading results. For example,
there is a law of diminishing returns in extensive
application of a single procedure. In particular:

P(A 2 fails to detect a randomly chosen fault I Al failed)

;::: P (A2 fails to detect a randomly chosen fault)

or, equivalently,

P(A I and A, fail to detect a randomly chosen fault)

;::: P (AI fails to detect a randoml y chosen fault).

P(A 2 fails to detect a randomly chosen fault)

• slide 17

Newcastle scmin:lI', 2001 · slide 18

III.3D

Intuitive explanation
• The fact that Al failed to find the fault suggests that the

fault was probably one of the more difficult ones for
procedure A

• Therefore we shall be less confident that A z will find it

• Although the different applications of A are
conditionally independent, they are not unconditionally
independent

City University
; I

You can do better than independence
• We can prove that:

p eA and B fail to detect randomly selected fault)

> peA fails)P(B fails)

whenever (i.e. if and only if)

• NB in fact, the desirable negative covariance seems quite
plausible here

Littlewood - 2001 . slide 20

lII.31

Intuitive explanation
• Negative covariance of the difficulty functions means

that if fault i is 'very difficult' for A, it is likely to be
'not very difficult' for B, and vice versa

• So if A fails to find it, this means it is probably a very
difficult fault for A, hence flot very difficult for B

• So we become more confident that B will find a fault
when this fault has not been found by A
- the reverse is true if the dirficulty functions are positively correlated

Littlewood - Newcastle seminar, 200 1 - slide 2 1

Diversity is generally a good thing
• If there are two procedures for fault-finding, A and B,

and you are indifferent between putting all your effort
into A or into B, thellusing A alld B ill stead is always
better

- even without negative covariance

• In general, subject to certaill indifferences between
procedures, it is always best to use as many of them as
possible alld spread them as evenly as possible
- we have a theorem expressing this precisely

- e.g. AABBC better thall AAABC etc

• Practical application? Can we choose 'units' of each
procedure to create such indifferences?
- e.g. 'amounts' of operational testing, of static checking

City University

Ill. 32

Diversity is generally a good thing (2)
• If diversity is a good thing, is it always better to try to

get more of it? What do we mean by 'more'? Can we
talk about degrees of diversity between fault-finding
procedures?

• We propose a 'distance' between two procedures in the
'difficulty' function space - a measure of their
'diversity':

Littlewood - talk ,NewcasUe seminar, 2001 • sl ide 23

Diversity is generally a good thing (3)
• Subject to some 'indifference' assumptions, more

diversity in this sense is better than less:
C

A----_~
B

- if A, B are more diverse than B, C, etc, as in figure, then subject to the
indifference assumptions ('aU things being equal') we would prefer
AB to BC, and BC to AC

City University
I

ID.33

Discussion
• Although the presentation here was in terms ofJault

finding efficacy, similar results apply to reliability
improvement efficacy

• Further work will introduce notions of cost
effectiveness into the model

• We need more data from experinlents and real-life case
studies
- the example here demonstrates feasibility, but is somewhat artificial

City University
Uttlcwood i talk Newcastle

Discussion (2)
• Some of the results are in accord with (intelligent!)

intuition
- the important novelty is that they provide a qua1ltitative formalism of

the relevant factors

- the details are not intuitively obviousl

• It should be possible to estimate the key parameters
(inefficiency factors, diversity, etc)
- this contrasts with the situation in software design diversity, where

the parameters are very hard to estimate

• This is a more rigorous and formal approach than
traditional 'software metrics '
- e.g. it could the basis for optimal allocation of fault-finding

procedures based on empirically-based cost-effectiveness analysis

Littlewood talk 2,

• slide 25

- I

·1

ID.34

DISCUSSION

Rapporteur: Dr L.B. Arief

Lecture One

Regarding general evaluation of design diversity in industrial application, Professor Jones
wondered whether it is due to the lack of instrumentation. Professor Littlewood replied that
although there is no legal requirement for it, instrumentation does exist, for example in the
Airbus 300 or 310 series.

Professor Martin commented that there might be some fine gradation on the students involved
in the Knight-Leveson experiment, which concluded that the best single version is better than
the worst triple version. Professor Littlewood answered that there is no distinction among the
students.

On the subject of probability of failure depending on input, Professor Martin gave an example
on stack overflow. Professor Littlewood pointed out that he is not a computer scientist, so he is
not familiar with stack overflow in programs. Professor Schneider then indicated that bigger
input might cause stack overflow to happen.

