
SEMANTICS IMPLEMENTATION SYSTEMS

(Extended Abstract)

P. Mosses

Rapporteur: Mr. R.C. Millichamp

Abstract

In this talk, I start by briefly outlining the main ways of
specifying programs, and cons ider the au tom a tic implementation of
these spec ifications. Denotational Semantics is introduced as a means
of specifying compilers (or interpreters) of programming languages. A
particular system, SIS, for implementing denotational specifj.cations
is descr ibed, and its h is tory and uses are rev iewed.

Formal Speci~ications of Programs

Here the aim is only to distingu ish the rna in approaches to the
specification of (non-concurrent) programs.

Consider programs that, when executed, read some input and write
some output - perhaps without terminating. A specification of such a
program describes some relevant (to its users and implementors)
details, such as .its input-output (I-O) relation, its termination
domain, or, less commonly, its required modular structure, its
efficiency, etc. Let us consider speci.fying a program's 1-0 relation.

One way of specifying the 1-0 relation of a program is to state
that it should be the same as that of some given program. Such a
specification may be called operational: the 1-0 relatjon is given,
ind irec tly, by operation of a machine implementing the given program.
This machine might be an ideal, abstract machine.

Another way of giving information about the 1-0 relation of a
program is by means of pre- and post-conditions: when the input
satisfies the precondition, the output must satisfy the postcondition
(on termination, usually). This may be regarded as an axiomatic form
of specification (assertional might be a better word): the conditions
do not indicate how the output is determined by the input, (in fact
there might not exist a program computing the specified 1-0
relation!).

Finally (in this brief sketch) one might use mathematical,
functional notation to specify an 1-0 relation. Like an operational
speCification, this shows how the output is to depend on the input,
but the use of functional notation here gives a more direct
specificat .ion of this, as there is no need to consider the operation
of an implementing machine.

177

Automatic Implementation of Formal Specirications

First, what are the uses of automatic implementations? I can see
two main ones: checking specifications, both for internal . consistency
(e.g. syntactic checks) and against the intentions of the specifier;
and in providing an initial implementation of the specified program.

Regarding the checking of specifications against intentions, the
aim is merely to expose gross faults in the specification, rather
than to convince anyone that the specification really dO,es express
these intentions.

In general, automatic implementations are many orders of
magnitude less efficient than hand-programmed implementations
(accounted in computer time rather than implementation time,
anyway!). For some particular programs, though, such as parsers,
automatic implementations of specifications may even have superior
effjciency.

There are two main sorts of automatic implementation:
interpreters and compilers (with specifications now playing the part
of programs). An interpreter takes both a specification of a program
and its input, and produces the outP':lt ,whereas a compiler produces
some code from a specification, and this code can later be run with
different inputs to produce the corresponding outputs.

Conventional compiling and interpreting techniques can be used
to give automatic jmplementations of operational specifications. For
a special form of axiomatic specification, the PROLOG system provides
an interpretive implementation. We shall be looking more closely at
SIS, wh ich is a system for implementing functional specifications, in
particular Denotational Semantics.

Denotational Semantics

Rather than introducing Denotational Semantics as a means of
specifytng programming languages, per se, let us regard it as a tool
for specifying compilers (or interpreters) of programming languages.

A concrete compiler takes source programs as input, and produces
target code as output - this code itself is really an (operational)
specification of the 1-0 relation of the source program. Abstracting
the choice ofa particular target language, we get the notion of an
abstract compHer whose output is any representation of the source
program's 1-0 relation. Alternatively, we may consider an interpreter
which, when given both the source program and the input, produces the
output.

178

EXAMPLE : LOOP

Abstract Syntax

(Prog) prog ::= read var; cmd; write exp

var := exp

I to exp do cmd

cmd)

(Exp) exp::= a

var

succ exp

(Var) var standard

Semantic Values

n e N standard natural numbers

Semantic Functions

lP : Prog -. (N -+ N)

e : Cmd -. (~-.~)

e : Exp -. (~-.!!)

1P [read var; cmd; write exp](n) =f.[exp](e[cmd](O.var'.O)[n/var]))

e [cmd1; cmd2] (S) = e[.cmd2] (e[cmd 1] (S))

e [var := exp] (S) = S[g[exp] (S)/varJ

e [to exp do cmd] (S) = (e[Cmd])@.[exp](S)(S)

£[0] (S) = 0

g [Var] (s) = S (var)

~[SuCC exp] (S) = ~[exp] (S) + 1

Note: (S (n/var J)(var) = {n, if var = var
S(var), otherwise

179

A denotational Semantics specification can be regarded as a
functional specification of an abstract compiler*: no choice of
target code is made, but a function from programs to their 1-0
relations is specified. Moreover, it is required that the
specification gives denotations not only to complete programs (their
1-0 relations) but also to arbitrary phrases of programs, with the
denotation of a compound phrase being composed from the denotations
of that phrase's components.

