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Abstract 

In this talk, I start by briefly outlining the main ways of 
specifying programs, and cons ider the au tom a tic implementation of 
these spec ifications. Denotational Semantics is introduced as a means 
of specifying compilers (or interpreters) of programming languages. A 
particular system, SIS, for implementing denotational specifj.cations 
is descr ibed, and its h is tory and uses are rev iewed. 

Formal Speci~ications of Programs 

Here the aim is only to distingu ish the rna in approaches to the 
specification of (non-concurrent) programs. 

Consider programs that, when executed, read some input and write 
some output - perhaps without terminating. A specification of such a 
program describes some relevant (to its users and implementors) 
details, such as .its input-output (I-O) relation, its termination 
domain, or, less commonly, its required modular structure, its 
efficiency, etc. Let us consider speci.fying a program's 1-0 relation. 

One way of specifying the 1-0 relation of a program is to state 
that it should be the same as that of some given program. Such a 
specification may be called operational: the 1-0 relatjon is given, 
ind irec tly, by operation of a machine implementing the given program. 
This machine might be an ideal, abstract machine. 

Another way of giving information about the 1-0 relation of a 
program is by means of pre- and post-conditions: when the input 
satisfies the precondition, the output must satisfy the postcondition 
(on termination, usually). This may be regarded as an axiomatic form 
of specification (assertional might be a better word): the conditions 
do not indicate how the output is determined by the input, (in fact 
there might not exist a program computing the specified 1-0 
relation!). 

Finally (in this brief sketch) one might use mathematical, 
functional notation to specify an 1-0 relation. Like an operational 
speCification, this shows how the output is to depend on the input, 
but the use of functional notation here gives a more direct 
specificat .ion of this, as there is no need to consider the operation 
of an implementing machine. 

177 



Automatic Implementation of Formal Specirications 

First, what are the uses of automatic implementations? I can see 
two main ones: checking specifications, both for internal . consistency 
(e.g. syntactic checks) and against the intentions of the specifier; 
and in providing an initial implementation of the specified program. 

Regarding the checking of specifications against intentions, the 
aim is merely to expose gross faults in the specification, rather 
than to convince anyone that the specification really dO,es express 
these intentions. 

In general, automatic implementations are many orders of 
magnitude less efficient than hand-programmed implementations 
(accounted in computer time rather than implementation time, 
anyway!). For some particular programs, though, such as parsers, 
automatic implementations of specifications may even have superior 
effjciency. 

There are two main sorts of automatic implementation: 
interpreters and compilers (with specifications now playing the part 
of programs). An interpreter takes both a specification of a program 
and its input, and produces the outP':lt ,whereas a compiler produces 
some code from a specification, and this code can later be run with 
different inputs to produce the corresponding outputs. 

Conventional compiling and interpreting techniques can be used 
to give automatic jmplementations of operational specifications. For 
a special form of axiomatic specification, the PROLOG system provides 
an interpretive implementation. We shall be looking more closely at 
SIS, wh ich is a system for implementing functional specifications, in 
particular Denotational Semantics. 

Denotational Semantics 

Rather than introducing Denotational Semantics as a means of 
specifytng programming languages, per se, let us regard it as a tool 
for specifying compilers (or interpreters) of programming languages. 

A concrete compiler takes source programs as input, and produces 
target code as output - this code itself is really an (operational) 
specification of the 1-0 relation of the source program. Abstracting 
the choice ofa particular target language, we get the notion of an 
abstract compHer whose output is any representation of the source 
program's 1-0 relation. Alternatively, we may consider an interpreter 
which, when given both the source program and the input, produces the 
output. 
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EXAMPLE : LOOP 

Abstract Syntax 

(Prog) prog ::= read var; cmd; write exp 

var := exp 

I to exp do cmd 

cmd ) 

(Exp) exp::= a 

var 

succ exp 

(Var) var standard 

Semantic Values 

n e N standard natural numbers 

Semantic Functions 

lP : Prog -. (N -+ N) 

e : Cmd -. (~-.~) 

e : Exp -. (~-.!!) 

1P [read var; cmd; write exp](n) =f.[exp](e[cmd](O.var'.O)[n/var])) 

e [cmd1; cmd2] (S) = e[.cmd2] (e[ cmd 1] (S)) 

e [ var := exp] (S) = S[ g[ exp] (S)/varJ 

e [to exp do cmd] (S) = (e[Cmd])@.[exp](S)(S) 

£[0] (S) = 0 

g [Var ] (s) = S ( var ) 

~[SuCC exp] (S) = ~[exp] (S) + 1 

Note: (S (n/var J)( var ) = {n, if var = var 
S(var ), otherwise 
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A denotational Semantics specification can be regarded as a 
functional specification of an abstract compiler*: no choice of 
target code is made, but a function from programs to their 1-0 
relations is specified. Moreover, it is required that the 
specification gives denotations not only to complete programs (their 
1-0 relations) but also to arbitrary phrases of programs, with the 
denotation of a compound phrase being composed from the denotations 
of that phrase's components. 

