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Abstract: 

Specification and construction of sequential programs, although 
not entirely mastered, have now entered a more mature phase 
characterised by the recognition of a small set of well defined 
program constructs (sequencing, alternation, loop, and so on) 
together with the corresponding proof rules, and also by the 
definition of well defined and powerful specification and 
construction methods (pre-post-conditions, abstract
ion/implementation, combination of specifications, abstract data 
types, algebraic specifications, and so on). 

The situation is certainly quite different for parallel 
processes. Although significant results have been obtained in recent 
years, there does not seem to exist a wide agreement about what the 
essential features of parallelism should be. (As an indication of 
this fact it is interesting to compare the var ious ways parallelism 
was handled in the four DOD coloured languages) Consequently one 
could hardly speak of well defined specification and construction 
methods, although some very spectacular results have been obtained 
here and there. 

This talk is concerned with such questions as - Does it make 
sense to think of specifying processes which are supposed to run for 
ever? If yes, to specify what? Does there exist a way of "connecting" 
specifications in the same way as we connect processes, etc.? 

The speaker will try to answer these kinds of questions and to 
study and illustrate a few examples. 
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SPECIFICATION AND CONSTRUCTION 

OF MACHINES 

1. - WHAT IS A PROGRAM ? 

In order to narrow the spectrum of possible answers to 
such a broad question, it might be advisable to choose a specific 
point of view. For instance, an interesting point of view might be 
that of the mathematician. In other words, by the question 

What is a Program, from a Mathematical Point of View ? 

we are not concerned by such activities as, say, the translation 
of programs from one Programming Language to the other or by the 
interpretation of programs by Machines ; rather, we are interested 
in those definitions of the program concept which are relevant to 
the main activity of the mathematician, that is, that of performing 
proofs. 

The link between our intuitive understanding of programs 
and a possible answer to the previous question is given by the well
known mathematical concept of homogeneous binary relation. More 
precisely, a program might be said to establish a relationship 
between the values of its variables before and after its execution. 
For instance, let, by convention, the mathematical variable x (Xl) 

denote the value of the programming variable x before (after) the 
execution of the program 

x := x + 1 

If this is the case, then these two values are obviously related 
to each other by the following condition 

Xl = X + 1 

It is traditional, 1n Mathematics, to write the form 

x R Xl 

for expressing that x and Xl are related by a certain relation R 
consequently we shall write 
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x (x := x + I) Xl 

for expressing that x and Xl are "related" by the program 

x := x + I 

Conversely, any homogeneous binary relation will be said to be 
a "program". This apparently innocent statement enlarges conside
rably the usual notion of program : in particular such "programs" 
are no longer necessarily associated with the concept of computation. 
As another consequence, all usual mathematical operations on homogeneous 
binary relations become "automatically" operations on programs. For 
instance, here is a list of some of these operations together with 
their denotations. 

Operation Name Denotation Notes 

Identity skip 

Composition PI ; P2 
( I) 

Guarding C -+ P (1),(2) 

Filtering P -+ C (1),(2) 

Alternation PI 0 P2 ( I) 

Conjunction PI & P2 ( I ) 

Simultaneity PI ' P2 
(3) 

Hiding begin y: S . Pend (4) , (5) -
Iterate pn ( I ) 

Closure P * ( I ) 

Notes (I) The letters P, PI and P2 denote .programs working with 
a single variable x 

(2) The letter C denotes a predicate of the single variable x 

(3) The letter PI denotes a program working with a variable x 
the letter P2 denotes a program working with a variable y 
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(4) The letter S denotes a set expression within which y 
is not free ; the "letter P denotes a .program working 
with both variables x and y 

These operations can be given a mathematical definition 
~n terms of the predicate 

x P x' 

as shown by the following diagram 

Predicate Definition Notes 

x skip x' x = x' 
"\ 

X (P I • P ) x' , 2 3z: S • «x PI x')[Z/X ' ] & (x P2 x')[z/x]) (1),(2) 

x (C + P) x' C & x P x' 

x (p + C) x' x P x' & C[x' /x] ( I ) 

x (P lOP 2) x' x PI x' v x P2 x' 

x (PI .& P2) x' x PI x' & x P2 x' 