SIS, A Semantics Implementation System

SIS provides automatic implementation of Denotational Semantics:
given a Denotational specification, a program in the specified source
language and the input to that program, SIS can produce the output of
the program (it can produce finite approximations to the outputs of
non-terminating programs).

It is also possible to get SIS to produce intermediate results,
giving it the characteristics of a Compiler-Compiler - given a
Denota t ional spec ifica t ion, it produces (a representation of) the
specified abstract compiler. In fact SIS enables the abstract
compiler to be used as an interpreter, thus avoiding the production
of (a representation of) a program's 1-0 relation - so SIS is also an
Interpreter-Compiler!

The basic tdea beh ind the operation of SIS is to represent all
objects in ~-notation: syntactic objects are represented by
A-expressions denoting trees, whereas the object that they specify

are represented by A-expressions denoting functions. After
convert ing a Denota tional spec ification into the (semantic) function
it denotes (meta-compilation), SIS works entirely by making formal
applications of A-expressions to each other. This trivially gives
representations of the desired objects, but it is not until SIS
simplifies these complex A-expressions to so-called normal form (no
more simplification possible) that one can apprehend these objects
directly.

Incidentally, meta-compilation can be performed by applying a
~-expression representing the semantic function for the (functional)

spec if ica t ion language itself, to specification (tree)s. When this is
done for the meta-circular specification of the specification
language in itself, this should (and does) yield the same
A-expression again, up to renamings anyway.

Concerning the way that SIS simplifies A-expressions, the ((3-)
reduction of (Ax •,x.....,x,...,) (e) to "'e~e'" is accomplished by
simulated substitution via closures, with "call-by-need" providing a
safe and practically optimal strategy for choosing the order of
reductions. To allow the compilation of programs with loops or
recussion to terminate, SIS doesn't unwind appl ications of Curry's
"Paradoxical Combinator" Y(.....,), unless the resul t could lead to a
simplification.

* ignoring the parsing aspect of compiling!

180

The Basic Idea of SIS

Meta-comp ila t ion

spec-tree spec-sem.fn.
(,,J OJ

Comp ila t ion:

(sem.fn.)(prog-tree) ~ prog-I/O-fn
(,,J C>.J (A.)

Execution :

(I/O-fn) (input) =9
cu ex.)

Interpretation

output
(A.)

(sem.fn) (prog-tree) (input) =9
(A.) (A.) (/,,)

Meta-compilation (A.) :

(output)
(A.)

(meta-sem.fn.)(spec-tree)~
(A.) (A.)

(spec-sem.fn.
(A.)

181

Uses of a Semantics Implementation System

A SIS could be of use in connection with language design and
standards, if formal semantic specifications are used to document
design decisions and impose uniformity on implementations. In
particular, a SIS could help check the internal consistency of a
semantic description, as well as executing test programs.

A SIS might also provide easy, portable and correct
implementations of minor languages from their semantic descriptions -
although these would be painfully slow with the present
state-of-the- art.

Finally, a SIS can provide the same sort of direct feedback for
students learning about semantics specifications, that they get from
compilers when learning about programming (languages) .

The author's SIS itself might be considered good for its
generality, the direct acceptance of ordinary Denotational
descriptions and its (BCPL-based) portability. Unfortunately: it is
terribly inefficient, even on medium-size examples; one has to worry
about the concrete syntax of the source language; and the semantic
notation used is not identical to that used in any book on
Denotational Semantics.

182

AN EXAMPLE OF THE USE OF SIS

.TYPE SEMFNS. TXT

DSL "LOOP"

OOMAINS ! Abstract Syntax:

prog: Prog : ["READ" Var "." Cmd n_n "WRITE" Exp] , ,

cmd: Cmd : [Cmd "." Cmd] ,
/ [Var "::" Exp]
/ ["TO" Exp "DO" Cmd]
/ ["(" Cmd ")"]

exp: Exp : ["0"1
/ (Var]
/ ["SUCC" Exp]

var: Var : Q

OOMAINS Semantic Values:

c: C : S ~ S

s: S : Var -) N

n: N

q: Q

183

.TYPE PARSER. TXT

GRAM "LOOP"

SYNTAX

Prog · . -.. -
cmd-list: : =

I

cmd

exp

· . -· . -
I
I

· .-· .-

"READ" var ";" cmd-list

cmd-list ";" cmd
cmd

var ":=" exp
"TO" exp "DO" cmd
"(,, cmd-list "),,

"0"
I var
I "SUCC" exp

var · . -· . -

DOMAINS

LEXIS

prog:
cmd,cmd-list:
exp:
var:

prop; · .-
wOY'd · . -· . -

I

var ---

"VAR" q

Prog ;
Cmd
Exp
Var

word+

var
layout

"a" ... "z"

n.n ,

cmd

q

"WRITE" exp

CONC word+

<OUT "VAR", vat>
<>

layout --- " " ICC" e" I CC"L" I CC"T"

