
ALGEBRAIC SPECIFICATION
OF PROGRAMMING LANGUAGE SEMANTICS

(Extended Abstract)

Peter Mosses

Rapporteur: Mr. R.C. Millichamp

Abstract

In this talk I shall first give a summary of my views on the
aims and uses of formal specification of programming languages, and
indicate the main approaches. Denotational semantics will be
considered in particular, and some shortcomings of this approach will
be suggested. A particular sort of algebraic semantics, called
"A-Semantics", will be proposed as a means of alleviatJng these
shortcomings, and a simple example will be given. Finally, experience
with using A-Semantics in teaching Denotational Semantics will be
reported.

Formal Specirication of Programming Languages

The following seem to be general aims, although various
approaches weight them unequally and often have some spec ial aims.

In giving a full specification of a programming language it is
necessary to specify both its syntax (context-free,
context-sensitive) and its so-called "semantics". This "semantics"
associates with each program some convenient (for the users of the
language) abstraction from reality, usually an abstract mathematical
structure or function. (Unfortunately, it seems to be too late to
prevent this metaphorical use of linguistic terminology with its
anthropomorphic connotations).

Formality of spec ification is essential if one is to be able to
reason about programs and languages. The aim is to capture precisely
the desired "semantics" of a language, thus 6btaining a firm
criterion for when an implementation of the language is correct
(w.r.t. the specification).

A semantic specification of a programming language aims to
communicate an understanding of the language to its readers, but also
important is the understanding of the language that is gained by the
authors of the specification. Clearly, conciseness of expression is a
(subsi.diary) aim.

Formal specifications of programming languages may be useful in
the following situations. During language design they may document
design decisions - they sometimes guide those decisions in that there

189

are differences in the comparative ease of specifying various
language features. When a language design is complete, a formal
specification may be used as a standard, giving the properties that
must be provided by implementations - and may be relied upon by
programmers. Moreover, a formal specification may be used as the
starting point for the systematic (or even automatic) implementation
of the specified language. For program verification, a formal
specification of a programming language may be used directly, or else
used to show the soundness of a program proof logic. As regards the
teaching of Computer Science, apart from the study of formal
semantics one might hope to use formal specifications in courses on
"concepts of programming languages", but at present there are
d iff icul ties with spec ifying language features i.ndependently of each
other. (The work on "A-Semantics" described here attempts to
circumvent these difficulties).

Main Approaches

We shall not consider the specification of the concrete
syntax of programming languages here, but restrict our attention to
semantics, associating abstract mathematical values with abstract
programs which may be considered as "trees" conforming to some
abstrac t syntax (descr ibed by a grammar). The following comments do
not attempt to give a general survey of approaches to formal
semantics, but may be of use in showing readers unfamiliar with
formal semantics where Denotational Semantics (and A-Semantics)
differ rad ically from other approaces.

Operational Semantics is specified by defining an
(abstract) interpreter that, when given a program and its input, goes
through a sequence of states in computing the output. It can be
convenient to translate abstract programs into (low-level) abstract
code, rather than interpreting them directly. Al though the "meaning"
of programs specified in this way may be identified with the
input-output function (or relation) associated with programs in this
way, these 1-0 functions can only be investigated by considering the
operation of the abstract interpreter, which is somewhat
unsatisfactory. The Vienna Definition Language (VDL) is a good
example of the operatjonal approach.

Axiomatic Semantics is speclfied by gJ.vlng a proof system
whose formulae involve programs and assertions about program
var iables. The axioms of the proof system involve primitive commands,
and for each construct forming a compound command there is some
inference rule allowing assertions about the compound to be inferred
from assertions about its components. The "meaning" associated with a
program by this means may be regarded as a function from an assertion
about the input-output relation of a program to its theoremhood:
provable, the negation provable, or neither. In any case this is, as
with operational semantics, a rather indirect way of getting at the
program's input-output relation. (It is well-suited to program
verification, though).

