
ALGEBRAIC SPECIFICATION 
OF PROGRAMMING LANGUAGE SEMANTICS 

(Extended Abstract) 

Peter Mosses 

Rapporteur: Mr. R.C. Millichamp 

Abstract 

In this talk I shall first give a summary of my views on the 
aims and uses of formal specification of programming languages, and 
indicate the main approaches. Denotational semantics will be 
considered in particular, and some shortcomings of this approach will 
be suggested. A particular sort of algebraic semantics, called 
"A-Semantics", will be proposed as a means of alleviatJng these 
shortcomings, and a simple example will be given. Finally, experience 
with using A-Semantics in teaching Denotational Semantics will be 
reported. 

Formal Specirication of Programming Languages 

The following seem to be general aims, although various 
approaches weight them unequally and often have some spec ial aims. 

In giving a full specification of a programming language it is 
necessary to specify both its syntax (context-free, 
context-sensitive) and its so-called "semantics". This "semantics" 
associates with each program some convenient (for the users of the 
language) abstraction from reality, usually an abstract mathematical 
structure or function. (Unfortunately, it seems to be too late to 
prevent this metaphorical use of linguistic terminology with its 
anthropomorphic connotations). 

Formality of spec ification is essential if one is to be able to 
reason about programs and languages. The aim is to capture precisely 
the desired "semantics" of a language, thus 6btaining a firm 
criterion for when an implementation of the language is correct 
(w.r.t. the specification). 

A semantic specification of a programming language aims to 
communicate an understanding of the language to its readers, but also 
important is the understanding of the language that is gained by the 
authors of the specification. Clearly, conciseness of expression is a 
(subsi.diary) aim. 

Formal specifications of programming languages may be useful in 
the following situations. During language design they may document 
design decisions - they sometimes guide those decisions in that there 
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are differences in the comparative ease of specifying various 
language features. When a language design is complete, a formal 
specification may be used as a standard, giving the properties that 
must be provided by implementations - and may be relied upon by 
programmers. Moreover, a formal specification may be used as the 
starting point for the systematic (or even automatic) implementation 
of the specified language. For program verification, a formal 
specification of a programming language may be used directly, or else 
used to show the soundness of a program proof logic. As regards the 
teaching of Computer Science, apart from the study of formal 
semantics one might hope to use formal specifications in courses on 
"concepts of programming languages", but at present there are 
d iff icul ties with spec ifying language features i.ndependently of each 
other. (The work on "A-Semantics" described here attempts to 
circumvent these difficulties). 

Main Approaches 

We shall not consider the specification of the concrete 
syntax of programming languages here, but restrict our attention to 
semantics, associating abstract mathematical values with abstract 
programs which may be considered as "trees" conforming to some 
abstrac t syntax (descr ibed by a grammar). The following comments do 
not attempt to give a general survey of approaches to formal 
semantics, but may be of use in showing readers unfamiliar with 
formal semantics where Denotational Semantics (and A-Semantics) 
differ rad ically from other approaces. 

Operational Semantics is specified by defining an 
(abstract) interpreter that, when given a program and its input, goes 
through a sequence of states in computing the output. It can be 
convenient to translate abstract programs into (low-level) abstract 
code, rather than interpreting them directly. Al though the "meaning" 
of programs specified in this way may be identified with the 
input-output function (or relation) associated with programs in this 
way, these 1-0 functions can only be investigated by considering the 
operation of the abstract interpreter, which is somewhat 
unsatisfactory. The Vienna Definition Language (VDL) is a good 
example of the operatjonal approach. 