(x,y)(P I , P2)(X ' ,y') x PI x' & Y P2 y' 

X begin y:T • P end x' -- 3y,y' :T • (x,y) P (X',y') 

x pn x' x R
n x' (3),(4) 

* x P 

Notes 

x' 3n:N • x pn x' 

(I) Postfixing a predicate with the form "[ expression/x]" 
corresponds to the substitution of "expression" for 
a11 free occurences of the letter "x" in the predicate 
in question 

(2) The values of the variable x are supposed to lie within 
a certain set S 
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(3) The letter R denotes the relation n{x,x':S I x p x'}n 

(4) The iterate Rn of an homogeneous binary relation R is 
a supposedly known concept. 

All these definitions might be generalized to programs working with 
several variables. 

The traditional assignment operator n: .. n leads to the 
following predicate 

x (x := expression) x' 

which ~s equivalent to 

x' .. expression 

such an assignment might be generalized by wr~t~ng any expression on 
the left hand side of the operator. Consequently, the predicate 

x (expression! :a expression2) x' 

~s equivalent to 

expressionl[x'/x] ~ expression2 

It might also be generalized by replacing the n=n sign in the assignment 
operator n:=n by any relational symbol. For instance, the predicate 

x (x :> x) x' 

is equivalent to 

x' > x 

Likewise, the predicate 

x (X:E set-expression) x' 
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is equivalent to 

X E: set-expression 

All these definitions might lead to the proof of very simple theorems. 
For instance, let PROG be the following program 

(x + 1)2 ::;; m -+ x := x + 1 

and let Q be the following predicate 
n 

x' = x + n & 
2 Vp:loon ° tx + p) ::;; m 

The following predicates are obviously true 

Now suppose 

Consequently 

x PROG
O 

x' <# QO 

x PROG
1 

x' # Q1 

n 
x PROG x' # Qn 

x PROGn
+

1 x' ~ 

yielding, after straightforward calculations 

x PROGn+1 x' ~ Q 
~ n+1 

As a consequence, we have, by induction, for all n 

and also 

(x PROGn x')[O/x] # (x' = n & 
2 

n ::;; m) 
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It is traditional to reason about programs by using 
various approaches. For instance, we might ask whether a program 
terminates, or whether a program is less-defined than another one, 
or whether a program transforms a certain predicate into another 
one. All such facts are denoted by using the following forms 

Termination 

Less-definedness 

Predicate Transformation 

~P 

PI [ P2 

{ell P {e2} 

As for previous forms, these forms might be given a mathematical 
definition in terms of the predicate 

x P Xl 

as follows 

~P 3x l
: S • x P Xl 

PI [ P2 
VXl: S • (x PI Xl =} x P2 

Xl) 

{ell P {e2} Cl =} ¥Xl:S • (x P Xl =} C
2
[ x I Ix]) 

A number of well known elementary theorems might be proved 
concerning these predicates. For instance, it is very simple to 
prove 

~ (C -+ P) -# (C & wp P) 

Consequently, we have 

~ PROG -# (x + I) 2 ~ m 
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Certain classical program constructs might be defined 
in terms of the above definitions. For instance, the loop of a 
program P, denoted after E.W. Dijkstra 

do P od 

~s defined as 

p* -+ -, ~ P 

Consequently, the predicate 

x (do P od) x' 

~s equivalent to 

3x: N • x pn x' & (-,wp p)[x'/x] 

For instance, the predicate 

x (do PROG od) x' 

is equivalent to 

3n: N • Q 
n 

yielding, for x = 0 

& 
2 m < (x' + 1) 

3n:N • x' = n & n2 ::; m < (x' + 1)2 

that ~s 

We have then just proved that the program 
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do (x + 1)2 ~ m ~ x:= x + 1 od 

results, when "started" with x = 0, in the integer square root 
of the parameter m. 

2. - WHAT IS A MACHINE? 

Over the past few years, it has become fashionable to 
distribute computer processing among several inter-connected 
machines. An interesting challenge, raised by the building of such 
structures, is the discovery of a "good" mathematical model that 
could help prove their properties in a systematic way. 

In order to do so, one of the first questions that comes 
to mind ~s obviously the following 

What ~s a Machine ? 