SIS, A Semantics Implementation System 

SIS provides automatic implementation of Denotational Semantics: 
given a Denotational specification, a program in the specified source 
language and the input to that program, SIS can produce the output of 
the program (it can produce finite approximations to the outputs of 
non-terminating programs). 

It is also possible to get SIS to produce intermediate results, 
giving it the characteristics of a Compiler-Compiler - given a 
Denota t ional spec ifica t ion, it produces (a representation of) the 
specified abstract compiler. In fact SIS enables the abstract 
compiler to be used as an interpreter, thus avoiding the production 
of (a representation of) a program's 1-0 relation - so SIS is also an 
Interpreter-Compiler! 

The basic tdea beh ind the operation of SIS is to represent all 
objects in ~-notation: syntactic objects are represented by 
A-expressions denoting trees, whereas the object that they specify 

are represented by A-expressions denoting functions. After 
convert ing a Denota tional spec ification into the (semantic) function 
it denotes (meta-compilation), SIS works entirely by making formal 
applications of A-expressions to each other. This trivially gives 
representations of the desired objects, but it is not until SIS 
simplifies these complex A-expressions to so-called normal form (no 
more simplification possible) that one can apprehend these objects 
directly. 

Incidentally, meta-compilation can be performed by applying a 
~-expression representing the semantic function for the (functional) 

spec if ica t ion language itself, to specification (tree)s. When this is 
done for the meta-circular specification of the specification 
language in itself, this should (and does) yield the same 
A-expression again, up to renamings anyway. 

Concerning the way that SIS simplifies A-expressions, the ( (3-) 
reduction of (Ax • .....,x.....,x,...,) (e) to "'e~e'" is accomplished by 
simulated substitution via closures, with "call-by-need" providing a 
safe and practically optimal strategy for choosing the order of 
reductions. To allow the compilation of programs with loops or 
recussion to terminate, SIS doesn't unwind appl ications of Curry's 
"Paradoxical Combinator" Y(.....,), unless the resul t could lead to a 
simplification. 

* ignoring the parsing aspect of compiling! 
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The Basic Idea of SIS 

Meta-comp ila t ion 

spec-tree spec-sem.fn. 
(,,J OJ 

Comp ila t ion: 

(sem.fn.)(prog-tree) ~ prog-I/O-fn 
( ,,J C>.J ( A. ) 

Execution : 

(I/O-fn) (input) =9 
cu ex.) 

Interpretation 

output 
(A. ) 

(sem.fn) (prog-tree) (input) =9 
(A.) (A.) (/,,) 

Meta-compilation (A.) : 

(output) 
(A. ) 

(meta-sem.fn.)(spec-tree)~ 
(A.) (A.) 

(spec-sem.fn. 
(A.) 
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Uses of a Semantics Implementation System 

A SIS could be of use in connection with language design and 
standards, if formal semantic specifications are used to document 
design decisions and impose uniformity on implementations. In 
particular, a SIS could help check the internal consistency of a 
semantic description, as well as executing test programs. 

A SIS might also provide easy, portable and correct 
implementations of minor languages from their semantic descriptions -
although these would be painfully slow with the present 
state-of-the- art. 

Finally, a SIS can provide the same sort of direct feedback for 
students learning about semantics specifications, that they get from 
compilers when learning about programming (languages) . 

The author's SIS itself might be considered good for its 
generality, the direct acceptance of ordinary Denotational 
descriptions and its (BCPL-based) portability. Unfortunately: it is 
terribly inefficient, even on medium-size examples; one has to worry 
about the concrete syntax of the source language; and the semantic 
notation used is not identical to that used in any book on 
Denotational Semantics. 
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AN EXAMPLE OF THE USE OF SIS 

.TYPE SEMFNS. TXT 

DSL "LOOP" 

OOMAINS ! Abstract Syntax: 

prog: Prog : ["READ" Var "." Cmd n_n "WRITE" Exp ] , , 

cmd: Cmd : [Cmd "." Cmd] , 
/ [Var "::" Exp] 
/ ["TO" Exp "DO" Cmd] 
/ ["(" Cmd ")"] 

exp: Exp : ["0"1 
/ (Var] 
/ ["SUCC" Exp] 

var: Var : Q 

OOMAINS Semantic Values: 

c: C : S ~ S 

s: S : Var -) N 

n: N 

q: Q 
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.TYPE PARSER. TXT 

GRAM "LOOP" 