190

Denotational Semantics is specjfied by glvlng a definition of a
semantic function mapping programs to (mathematical) inout-output
functions. The semantic function is g;enerally defined recursively,
associating abstract mathematical values (structures or functions,
but not bits of prog;ram!) with each program phrase . The value thus
associated with a phrase is called its denotation, and it is requ j red
that the denotations of phrases depend only on the denotations of
their sub-phrases. This enables properU.es of programs to be proved
by structural induction . Although there is no underlying abstract
machine, a Denotational Semantics makes explicit how the output of a
program depends on its input. Whereas Operational and AxiomaU.c
Semantics make do with standard Set Theory and Logic, Denotational
Semantics requires a theory permitting the unique solution of
recursive function definitions (f = "",f",) and value space definitions
(V :;: (V ~ V)). Such is provided by Scott's Theory of Domains;
so- called X- notation is used for specifying particular elements of
value spaces (domains) .

Consider a simple example: a Denotational Semantics for LOOP,
given in Table 1. The Abstract Syntax of the specification uses BNF
to define a domain of abstract programs on tree structures - they can
be imagtned as dertvation trees accordtng to the g;iven grammar, each
node being labelled by the productton used. The semant i c values
introduce domains that are used in deftntng denotattons of programs -
here note that both the input and output of programs are natural
numbers .In the domain N. (LOOP programs always terminate (normally),
and the richness of domain theory is not needed here at all). Then
the semantic functions are specified, mutually recursively and by
cases on the productions of the Abstract Syntax, giving the
denotation of each program phrase by so-called Semantic Equations.

A-Semantics

Over the last five years I have been developing a particular
form of Denotational Semantics called A-Semantics (for want of a
better name - the 'A' might stand for ' Abstract', 'Algebraic', etc.).
In fact A-Semantics is formally based on Initial Algebra Semantics,
an explicitly algebraic reformulation of Denotational Semantics,
where Abstract Syntax is given as an (algebraic) abstract data type
and the semantic function(s) for the language is(are) homomorphic.
However, with A-Semantics the semantic values (as well as the
Abstract Syntax) are given as abstract data types, instead of
domains. These abstract data types, called abstract semantic
algebras, differ from the well-known examples in the literature .In
that their values correspond to "acttons" (potential computations)
rather than data structures - their operators are combinators for
actions, e.g. sequential execution of two actions.

The spec ific aims of A-Semantics are: to facil iate the re-use of
parts (modules) of semantic descriptions; to give good modifiability
and extensibility; and to exhibit operational concepts (order of
execution, dataflow, etc.) in semantic descriptions. I consider
standard Denotational Semantics to have some shortcomings on these

191

points. The main reason for these shortcomings seems to be that a
standard Denotational Semantics is similar in structure to a COBOL (!)
program: first come some data definitions (the Semantic Values
domains), then funcU.on definitions (the Semantic Functions) which
depend on the precise structure of the data definitions.
Unfortunatelv it is often necessary to use different domains to model
different language constructs, which makes it difficult for different
specifications to share parts; moreover, extending a Denotational
Semantics to include new language constructs may require a change of
domains, entailing a tedious rewriting of the Semantic Equations as
well for example, this phenomenon occurs when adding
non-deterministic constructs to a deterministic language, or jumps to
a procedural language.

Finally, it is quite difficult to read -notation
"operationally" - a considerable famU iari.ty with the properties of
higher-order functions on Scott-domains is required. One might claim
it as a virtue of standard Denotational Semantics that it succeeds in
specifying input-output functions for programs without suggestin~ any
order of execution (e.g.) - but I consider that it is a matter of
language design to decide on an intended order of execution (perhaps
partial, i.e. non-deterministic), and that a semantic specification
should document such decisions, thus guiding both implementors and
programmers to the same operational understanding of the specified
language.

A-Semantics aims to achieve re-use of parts of semantic
specifications by the abstraction of abstract semantic algebras with
ooerators corresoonding to standard, language-independent concepts of
computation (i.e. operational concepts). Good modifiability and
extensibility is to come from each semantic equation referring only
to operators directlv expressing the concepts underlying the language
construct that it specifies (e.g. in specifving a semantic equation
for binary operators in arithmetic expressions, no explicit
assumption is to he made about the presence or absence of
side-effects, free variables, etc.). The formal specifications of the
abstract semantic algebras give algebraic laws reinforcing an
informal understanding of their operators (on ac t ions) correspond ing
to operational concepts (e.g. using an infix semicolon for sequential
execution, we have a;(a';a") = (a;a');a").