To such a very general question, an equally general answer can only 
be given; in fact, observing the run of a machine through its "visible" 
registers, and recording what happens and also when it happens, results 
in the production, after the machine has stoppe~f a complete record 
of its "visible" behavior: in other words, the machine has been a mere 
producer of its past. 

More precisely, we shall consider the history of events which 
occur on each visible register (henceforth called channel) of a running 
machine. Such histories will be represented by finite functions, the 
domains of which are subsets of the positive Natural Numbers. In fact, 
these numbers simply denote some measurements of the time (in some 
arbitrary unit) relative to the starting date of the machine. 

For instance, we might observe that the following history 
records the past of a machine with a single channel "in". 

~n = {1 ~ a , 3 ~ b , 4 ~ c , 7 ~ d} 

Hence, at time 1, "event a" has occured, then, later, at time 3, 
"event b" has occured, and so on. 

Another machine, called A, has "produced" the following 
pasts on its channels "in" and "out" 

~n = {1 ~ a 3 ~ b 4 ~ c 7 ~ d} 

out = {2 ~ a 5 ~ c 8 ' ,+ d " 9 ~ d} 



On these records, we can see that each event occuring on channel 
" out", at, say, time t, has already occured on channel "in" ; more 
precisely, this event was the last aneta occur, before t, on channel 
"in" • 

The following two histories are produced by a machine 
called B 

1.n = {I -+- a 3 -+- b 4 -+- C 7 -+- d} 

out = {2 -+- a 4 -+- b 8 -+- C 9 -+- d} 

On these records, we can observe that all events occuring on channel 
"in", later occur on channel "out" in the same time order. Also, 
machine B, unlike machine A, may "produce" two events at the same 
time on distinct channels. 

Our next example shows the following record for a machine 
called C 

in = {I -+- a 3 -+- b 4 -+- C 7 -+- d} 

out = {2 -+- a 6 -+- C 7 -+- b 9 -+- d} 

This machine looks like our previous machine B in that all 
events occuring on channel "in" later occur on channel "out" ; however, 
the time order is not preserved any more. 

Our final small example at this stage 1.S given by the 
machine D the channel histories of which are 

in = { 1 -+- a 3 -+- b 6 -+- C 8 -+- d} 

out = {2 -+- a 5 -+- b 7 -+- c 9 -+- d} 

As we can see, this machine 1.S a straightforward copying machine. 

3. - SPECIFYING MACHINES 

In the previous section, we have seen how the external 
behavior of a machine can be described, once this machine has stopped, 
by the histories of its channels. More generally, a machine can be 
specified by exhibiting some characteristic properties of its channel 
histories. In this section, we shall show how such specifications 
might be written. 
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In order to do this, we shall first define a number of element
ary functions on histories and then use these functions to formally 
specify the very simple examples described in the previous section. 

We need to define the set of all histories the events of which 
belong to a given set S. It is denoted 

hist(S) 

and 1S defined as 

{h:JNj-+t- S I finite(h)} 

We write 

for the empty history built on S, so that the set of non-empty 
histories 

hist I(S) 

1S defined as 

The two following functions define the domain and cardinality of an 
history 

dom hist(S) + 8'J(S) 

#: hi s t ( S ) + "N 

Two other functions transform an history into corresponding finite 
sequences of events and times, both ordered in ascending value of 
time 

trace hist(S) + seq(S) 

when hist(S) + seq(JN) 
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Finally, the two following functions give the "value" and the "index" 
of the last event that has occured since a given time 

value (hisq (S) x ~) ~ S 

index (hist(S) x~) - ~ 

For instance, on the following history h 

{2 + a , 3 + b , 4 + C , 7 + d} 

we have 

dom(h) = {Z , 3 , 4 , 7} 

hi = 4 

trace(h) = <a b c d> 

when (h) = <2 3 4 7> 

value (h, 5) = c 

index(h,5) = 3 

index(h,l) = 0 

Equipped with these tools, we caD write formal statements corresponding 
to our previous elementary example machines. For instance, our machine 
A might be specified by the three following predicates, the conjunction 
of which is named "MEMORYS" 

~n = < > S ==? out = < > S 

dom(in) n dom(out) = 0l\I 

Vt:dom(out) • out(t) = value(in,t) 