Axiomatic Semantics is speclfied by gJ.vlng a proof system 
whose formulae involve programs and assertions about program 
var iables. The axioms of the proof system involve primitive commands, 
and for each construct forming a compound command there is some 
inference rule allowing assertions about the compound to be inferred 
from assertions about its components. The "meaning" associated with a 
program by this means may be regarded as a function from an assertion 
about the input-output relation of a program to its theoremhood: 
provable, the negation provable, or neither. In any case this is, as 
with operational semantics, a rather indirect way of getting at the 
program's input-output relation. (It is well-suited to program 
verification, though). 
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Denotational Semantics is specjfied by glvlng a definition of a 
semantic function mapping programs to (mathematical) inout-output 
functions. The semantic function is g;enerally defined recursively, 
associating abstract mathematical values (structures or functions, 
but not bits of prog;ram!) with each program phrase . The value thus 
associated with a phrase is called its denotation, and it is requ j red 
that the denotations of phrases depend only on the denotations of 
their sub-phrases. This enables properU.es of programs to be proved 
by structural induction . Although there is no underlying abstract 
machine, a Denotational Semantics makes explicit how the output of a 
program depends on its input. Whereas Operational and AxiomaU.c 
Semantics make do with standard Set Theory and Logic, Denotational 
Semantics requires a theory permitting the unique solution of 
recursive function definitions (f = "",f",) and value space definitions 
(V :;: (V ~ V)). Such is provided by Scott's Theory of Domains; 
so- called X- notation is used for specifying particular elements of 
value spaces (domains) . 

Consider a simple example: a Denotational Semantics for LOOP, 
given in Table 1. The Abstract Syntax of the specification uses BNF 
to define a domain of abstract programs on tree structures - they can 
be imagtned as dertvation trees accordtng to the g;iven grammar, each 
node being labelled by the productton used. The semant i c values 
introduce domains that are used in deftntng denotattons of programs -
here note that both the input and output of programs are natural 
numbers .In the domain N. (LOOP programs always terminate (normally), 
and the richness of domain theory is not needed here at all). Then 
the semantic functions are specified, mutually recursively and by 
cases on the productions of the Abstract Syntax, giving the 
denotation of each program phrase by so-called Semantic Equations. 

A-Semantics 

Over the last five years I have been developing a particular 
form of Denotational Semantics called A-Semantics (for want of a 
better name - the 'A' might stand for ' Abstract', 'Algebraic', etc.). 
In fact A-Semantics is formally based on Initial Algebra Semantics, 
an explicitly algebraic reformulation of Denotational Semantics, 
where Abstract Syntax is given as an (algebraic) abstract data type 
and the semantic function(s) for the language is(are) homomorphic. 
However, with A-Semantics the semantic values (as well as the 
Abstract Syntax) are given as abstract data types, instead of 
domains. These abstract data types, called abstract semantic 
algebras, differ from the well-known examples in the literature .In 
that their values correspond to "acttons" (potential computations) 
rather than data structures - their operators are combinators for 
actions, e.g. sequential execution of two actions. 

The spec ific aims of A-Semantics are: to facil iate the re-use of 
parts (modules) of semantic descriptions; to give good modifiability 
and extensibility; and to exhibit operational concepts (order of 
execution, dataflow, etc.) in semantic descriptions. I consider 
standard Denotational Semantics to have some shortcomings on these 
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points. The main reason for these shortcomings seems to be that a 
standard Denotational Semantics is similar in structure to a COBOL ( ! ) 
program: first come some data definitions (the Semantic Values 
domains), then funcU.on definitions (the Semantic Functions) which 
depend on the precise structure of the data definitions. 
Unfortunatelv it is often necessary to use different domains to model 
different language constructs, which makes it difficult for different 
specifications to share parts; moreover, extending a Denotational 
Semantics to include new language constructs may require a change of 
domains, entailing a tedious rewriting of the Semantic Equations as 
well for example, this phenomenon occurs when adding 
non-deterministic constructs to a deterministic language, or jumps to 
a procedural language. 

Finally, it is quite difficult to read -notation 
"operationally" - a considerable famU iari.ty with the properties of 
higher-order functions on Scott-domains is required. One might claim 
it as a virtue of standard Denotational Semantics that it succeeds in 
specifying input-output functions for programs without suggestin~ any 
order of execution (e.g.) - but I consider that it is a matter of 
language design to decide on an intended order of execution (perhaps 
partial, i.e. non-deterministic), and that a semantic specification 
should document such decisions, thus guiding both implementors and 
programmers to the same operational understanding of the specified 
language. 