It would be inappropriate to attempt a proper explanation of an
example of A-Semantics here. Hopefully, the semantic equations in
Table 2, which are part of a full A-Semantics for LOOP, may give some
idea of the differences from standard Denotational Semantics. The
following informal explanation of the operators used in the example
i.s not intended to be complete. (Note that everything inside the
empha tic brackets [] is syntactic, and should not be confused with
the semantic operators outside.)

Let a 1 and a2 be actions - perhaps with side-effects, perhaps
consuming and/or producing sequences of values v. Then a1;a2 is the
compound action in which a 1 is executed (to completion) before a2 is

192

executed. If a 1 and a 2 produce sequences of values, these are
concatenated into a single sequence, and produced by the whole
ac t ion. (a 1 and a 2 may consume ident ical sequences of values in
a 1;a2 , but this is not needed for LOOP.) The action a 1!a2 also has ad
executed before a 2 , but here the values produced by a 1 are passe
directly to a2 for consumption, i.e. this is left-to-right functional
composition . The empty action () has no side-effects and produces no
values.

Let x be a name for a value. Then x 4 a is an action that
consumes a value, and this may be referred to by @ x occurring in a 1 .
In general @ v is an action (with no side-effects) producing the
value v.

The primitive action update consumes a variable and a value, and
has the side-effect of assigning the value to the variable. The
action contents consumes a variable and produces the last value
assigned to that variable.

The action while a 1 do a 2 , with a 1 producing a truth-value and
both a 1 and a2 consuming values produced by the previous iteration of
a 2 , is a sEandard operator. However, zero-vars, having the
(side-)effect of assigning 0 to "every" variable, is not available in
the standard abstract semantic algebras, and has to be specified in
an auxiliary abstract semantic algebra. (Because of the restricted
use of zero-vars in LOOP, the axiom

zero-vars ; (@ var ! contents) = zero-vars; @ 0

is sufficient to specify it.)

Please do not worry about the appropriateness of the concrete
symbols and notation used for the above operators, they are only
intended as a rudimentary vehicle for the underlying (operational)
concepts.

Teaching Denotational Semantics

Let us now consider the topic of our Seminar explicitly: The
Teaching of Computer Science. Perhaps a few words about my background
are appropriate here. I read Mathematics at Oxford, and then studied
for an M.Sc. and a D.Phil. at the late Profess?r Strachey's
Programming Research Group. My doctoral dissertation was on
"Mathematical Semantics and Compiler Generation", and treated the
theory and implementation of the Semantics Implementation System SIS,
which I have described earlier at this meeting. After a couple of
years as a post-doctoral Research Assistant at Oxford, I went to
Aarhus University, Denmark, where I have since been teaching courses
on formal semantics, concepts of programming languages and (recently)
algebraic methods for computer science. My research work has been
devoted to Denotational (and now A-) Semantics.

193

A t Aarhus, the students have already had at least 3 years of the
combined course on Mathematics and Computer Science (min. 5! years
duration) before they may choose to follow my one-semester (15 week)
course on Denotational Semantics. They spend about 10 hours per week
on this course, including 3 contact-hours.

I used to teach Denotational Semantics using Mike Gordon's book
"The Denotational Description of Programming Languages", supplemented
by some (unpublished) lecture notes on Scott Domain Theory by Chris
Wadsworth. I would start by considering higher-order functions and
A -notation, then cover Gordon's book with its extensive examples of
modell ing programming language constructs on functions. The course
would finish by treating Domain Theory (rather superficially), with
the students using SIS to implement a small subset of Pascal at the
same time. This course seemed to work fairly well as an introduction
to standard Denotational Semantics, although a more leisurely
two-semester course could certainly be more thorough.