Likewise, the two following predicates the conjunction of which 
is named "BUFFERS", specify our machine B. 

trace (in) = trace(out) 

vi: 1 • ·out "# • when(in) (i) < when(out) (i) 
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The machine C can be characterized by the very existence of a one
to-one mapping f from "dom(in)" on to "dom(out)" such that, for all 
time t in "dom(in)", the following predicate is true 

in(t) = out(f(t» & t < f(t) 

For instance, for the following observation of C 

in = {I + a 3 + b 4 + C 7 + d} 

out = {2 + a 6 + C 7 + b. 9 + d} 

we have the following mapping f 

f = {I + 2 , 3 + 7 , 4 + 6 , 7 + 9} 

Consequently the predicate "BAGS
Il

, which characterizes C, ~s 

3f:dom(in)~dom(out) • Vt:dom(in) • (in(t)=out(f(t) & t < f(t» 

Finally, the machine D might be characterized as being a MEMORY 
and . at the same time a BUFFER; consequently its specification 
is given by the following predicate named "COPYERS" 

MEMORYS & BUFFERS 

Given a Machine M and a predicate P (with a free channel variable 
c) which represents a certain specification, we shall denote the 

. fact 

M ~. s a P 

by writing down the following form 

M 
c:S p 

Note : Such a form might be generalized ~n an obvious way to more 
channels. 

For instance, our example machines A, B, C and Dare 
respectively a MEMORY, a BUFFER, a BAG and a COPYER, that is 
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A in,out:S {MEMORY
S

} 

B in,out:S 
{BUFFERS} 

C 
in,out:S 

{BAGS} 

D 
in,out:S {COPYER

S
} 

Now, if a predicate Q follows from a predicate P and if a machine 
M "is a P", then it also "is a Q". This remark ('.an be formally 
written in the form of following proof rule 

M c:S {p} 

P l--- Q 

M 
c:S {Q} 

Note : For the moment such a proof rule ~s only stated 
not yet have the possibility of proving it rigorously. 

we do 

For instance, the above proof rule leads to the following 
obvious theorems 

B in,out:S 
{BAGS} 

D 
in,out:S {MEMORY

S
} 

D 
in,out:S 

{BUFFERS} 

stating that B, which is a BUFFER, is also a BAG and that D, which ~s 
a COPYER, is also a MEMORY and a BUFFER. 

4. CONNECTING MACHINES 

We have just seen how to assert that a machine M "is" 
a certain predicate P (i.e. follows the specification described by 
a certain predicate P). This fact is denoted 

M 
c:S {p} 
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We introduce now a form expressLng the connection of two machines MI 
and M2 through a common channel c. Such a connection denoted 

c:S 

results in a new machine, the visible channels of which are those 
of M) as well as those of M2 apart from the common channel c which 
is hldden. 

Now, suppose that a machine MI (supposedly working with 
channel c and channel d) "is a PI", that is 

c:S d:T 

Likewise, suppose that a machine ~2 (supposedly working with channel 
c and channel e) "is a P 2", that LS 

c:S e:U 

We would like to find a predicate P
3

, within which the letter c 1S not 
free, such that the new machine 

"be a p" th t . 3' a LS 

c:S 

c:S 

d:T e:U 

Intuitively, the new machine is "almost" a PI' likewise it is "almost" 
a P 2' consequently it is "almost" a PI & P 2. In the three cases we 
have written "almost" because the corresponding predicates still contain 
the letter c. Now, ifP3 , within which c is not free, follows from 
PI & P2 , that is, . if 

then, obviously, the new machine ,"is a P3". This informal reasonning 
can be formally stated in the form of the following proof rule 
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MI 
c:S d:T 

{p I} 

M2 
c:S e:U {P

2
} 

PI & P2 I- P
3 

(M I 
<;:S M2) d:T ; e:U {P

3
} 

Note : Again, this proof rule has not yet been formally proved. 