A-Semantics aims to achieve re-use of parts of semantic 
specifications by the abstraction of abstract semantic algebras with 
ooerators corresoonding to standard, language-independent concepts of 
computation (i.e. operational concepts). Good modifiability and 
extensibility is to come from each semantic equation referring only 
to operators directlv expressing the concepts underlying the language 
construct that it specifies (e.g. in specifving a semantic equation 
for binary operators in arithmetic expressions, no explicit 
assumption is to he made about the presence or absence of 
side-effects, free variables, etc.). The formal specifications of the 
abstract semantic algebras give algebraic laws reinforcing an 
informal understanding of their operators (on ac t ions) correspond ing 
to operational concepts (e.g. using an infix semicolon for sequential 
execution, we have a;(a';a") = (a;a');a"). 

It would be inappropriate to attempt a proper explanation of an 
example of A-Semantics here. Hopefully, the semantic equations in 
Table 2, which are part of a full A-Semantics for LOOP, may give some 
idea of the differences from standard Denotational Semantics. The 
following informal explanation of the operators used in the example 
i.s not intended to be complete. (Note that everything inside the 
empha tic brackets [] is syntactic, and should not be confused with 
the semantic operators outside.) 

Let a 1 and a2 be actions - perhaps with side-effects, perhaps 
consuming and/or producing sequences of values v. Then a1;a2 is the 
compound action in which a 1 is executed (to completion) before a2 is 
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executed. If a 1 and a 2 produce sequences of values, these are 
concatenated into a single sequence, and produced by the whole 
ac t ion. (a 1 and a 2 may consume ident ical sequences of values in 
a 1;a2 , but this is not needed for LOOP.) The action a 1!a2 also has ad 
executed before a 2 , but here the values produced by a 1 are passe 
directly to a2 for consumption, i.e. this is left-to-right functional 
composition . The empty action ( ) has no side-effects and produces no 
values. 

Let x be a name for a value. Then x 4 a is an action that 
consumes a value, and this may be referred to by @ x occurring in a 1 . 
In general @ v is an action (with no side-effects) producing the 
value v. 

The primitive action update consumes a variable and a value, and 
has the side-effect of assigning the value to the variable. The 
action contents consumes a variable and produces the last value 
assigned to that variable. 

The action while a 1 do a 2 , with a 1 producing a truth-value and 
both a 1 and a2 consuming values produced by the previous iteration of 
a 2 , is a sEandard operator. However, zero-vars, having the 
(side-)effect of assigning 0 to "every" variable, is not available in 
the standard abstract semantic algebras, and has to be specified in 
an auxiliary abstract semantic algebra. (Because of the restricted 
use of zero-vars in LOOP, the axiom 

zero-vars ; (@ var ! contents) = zero-vars; @ 0 

is sufficient to specify it.) 

Please do not worry about the appropriateness of the concrete 
symbols and notation used for the above operators, they are only 
intended as a rudimentary vehicle for the underlying (operational) 
concepts. 

Teaching Denotational Semantics 

Let us now consider the topic of our Seminar explicitly: The 
Teaching of Computer Science. Perhaps a few words about my background 
are appropriate here. I read Mathematics at Oxford, and then studied 
for an M.Sc. and a D.Phil. at the late Profess?r Strachey's 
Programming Research Group. My doctoral dissertation was on 
"Mathematical Semantics and Compiler Generation", and treated the 
theory and implementation of the Semantics Implementation System SIS, 
which I have described earlier at this meeting. After a couple of 
years as a post-doctoral Research Assistant at Oxford, I went to 
Aarhus University, Denmark, where I have since been teaching courses 
on formal semantics, concepts of programming languages and (recently) 
algebraic methods for computer science. My research work has been 
devoted to Denotational (and now A-) Semantics. 
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A t Aarhus, the students have already had at least 3 years of the 
combined course on Mathematics and Computer Science (min. 5! years 
duration) before they may choose to follow my one-semester (15 week) 
course on Denotational Semantics. They spend about 10 hours per week 
on this course, including 3 contact-hours. 