Now, I prefer to teach Denotational Semantics via A-Semantics,
using my own (unpublished) lecture notes. The course, which has been
run tw ice, starts with an introduction to the algebraic specification
of abstract data types; the initial algebra approach is used, which
has the advantage that Initial Algebra Semantics can then be
explained without further preparation. Then various standard abstract
semant ic algebras are spec ified, and used in describing most of the
constructs covered by Gordon. The course concludes with an
introduction to A..-notation for higher-order functions, and a review
of the standard modelling techniques used in Denotational Semantics.
There is unfort una tely no room in this one-semester course for more
than a mention of Scott Domain Theory. Neither is it feasible to use
SIS in connection with A-Semantics: SIS cannot interpret the
specifications of abstract semantic algebras directly.

1Q4

Table 1 : Standard Denotational Semantics for LOOP

Abstract Syntax (Domains)

Prog ::= react var;cmd; write exp

cmd ::= cmd1; cmd2 I var:= exp

to exp do cmd (cmd)

exp

var

: : = ° I var I succ exp

standard

Semantic Values (Domains)

s e S = var --+ N -- states

n e N - - standard natural numbers

Semantic Functions

p : Prog --+ (!! !!)

P [read var; cmd; write exp](n) =

i' [exp](g[cmd J1((Avar! 0) [n/varJ))

e: cmd --+ (.§. --+ S)

C"/ [Cmd1; cmd2](S) =e[cmd2](e[cmd1](S))

e [var:=exp](S) = S [~[exp](S) I var1

e [to exp do cmd DeS) = (8 [cmd D)

C [(and) D(S) = e[cmd](S)

e: Exp --+ i..§. --+ !!l

i(01(S) = °
~[var D(S) = S (var)

~ [SUCC exp](S) = ~[exp 1(S) + 1

g[exp DeS)

(S)

195

Table 2 : A-Semantics or LOOP

Abstract Syntax (Initial Algebra) - - as in Table 1

Semantic Values (Abstract Semantic Algebras)

references to standard modules defining the sort A of

actions, and the required operators.

Semantic Functions

~ : Prog -+ !

1? [read var; cmd; wr i te exp] =

n -+ (zero-vars; (@ var; @ n)

e: Cmd -+ !

e,[cmd1; cmd2~ = e[cmd1 J; e[cmd2D

C [var: =exp] = (@ var; g Ilexp])

C[to exp do cmd] =

update

€ [exp] ! (while!!. t-+ @ positive Q

update;

do n' (e[cmd1;@ pred Q')) ()

e [(cmd) J = e [cmd]

e: Exp -+ !

~[O] =@O

€ [yarD = @ var ! contents

~ [succ exp] = S[exp] ! Q @ n +

196

Literature

D.S. Scott:

"Data Types as Lattices",
SIAM Journal on Computing 5 (1976) 522-587

"Domains for Denotational Semantics",
in Proc. ICALP 82, Aarhus, July 1982, LNCS 140 (Springer),
pp. 577 -613.

R.D. Tennent:

"The Denotational Semantics of Programming Languages",
Comm. ACM 19 (1976) 437-453.

M.J.C. Gordon:

"The Denotational Description of Programming Languages",
(Springer, 1979).

ADJ (J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B.-Wright):

"Initial Algebra Semantics and Continuous Algebras",
Journal ACM 24 (1977) 68-95.

"An Initial Algebra Approach to the Specification, Correctness
and Implementation of Abstract Data Types",
in : R. Yeh (ed.), Current Trends in Programming Methodology IV
(Prentice-Hall, 1979).

P.D. Mosses:

"Abstract Semantic Algebras!", to appear in: Proc. IFIP TC2
Working Conf. on Formal Description of Programming Concepts II,
Garmisch-Partenkirchen, June 1982 (North-Holland).

197

DISCUSSION

Professor Nakajima asked the speaker how long the course he taught
was. Professor Mosses replied that it was given to students who had
alreadv had four years teaching in Computer Science, and that the
courses was fourteen to fifteen weeks long with ten hours per week,
of which three were content hours. The course was originally based on
Stay's book but subsequently on the text by Gordon, with
supplementary notes by Wadsworth.

Professor Burstall enquired why category theory was necessary in
the course. The speaker felt that if you were prepared to rely on the
existence of such things as the least fixed point then it wasn't
necessary, but if the students were not willing to accept this, then
one must introduce category theory.

198