END

184

DOMAINS ! Semantic Functions:

mm:= Prog -) N
,

N -/

cc:= Cmd -) S -> s

ee:= Exp -) S ~ N

mm ["READ" var n.n cmd n_n "WRITE" exp J (n) N , , DEF

ee (exp) (cc (cmd) ((LAM var' .0) var <- n

WITH cc (cmrl') (s) : S =

CASE cmd'

I [cmd1 n.n , cmd2J ->

I [var ": =" exp J-}

cc (cmd2) (cc (cmd 1) (s)

s var (- (ee (exp) (s))

=

I r'TO" exp "DO" cmd J -> repeat (ee (exp) (s» (cc (cmd» (s)

I r' (" cmd ")"] -) cc (cmd) (s)

ESAC

WITH ee (exp ') (s) N =

CASE exp'

I r'O" J - o

I rvar J - s (var)

I r'SUCC" exp J - (ee (exp) (s)) PLUS 1

ESAC

WITH re pea t (n) (c) (s) S =

n EQ a ..;> s ,

re pea t (n MINUS 1) (c) (c (s)

IN mm

END

185

• TYPE LOOP. LOG
13:27:19 (RUN: 0 sec)
13:27:19 (RUN: 1 sec)
13:27:46 (RUN: 19 sec)
13:28:4 (RUN: 32 sec)
13:28:7 (RUN: 33 sec)
13:28:7 (RUN: 34 sec)
13:28:32 (RUN: 51 sec)
13:28:32 (RUN: 52 sec)
13:29:27 (RUN: 91 sec)
13:30:18 (RUN: 124 sec)
13:30:24 (RUN: 128 sec)
13:30:25 (RUN: 129 sec)
13:30:33 (RUN: 135 sec)

.TYPE PROG.LOG
13:33:53 (RUN: 0 sec)
13:33:54 (RUN: 1 sec)
13:34:3 (RUN: 6 sec)
13:34:5 (RUN: 8 sec)
13:34:6 (RUN: 9 sec)
13:34:7 (RUN: 9 sec)
13:34:30 (RUN: 22 sec)
13:35:0 (RUN: 43 sec)
13:35:2 (RUN: 43 sec)
13 : 35:3 (RUN: 43 sec)
13:35:4 (RUN: 44 sec)
13:35:5 (RUN: 45 sec)
13:37:30 (RUN: 156 sec)
13:37:35 (RUN: 156 sec)
13:37:35 (RUN: 157 sec)
13:37:36 (RUN: 157 sec)

.TYPE PROG.TXT

READ X;
Y : = 0;
TO X DO
(TO x DO y := SUCC y);
WRITE y

.TYPE INPUT.TXT

DSL "Input" 7 END

• TYPE OUTPUT.
LAMB "LOOP (PROG) (Input)"

49

END

SIS Version 1.2 1982-9-1
parse("PARSER", "GRAMPR", 0)
PASS 1 finished
PASS 2 finished
•.• finished
gram("PARSER", 0, 0)
••• finished
parse("SEMFNS", "DSLPR", 0)
PASS 1 finished
PASS 2 finished
· .• finished
dsl("SEMFNS")
· •• finished

SIS Version 1.2 1982-9-1
parse("PROG", "PARSER", 0)
PASS 1 finished
PASS 2 finished
• .• finished
parse("INPUT" , "DSLPR", 0)
PASS 1 finished
PASS 2 finished
• •• fin ished
dsl("INPUT")
· •• finished
interpret ("PROG", "SEMFNS", "INPUT", 9999)
(8654 cycles)
• •• finished
write(lamb, "PROG", "OUTPUT", 9999, 79)
• .• fin tshed

186

LITERATURE

R.D. Tennent:
"The denotational semantics of programming languages", Comm. ACM
19 (1976) 437-453.

M.J.C . Gordon:
"The denotational description of programming languages",
(Springer, 1979).

P .D . Mosses:
"Compiler generation using denotational semantics", in Proc .
MFCS '76, Gdansk, LNCS (Springer).

"SIS- Semant ics Implementation System: Reference Manual and User
Guide",
DAIMI, MD-30, Computer Science Dept ., Aarhus Univ. (Au~ust,
1979) •

L. Paulson:
"A semantics-directed compiler generator", in
on Principles of Programming Lan~uages, 1982.

J . Bodwin et al. :

Proc . ACM C:onf.

"Experience with an experimental compiler generator based on
denotational semantics",
in : Proc. 2nd ACM SIGPLAN Symp. on Compiler Construction,
Boston, June, 1982.

187

DISCUSSION

Professor Mosses was asked what the advantages of denotational
semantics were over VDL. He explained that he thought Cliff Jones was
better qualified to answer and passed the question to him. In reply
Professor Jones explained that proofs in denotational semantics
were easier because operational semantics often included features
which got in the way of proofs and consequently made them more
diffi.cul t.

188