As a trivial example, we shall now connect two buffers and prove that 
the resulting machines is also a buffer. In the previous section, we 
introduced the following predicate. BUFFERS 

trace(in) = trace(out) 

vi: I· ·out:#· when (in) (i) < when(out) (i) 

Now, let BI (working with channels "in" and "c") andB2 (working with 
channels "c" and "out") be two buffers, that is 

in,c:S 

c,out:S 

{BUFFERS[c/outJ} 

{BUFFERS[c/inJ} 

As the following theorem 1S obvious 

BUFFERS[c/outJ & BUFFERS[c/inJ r BUFFERS 

then we have, as expected 

c:S in,out:S 

For instance, the following observation of BI and B2 is compatible 
with their connection through channel c 

1n = {I -+ a 3 -+ b 5 -+ c} 

c = {2 -+ a 4 -+ b 6 -+ d 

out = {3 -+ a 5 -+ b 7 -+ c} 

An interesting machine, that we shall call E, is one that 
merges or distributes non-deterministically one of its channels c into 
two others, c

l 
and c2 . It can be specified by the predicate MDS (for 
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Merger-Distributor)>> which is the conjunction of the two following 
predicates 

Note : This machine can be generalized in an obvious way so as to 
merge or distribute one-channel into more than two channels. 

Now, given two machines Ml and MZ with a common channel c, then the 
form 

~n an abbreviation for 

Note' "M [c Ic]" and "M [c Ic]" denote machines Ml and MZ with a • 1 1 2 Z 
corresponding renaming of channel c. 

Likewise the form 

~s an abbreviation for 
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c:S 

and the form 

c:S 
-----{p} 

~s an abbreviation for 

c:S 
-{p} 

Note : All these forms might be generalized to more machines and 
to more channels. 

The following obvious proof rule follows from these definitions 

MI 
c s 

{PI} 

M2 
c S {P2} 

L f- P 

Ml 

c:S {p} 

M2 
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where the predicate L, called the linkage condition. ~s 

& & & 

Using this proof rule, it is very easy to prove that the ·connection 
of two BAGs in this way, results in another BAG, that is 

C 
in, out S J } 

-----1.BAGS 

(~C 1 .) in, out S 
~n S ~ -----{BAG

S
} 

c.--l· 

Our last example at this stage, LS a channel switch which can be 
defined as follows 

c 

a 
----{ S 

b 

d 

for which one might easily prove 

a . u b cud 

dom(a) n dom(b) dom (c) n dom (d) 

~n other words there ~s no loss nor duplication of information . 

5. - CONSTRUCTING MACHINES 

So far, we have only considered machines from an external 
point of view; in this section, on the contrary, we shall study the 
inside of machines, that is develop primitives able to express their 
internal behaviors. 
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Curiously enough» the number of such primitives can be re
duced to the bare minimum; in fact» we only need to express the wri
ting on or the reading from a channel» the time atomicity of an action 
and» finally» the starting of a machine. The following diagram shows 
the denotation of these operations. 

Operation Denotation Notes 

Reat1ing readS c (1) 

Writing c ! := exp (2) 

Atomici ty < p > (3) 

Starting 0 (3) 

Notes 

(1) c denotes a history variable and S denote a set expression 
compatible with the carrier set of the history variable c. 

(2) c denotes a history variable and "exp" denote an element expres-' 
sion compatible with the carrier set of the history variable c. 

(3) P denotes a program. 

Before defining these primitives in terms of the program features 
defined in the first section» we shall enlarge our previous set of 
tools dealing with histories. We shall define three functions yiel
ding respectively the last time» the last event and the past of a 
given history. These functions are the following 

4- hist (5) -+ IN 

? histl (5) -+ S 

histl(5) -+ hist(S) 

For instance» on the following history h 

{I -+ a» 3 -+ b» 7 -+ c} 
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we have 

h+ = 7 

h? = c 

h = {I ~ a, 3 ~ bI 

and also, by convention 

We are now ready to define our primitives. We shall suppose that a 
variable t, denoting time, is localry available. 

Primitive Definition Notes 

~Sc c + <: t ~ c:~ {c u {t ~ x} jx:S} (1) 

cl' := exp c + < t ~ c:= c u {t ~ exp} 

<P> P , t :> t (2 ) 

[!] be~in t : :IN 1 • P end (3) --

Notes 

(I) c is not free 1n S. 

(2) The program P should not modify the program variable t. 

(3) The program P can only work with the program variable t, and 
with history variables. 