SYNTAX 

Prog · . -.. -
cmd-list: : = 

I 

cmd 

exp 

· . -· . -
I 
I 

· .-· .-

"READ" var ";" cmd-list 

cmd-list ";" cmd 
cmd 

var ":=" exp 
"TO" exp "DO" cmd 
"(,, cmd-list "),, 

"0" 
I var 
I "SUCC" exp 

var · . -· . -

DOMAINS 

LEXIS 

prog: 
cmd,cmd-list: 
exp: 
var: 

prop; · .-
wOY'd · . -· . -

I 

var ---

"VAR" q 

Prog ; 
Cmd 
Exp 
Var 

word+ 

var 
layout 

"a" ... "z" 

n.n , 

cmd 

q 

"WRITE" exp 

CONC word+ 

<OUT "VAR", vat> 
<> 

layout --- " " ICC" e" I CC"L" I CC"T" 

END 
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DOMAINS ! Semantic Functions: 

mm:= Prog -) N 
, 

N -/ 

cc:= Cmd -) S -> s 

ee:= Exp -) S ~ N 

mm [ "READ" var n.n cmd n_n "WRITE" exp J (n) N , , DEF 

ee (exp) ( cc (cmd) ( (LAM var' .0) var <- n 

WITH cc (cmrl') (s) : S = 

CASE cmd' 

I [ cmd1 n.n , cmd2J -> 

I [ var ": =" exp J-} 

cc (cmd2) ( cc (cmd 1) (s ) 

s var (- (ee (exp) (s)) 

= 

I r'TO" exp "DO" cmd J -> repeat (ee (exp) (s» (cc (cmd» (s ) 

I r' (" cmd ")" ] -) cc (cmd) (s) 

ESAC 

WITH ee ( exp ') ( s ) N = 

CASE exp' 

I r'O" J - o 

I rvar J - s (var) 

I r'SUCC" exp J - (ee (exp) (s)) PLUS 1 

ESAC 

WITH re pea t ( n ) ( c ) (s) S = 

n EQ a ..;> s , 

re pea t (n MINUS 1) ( c) (c (s) 

IN mm 

END 
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• TYPE LOOP. LOG 
13:27:19 (RUN: 0 sec) 
13:27:19 (RUN: 1 sec) 
13:27:46 (RUN: 19 sec) 
13:28:4 (RUN: 32 sec) 
13:28:7 (RUN: 33 sec) 
13:28:7 (RUN: 34 sec) 
13:28:32 (RUN: 51 sec) 
13:28:32 (RUN: 52 sec) 
13:29:27 (RUN: 91 sec) 
13:30:18 (RUN: 124 sec) 
13:30:24 (RUN: 128 sec) 
13:30:25 (RUN: 129 sec) 
13:30:33 (RUN: 135 sec) 

.TYPE PROG.LOG 
13:33:53 (RUN: 0 sec) 
13:33:54 (RUN: 1 sec) 
13:34:3 (RUN: 6 sec) 
13:34:5 (RUN: 8 sec) 
13:34:6 (RUN: 9 sec) 
13:34:7 (RUN: 9 sec) 
13:34:30 (RUN: 22 sec) 
13:35:0 (RUN: 43 sec) 
13:35:2 (RUN: 43 sec) 
13 : 35:3 (RUN: 43 sec) 
13:35:4 (RUN: 44 sec) 
13:35:5 (RUN: 45 sec) 
13:37:30 (RUN: 156 sec) 
13:37:35 (RUN: 156 sec) 
13:37:35 (RUN: 157 sec) 
13:37:36 (RUN: 157 sec) 

.TYPE PROG.TXT 

READ X; 
Y : = 0; 
TO X DO 
( TO x DO y := SUCC y ); 
WRITE y 

.TYPE INPUT.TXT 

DSL "Input" 7 END 

• TYPE OUTPUT. 
LAMB "LOOP (PROG) (Input)" 

49 

END 

SIS Version 1.2 1982-9-1 
parse("PARSER", "GRAMPR", 0) 
PASS 1 finished 
PASS 2 finished 
•.• finished 
gram("PARSER", 0, 0) 
••• finished 
parse("SEMFNS", "DSLPR", 0) 
PASS 1 finished 
PASS 2 finished 
· .• finished 
dsl("SEMFNS") 
· •• finished 

SIS Version 1.2 1982-9-1 
parse("PROG", "PARSER", 0) 
PASS 1 finished 
PASS 2 finished 
• .• finished 
parse("INPUT" , "DSLPR", 0) 
PASS 1 finished 
PASS 2 finished 
• •• fin ished 
dsl("INPUT") 
· •• finished 
interpret ("PROG", "SEMFNS", "INPUT", 9999) 
(8654 cycles) 
• •• finished 
write(lamb, "PROG", "OUTPUT", 9999, 79) 
• .• fin tshed 
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DISCUSSION 

Professor Mosses was asked what the advantages of denotational 
semantics were over VDL. He explained that he thought Cliff Jones was 
better qualified to answer and passed the question to him. In reply 
Professor Jones explained that proofs in denotational semantics 
were easier because operational semantics often included features 
which got in the way of proofs and consequently made them more 
diffi.cul t. 
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