Professor Schneider argued that making two programs worse (by making them fail more
often) might reduce the variance, but this way seems counter-intuitive that it should result in
better expectation. Professor Littlewood replied that they are different things, one is the
average value of the difficulty function and the other is how much the difficulty function
varies. So, it is possible to have quite different variances for the same average value.

Concerning the Sizewell protection system, Dr Rushby wanted to know what it means to be
primary or secondary protection system, as it seems like both are able to shut down the
system. Professor Littlewood agrees that both are able to do that, but the primary is the one
that should do it because it shuts down the system gently. So there are economic reasons for
favouring it.

Professor Suri questioned how much of diversity will be useful. Professor Littlewood tried to
understand the question as how much of trade off between version reliabilities and diversity
(between versions) would be beneficial. It is probably often the case that when diversity is
increased, the version reliabilities might be reduced. So there are a lot of problems about the
interplay between version reliability and diversity, and we need to know all about those in
order to talk about system reliability.

lll.35

DISCUSSION

Rapporteur: Dr L.B. Arief

Lecture Two

Dr Maxion wanted to know whether the variation in the difficulty function is bimodal.
Professor Littlewood replied that he does not know for sure, but there will be some statistical
data available.

Dr Horning asked for a clarification on the difficulty function , whether it concerns fault 'i' or
fault 'type i'. Professor Littlewood answered that (for now) it is fau lt 'i', not fault 'type i'

Dr Stroud questioned the efficiency of running the same procedure multiple times. Professor
Littlewood argued that it is possible to catch fresh bugs in the later runs, although there is a
law of diminishing returns.

Professor Schneider was not sure about the application of the technique in reality and he
wondered whether it can accurately model actual software engineering techniques. Professor
Littlewood replied that he would show some fairly artificial examples, where two actual
software engineering procedures can be estimated using the technique, which proves to be
useful in giving quantitative insight into what is happening.

Professor Malek questioned the efficiency of having two procedures, where one takes a lot
longer than the other to achieve the same detection. Professor Littlewood replied that issues
like these would be addressed later in the talk. Professor Littlewood wished to eventually
come down to an indifference notion where they both cost the same and be equally effective.
So, the concerns would be on whether to use both or two of each.

Dr Lomet wondered whether there are some assumptions on independence of the ability to
detect faults. Professor Littlewood said that he is assuming independence to be conditional. Dr
Ross then asked whether the two procedures commute. Professor Littlewood replied that we
really do not care about that, and the conditional independence is quite reasonable. Regarding
multiple procedures, Mr Mpoeleng asked whether fault cOITection is assumed after the first
procedure. Professor Littlewood pointed out that no cOITection is perfoITned, we are only
interested in the most effective way of finding faults.

Dr Stroud wanted to confirm that the numbers shown are something that Professor Littlewood
calculated, not what the students did in the experiment. This was confirmed by Professor
Littlewood, and was then re-affiITned by Professor Anderson. He mentioned that the data came
from the work that the students did in the experiment and Professor Littlewood did the
calculation using those data to come up with the numbers.

Dr Stroud then asked whether deploying it twice means that the same students did it twice, or
different students did it each time, or average students did it twice. Professor Littlewood
replied that in the case of testing, the.re wou lcl he an operational test generator, and doing it

III. 36

Dr Lomet argued that people usually find bugs, fix them, re-test, and find some more bugs. So
in some cases, there are bugs in a program which could not be found in the first collection of
tests because they are masked by the previous bugs. Professor Littlewood replied that the
model does not consider that. Dr Lomet then said that in real world, the probabilities do
change every time the procedure is run because the previous bugs that have been found were
fixed before the procedure is re-applied. Professor Littlewood admitted that the model does
not cope with that kind of situation.

Dr Horning suggested two experiments. The first one takes procedure A and re-labels it A'.
Professor Littlewood said he would treat them as the same and he did not see a problem with
that. Professor Jones mentioned the U'iangle theory as an answer, where we would want ones
with as different difficulty functions as possible. The second suggestion concerns an
experiment where there is an error that could never be found. Professor Littlewood replied that
it might happen, since the difficulty function can have a value between zero and one, and
when it is one, it means that the bug will never be found.

Dr Maxion suggested that some of the difficulties might be resolved using details of
psychological experiments. Professor Littlewood acknowledged that introducing another
person can be a new form of di versity (human diversity) . Dr Maxion also commented on
interdisciplinary work, that there is not a perfect understanding in each other's area. Professor
Littlewood replied that the psychologists he is working with are worldng with software
engineers, and they are funded by Railtrack. There is a strong interest in safety critical
signalling systems, in particular in finding faults in people who have written signalling
software. The psychologists had special psychological hypotheses in mind, but they were
working with people who really understood the railway problems.