As a consequence we have the following theorems 

c (r ead S c) c' -# (c + < t 

c(cl := exp)c'#(c-r < t 

& 

& 

c'i = t 

c'+=-t 
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(c,t) «P» (c' ,t'){:}(c P c' & t'> t) 

c( 0 ) c' # 3t,t':::lH • (c,t) P (c' ,t') 

The G.onnection primitive already introduced and denoted 

c : S 

might now be formally def ined as follows 

begin c hist (S) • c < > 
S 

& end 

Note MI and M2 denotes programs working with history variables only. 

Suppose that machine MI works with channels c and d, and that machine 
M2 works with channels c and e, then it is very simple to prove 

{:} 3c, c ' : hist (S) • (c=< > 
S 

& (c,d)M 1 (e' ,d') & (c,e)M
2

(c',e 

It only remains for us to define the predicate 

M _c __ S {p} 

This can be done as follows 

c = < >S ==? Vc': hist(S) • (c M c'==}P[c'/c]) 

In other words, it ~s exactly 

{c < >} M {p} 
S 

From these definitions, it is very simple to prove the already stated 
proof rules concerning machine connections . 
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We are also ready to construct a memory, a buffer or a copyer. Let 
R, Wj. and W

2 
be the following programs 

< readS in > 

< out! := in?> 

out # < in#: < out! : = trace(in) (out# +1» 

Then it ~s very simple to prove 

) * in, ou t S { } WI I--~----- MEMORYS 
'------~.-.... 

(R o 

(R o do od ~n, out s 

(R WI) * t_i_n..=.,_o_u_t __ S_ {COPYER
S

} 

As a copying machine is also a BAG (since it ~s a BUFFER) then we 
can construct a BAG as follows 

* (R ; WI) 

~n 
S S 

out 

* (R ; WI) 

And finally our Merger/Distributor can be built from the program 

c 1 »S c
2 

which ~s 

<readS c 1 
. I := c 1?> , c 2 · 
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so that machine E is 

(c 1 » c 0 c 2 
» c)* 

S S 
0 

(c 0 * » c
1 

c » c 2) 
S S 

6. - AN EXAMPLE 

In this section, we 
sti1l verJY simple - example 
protocol described in (14). 

shall study a more elaborate - although 
it is a variant of the AB transmission 

Let us first consider a machine called SND (for sender) 
which works with three channels "in", "p", and "k" : 

Channel "in" conveys "messages" belonging to a certain 
set M 

. Channel "p" conveys "packets" each of which ~s made of 
of a serial number and a message 

. Channel "k" conveys "acknowledgments" under the form of 
serial numbers. 

Consequently we have 

inhist (M) 

p hist (IN x M) 

k hist (IN) 

Given a packet "(n,m)", we shall use two projection functions called 
"message" and "number" and such that 

message(n,m) = m 

number (n,m) n 

The machine SND may read channel "in" ,only when it rece1ves an acknow
ledgment, that i-s--

(SI) dom(in) c dom(k) 
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Moreover, this acknowledgment must be equal to the number of messages 
read so far on channel "in", that is 

(S2) lit dom(in) • k(t) index (in, t-l) 

The machine SND may send packets made of the last message read if 
any, together with the corresponding serial number, that is 

(S3) 

(S4) 

lit 

lit 

dom(p) • index(in, t) # 0 

dom(p) • pet) = (index(in,t), value(in,t» 

Moreover 5ND must send the last message read if any, that ~s 

(55) in + ~ p + 

Finally, the reception of an acknowledgment and the sending of a 
packet excludes each other, that is 

(56) dom(k) (l dom (p) = 

The following diagram summarizes our specification of 5ND 

(51) dom(in) c dom(k) 

(52) lit dom(in) • k(t) = index (in, t-l) 

(53) lit dom(p) . index(in,t) # 0 

(54) lit dom(p) • pet) = (index(in,t) , value (in, t» 

(85) in + ~ p+ 

(86) dom(k) (l dom(p) = ~ 

We then consider a second machine, called RCV, also working 
with three channels "out", "p" and "k", of the following type 
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out hist (M) 

p histON x M) 

k hist ON) 

The machine Rev may write on channel "out" only when it receives a 
packet, that is 