I used to teach Denotational Semantics using Mike Gordon's book 
"The Denotational Description of Programming Languages", supplemented 
by some (unpublished) lecture notes on Scott Domain Theory by Chris 
Wadsworth. I would start by considering higher-order functions and 
A -notation, then cover Gordon's book with its extensive examples of 
modell ing programming language constructs on functions. The course 
would finish by treating Domain Theory (rather superficially), with 
the students using SIS to implement a small subset of Pascal at the 
same time. This course seemed to work fairly well as an introduction 
to standard Denotational Semantics, although a more leisurely 
two-semester course could certainly be more thorough. 

Now, I prefer to teach Denotational Semantics via A-Semantics, 
using my own (unpublished) lecture notes. The course, which has been 
run tw ice, starts with an introduction to the algebraic specification 
of abstract data types; the initial algebra approach is used, which 
has the advantage that Initial Algebra Semantics can then be 
explained without further preparation. Then various standard abstract 
semant ic algebras are spec ified, and used in describing most of the 
constructs covered by Gordon. The course concludes with an 
introduction to A..-notation for higher-order functions, and a review 
of the standard modelling techniques used in Denotational Semantics. 
There is unfort una tely no room in this one-semester course for more 
than a mention of Scott Domain Theory. Neither is it feasible to use 
SIS in connection with A-Semantics: SIS cannot interpret the 
specifications of abstract semantic algebras directly. 
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Table 1 : Standard Denotational Semantics for LOOP 

Abstract Syntax (Domains) 

Prog ::= react var;cmd; write exp 

cmd ::= cmd1; cmd2 I var:= exp 

to exp do cmd (cmd) 

exp 

var 

: : = ° I var I succ exp 

standard 

Semantic Values (Domains) 

s e S = var --+ N -- states 

n e N - - standard natural numbers 

Semantic Functions 

p : Prog --+ (!! .... !!) 

P [read var; cmd; write exp](n) = 

i' [ exp ]( g[cmd J1( (Avar! 0) [n/varJ )) 

e: cmd --+ (.§. --+ S) 

C"/ [Cmd1; cmd2](S) =e[cmd2]( e[cmd1](S)) 

e [var:=exp](S) = S [~[exp](S) I var1 

e [to exp do cmd DeS) = (8 [cmd D) 

C [ (and) D(S) = e[cmd ](S) 

e: Exp --+ i..§. --+ !!l 

i(01(S) = ° 
~[ var D( S) = S ( var ) 

~ [SUCC exp ](S) = ~[exp 1(S) + 1 

g[exp DeS) 

(S) 
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Table 2 : A-Semantics or LOOP 

Abstract Syntax (Initial Algebra) - - as in Table 1 

Semantic Values (Abstract Semantic Algebras) 

references to standard modules defining the sort A of 

actions, and the required operators. 

Semantic Functions 

~ : Prog -+ ! 

1? [read var; cmd; wr i te exp] = 

n -+ ( zero-vars; (@ var; @ n) 

e: Cmd -+ ! 

e,[cmd1; cmd2~ = e[cmd1 J; e[cmd2D 

C [var: =exp] = (@ var; g Ilexp]) 

C[to exp do cmd ] = 

update 

€ [exp] ! (while!!. t-+ @ positive Q 

update; 

do n' ..... (e[cmd1;@ pred Q')) () 

e [(cmd) J = e [cmd ] 

e: Exp -+ ! 

~[O] =@O 

€ [yarD = @ var ! contents 

~ [succ exp] = S[exp] ! Q ..... @ n + 
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DISCUSSION 

Professor Nakajima asked the speaker how long the course he taught 
was. Professor Mosses replied that it was given to students who had 
alreadv had four years teaching in Computer Science, and that the 
courses was fourteen to fifteen weeks long with ten hours per week, 
of which three were content hours. The course was originally based on 
Stay's book but subsequently on the text by Gordon, with 
supplementary notes by Wadsworth. 

Professor Burstall enquired why category theory was necessary in 
the course. The speaker felt that if you were prepared to rely on the 
existence of such things as the least fixed point then it wasn't 
necessary, but if the students were not willing to accept this, then 
one must introduce category theory. 
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