(RI) dom(out) c dom(p) 

However, ReV must do so exactly when the received packet conveys a 
number the value of which is equal to the number of messages already 
written ori channel "out" plus one, that is 

(R2) \it dom(p) • (number(p(t)) index(out,t-l)+l {:} t E dom(out)) 

Then the message written on "out" ~s that of the received packet, that 
~s 

(R3) \it dom(out) • out(t) = message(p(t) 

The machine Rev may send acknowledgments which are numbers equal to the 
number of messages-written on channel "out" (this number might then 
be 0), that is 

(R4) \it dom(k) • k(t) = index(out,t) 

Finally,the sending of an acknowledgment and the reception of a packet 
exclude each other, that is 

(R5) dom(k) n dom(p) = 

The following diagram summar~zes our specification of RCV. 
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(R 1) 

(R2) ¥t 

(R3) 

(R4) 

(R5) 

dom(out) c dom(p) 

dom(p) • (number(p(t» = index(out,t-l) + 1 ~ t E dom(out» 

¥t dom(out) out(t) = message(p(t» 

¥t dom(k) • k(t) = ind ex (ou t , t) 

dom(k) n dom(p) 

We shall connect then two machines thus forming a new machine called 
SR defined as follows 

SND k ::IN 
RCV 

We would like to prove that this machine 1S a COPYER. In fact, it 1S 

very simple to prove that SR is indeed a MEMORY ; the predicate 

1n = < > 
M 

out < > 
M 

follows from (S3) and (R1), then 

dom(in) n dom(out) = ~ 

follows from (S6), (S1) and (R1), and finally 

¥t dom(out) • out(t) value(in, t) 

follows from (R3) and (S4), consequently we have 

SR in, out : M 

We shall now prove that SR is a BUFFER. In fact, (R2) , (R3) and (S4) 
lead to 

(1) ¥t dom(out) • (index(out,t),out(t» = (index(in,t),value(in,t» 

yielding 
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(2) trace(out) c trace(in) 

However, from (S2) and (R4) , we obtain 

¥t dom (in) • index (in, t) index(out,t) + 1 

yielding 

(3) in# = index (out, in:l-) + 1 

therefore, after (1), we obtain 

(4) out# ~ in# ~ out# + 1 

Now, suppose 

(HI) in# = out# + 1 

From (Rl), we obtain 

(5) out + ~ p +. 

suppose moreover 

(H2) out+ < P + 

Consequently 

(6) index (out, p j - 1) = out # 

Therefore, after (S5), (S4) and (HI), we obtain 

number (p?) = in# = out # + 1 = index(out,p+-l) + 1 

consequently, after (R2) 
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p.j.. E dom(out) 

this contradicting (H2) , therefore, after (5) 

out... = p + 

and consequently, after (S4), (S5) and (R2) 

number (p?) = in# = out# 

thus contrading (HI), therefore after (4) 

in# = out# 

Consequently, after (2), we obtain 

trace(in) = trace(out) 

We already proved 

dom(in) n dom(out) ~ 

therefore, after (1) 

Vi 1.. out #: • when (in),(i) < when (out) (i) 

which leads, after (7), to 

SR _~n--,,=--o_u_t __ M {BUFFE~} 

It remains for us to construct both machines SND and RCV 
done respectively as follows 
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«~k (skip 0 k? in# -+ readMin)> 

0 

< :f < > -+ p! (in#, . ) * 1.n 
M 

:=: l.ll? » ; 

« 1.n :f < > -+ p! := (in# , in?» 0 1.n = <; > -+ skip) M M 

« read ~ 

o 

:IN x M 

(number(p?) 

o 
out# + 1 -+ out! := message (p?) 

number(p?) :f out# + 1 -+ skip» 

< k! * := out#: » 

It is not difficult to prove that these machines are built according 
to the previous specifications, and also that they are able to trans
mitt sequences (of message) of any length. For instance, suppose that 
"k", "in", "p" and "out" all are empty histories and that "k"', "in"', 

"p'" and "out'" are histories such that 

k' U {2i - I -+ 1. - I} 
i: 1. .n 

dom(in') = dom(k') 

p " = U {2 i -+ ( i , in (2 i-I) ) } 
i: l..n 

out' = U {2i 
i: l •• n 

in(2i-l)} 

then for ecLch natural number n we have obviously 

(in,k,p) SND (in',k',p') & (out,k,p) Rev (out',k',p') 



7. - DISTRIBUTING A PROGRAM 

As a final example we shall show how one might distribute 
a program among several machines. The following algorithm, attributed 
to E.W. Dijkstra, transforms two finite and disjoint sets of Natural 
Numbers 51 and S2 into two other sets SI' and S2' such that 

S' uS' 
1 2 

5 ' 1 
n 

max (5 1 ') 

5 ' 2 
= 

< 

In order to obtain this result one repeatealy exchanges the max~mum 
of 51 and the minimum of 52 until the desired condition is met. 

be 
Let the predicate C and the programs PI and P2 respectively 

< 

and let the program P and the predicate A respectively be 

C + (P 1 ' P 2) 

51 E F 1 (E) & & 

51 n S2 = ~ & = x 

Note: The form Fl ON) denotes the set of non empty and finite subsets 
of the set of Natural Numbers N. 

It is then very easy to prove the following theorems 

P 

do P od {A & 

We shall now distribute the program 

do P od 
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by "executing" both programs PI and P2 on separate communicating 
machines. However, before doing this, we shall define the two 
following functions f and g, the arguments of which are respective
ly a set (of numbers) and two sequences (of numbers) of the same size. 

f , g ~ON) x seq ON) x seq ON)) + J>(JN) 

We shall define these functions recursively as follows 

f (S < >IN ' < > ) 
IN 

S 

g(S < >~ < > = S 
IN 

f (S, sl~ x, s{' y) = f «S - {x}) u {y} sl s2) 

g(S, s 11' x, S ~ y) = g«S u {x}) - {y} s 1 s2) 2 

Note : The operator ~ denotes the "pushing" of an element at the 
end of a sequence. 

Given two history variables M and m and two non empty finite sets 
of numbers SI and S2 

M , m hist <N) 

we define both sets S3 and S4 respectively as follows 

t(SI ' trace(M) , trace(m)) 

g(S2 ' trace(M) , trace(m)) 

Let P3 and P4 be the two following programs 

~m> 

<~M m! := min(S4 u {M?}» 

Both programs MI and M2 are now defined as follows 
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P3 do m? " M? -+ P
3 

od <51,! := 

P4* <u! := S4> 

The final machine M3 is 

BJ m , M :IN [3J 
and, of course, we would like to prove the following 

A 
.Q.,n :F

1 
eN) 

M3 -----

S3> 

max (.Q.?) < min(u?) 

Let Mt and mt be the histories M and m restricted to the internal 

t 

and let S3 and S4 be respectively 
t t 

f(S1 ' trace(Mt ) , trace(mt )) 

g(S2 ' trace(Mt ) , trace(mt )) 

and let ~inally C1 and C2 be respectively the conjunction of the 
following predicates 

C1 dom(m) = dom(M) 

lit : dom(m) • 

(M ( t) = max (S 3 ) & 
t-1 

t = m+ ~m(t) = M(t)) 
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dom(m) dom(M) 

lit : dom(M) 

m ( t ) max (S 4 u {M ( t) } ) 
t-l 

u? 

It ~s then an easy matter to prove 

5J 
m , M: IN ; ,Q,:F1ON) 

{C
1

} 

5J 
m , M: 1N u: PION) 

{C
2

} 

If At denotes 

ACS 3 /SI 
t 

S4 /S2 J 
t 

one might also easily prove 

& 

yielding 

& 

that ~s 

A C1 
& C

2 ~ Ami-

However, as 

m? = M? 

and also 

m? = min(S4 u {M? }) 
m +-1 
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consequently, we have 

M? ~ min(S4 ) 
m 4- -1 

that ~s 

max(S3 ) 
m 4- -1 

~ min (S 4 ) 
m 4- -1 

however, as the following holds 

A 
m + -1 

we obtain 

max(S3 ) 
m 4- -1 

< min (S 4 ) 
m + -1 

Noticing that 

we obtain the final result 

max(~?) < min(u?) 

by applying the "connection" proof rule. 
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