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What used to be an accessible component in the MSI AND LSI 
periods is now embedded within a VLSI chip ann surrounded by hundreds 
of similar components which cannot any longer be physically accessed. 
This is making test pattern generation one of the most challenging 
problems of the VLSI era. 

The present methods and techniques used for test pattern 
generation will be recalled. Emphasis will be given to their 
respective strengths and limits when used for VLSI chips. Although it 
will be addressed, showing the need for novel approaches to cope with 
the VLSI ~hallenge. 

Under the new concept of design for testability, techniques such 
as scan path and signature testing will be developed as representing 
the present trends in the industry. 

Introduction 

An integral part of designing a network is the ability to test 
it such that the faulty ones can be detected and eliminated. Prior to 
LSI, elementary circuits or gates could be tested separately using 
simple methods at the lowest level of packaging while more elaborated 
methods were devised for large clusters of gates at higher levels of 
packaging . While the LSI era has forced some refinements into the 
methods used for cards and boards for the generation of test 
patterns, no major theoretical breakthroughs have occurred in the 
last decade. 

We are now moving from LSI to VLSI and the problem of test 
pattern generation, not fully resolved for LSI, is becoming even more 
crucial. It is imperative today that the designer be aware of the 
concepts, the capabilities and limits, the cost of fault detection, 
and also of the new techniques under development, in order to produce 
designs testable in a cost effective way. 

In the first part of this paper we will review the techniques 
developed and used in the industry for LSI circuits. Emphasis will be 
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plrtced on their present limits and weaknesses. Cost figures will also 
be ~iven as a function of circuit count. 

The second part will address novel approaches and techniques, 
already in use or under development to cope with the VLSI Testing 
challenge. These techniques such as Level Sensitive Scan Design, Scan 
Path, Signature analysis, which imply the need to consider 
testability at the early stages of a design, are part of the general 
concept of "Desi~n for 1'estrtbil i ty". 

Faults, Defects and Test 

We will start by making a distinction between two terms that may 
appear equivalent: fault and defect. 

A fault in a network will yield an incorrect result for a given 
input oattern. A defect on the other hand mayor may not cause a 
fault. On an integrated circuit, this could be an open diode, shorted 
nets, a high value resistor, an underetched contact, etc. 

A test for a defect is 3. set of conditions that would cause the 
defect to revertl itself as a fault if it were present. Stimulus and 
resoonse are the two constitutive elements of a test. In the case of 
logic networks, the stimulus is a sequence of binary values to be 
rtpplied to the input pins. The response is the set of binary values 
that appear at the output pins. 

Test generation is the process of developing these stimulus -
response pairs. 

Exhaustive Testing 

In the pre-LSI days, we tested the parts for all possible 
combinations. Tooay, Ssr a 50-input

1s
ombinational network, the number 

of tests would be 2 or about 10 • Even if a test could be applied 
every 10 ns, it would take 4 months to execute. 

A solution to the exhaustive testing problem is to treat the 
logic network the way we treat assemblies. That is, test that each 
logic gate is good, that they are inter-connected correctly, and then 
by implication, the total network is good. 

Fault-Model 

The high number of potential defects per gate (about 30 in 
present technologies) necessitates to represent them by a model. The 
model most commonly used throughout the industry to represent defects 
is the Stuck-At model. The Stuck-At model assumes that a logic gate 
input or output is fixed to either a logic zero or a logic one. 

130 



Let us consider a single 3-input AND gate. Figure 1 shows a list 
of tests which detect all possible stuck faults for this gate. 

A 

B 0-- AND z 

C 

EXPECTED FAULTY 
INPUTS RESPONSE RESPONSE FAULTS DETECTED 

ABC Z Z - -- -
0 0 A - sa 1, Z - sa1 
1 0 1 0 B - sa 1, Z - sa1 
1 1 0 0 C - sa 1, Z - sa1 

0 Z - saO, (A,B,C)-saO 

sa = Stuck-At 

Figure 1 

Let us now consider, as an example, a chip consisting of 2000 
AND gates and having 50 inputs. Assuming we can somehow apply each of 
the 4 basic tests to each of the gates and observe the output of each 
gate, the number of tests will be 2000 x 4 = 8000, a very important 
reduction with regard to the 10 15 required for exhaustive testing. 
However, the Stuck-At model does not acurately represent all possible \1 
defects which may cause faults. For example, the model does not , 
include shorts between nets. But, historically a test with a high 
level of Stuck-At fault coverage has resulted in acceptable defect 
levels being shipped. 

Nevertheless new circuit types (e.g. three states) and new 
technologies may be sensitive to other types of defects which cannot 
be modelled as stuck faults [1J. It has been recommended (Fault 
Tolerant VLSI Design Workshop, April 1980) that more research work be 
devoted to the area of fault modelling. 
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Another app~rent weakness of the Stuck-At model is the following: when 
generating tests for a faulty network, the faulty network consists of the good 
network with only one Stuck-At fault present. This assumption is imposed since 
it is ahsolutely impractical to generate tests for networks having all the 
possible combinations of multiple faults. Here again history has proved that 
the single Stuck-At f~ult assumption in prior technologies is adequate. But 
this does not me~n in any case that this adequacy would also apply for new 
circuit types and new technologies, and for these the implications of the 
single Stuc~-At fault ~ssumption ahould not be overlooked. 

Test Generation Systems 

Most test generation systems contain two sets of programs, test 
pattern generators and fault simulators. The test oattern generator 
~nalyzes a model of the network to produce a t~st set. The fault ~ 
simulator evaluates the test set to determine the fault coverage and 
list of undetected faults. Each of these will now be described. 

Test Generators 

Several methods to perform automatic test generation have been 
proposed. They can be classified in two categories : the synthetic 
methods and the analytic methods. ; 

Synthetic methods are based upon the checking of the 
state-tables of the networks and of the transitions from state to 
state. The most well known are the Hennie 2 and Poage 3 methods. 
These methods are well adapted to small networks but, in general, are 
heuristic in nature and are much harder to implement than the 
analytic methods. 

The most commonly used analytic methods are the path 
sensitizing, pseudo-random, D-algorithm, manual patterns, and methods 
directly derived from the above. Pseudo-random pattern generation is 
fast and economic but has severe limitations with high fan-in 
circuits. The path sensitizing method implies the use of algorithms 
and of heuristics. But it cannot detect faults which re~uire to 
sensitize several paths at a time. The D-algorithm [4J may be 
considered to be a formalized version of the path sensitizing method 
with the added intelligence necessary to sensitize multiple paths. 

In a test generation system, these methods are exercized 
concurrently for a given network to achieve a sufficient test 
coverage. 

In order to provide an appreciation for the limits and the 
capabilities of these methods and understand where further 
development is necessary, we will now describe the D-algorithm, on 
the example of figure 2. 
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The algorithm uses a 5-valued algebra as follows: 

0 Normal meaning 

Normal meaning 

X Unknown or don ' t care (0 or 1) 

D if no fault is present, 0 if the fault is 

D 0 if no fault is present, if the fault is 
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Let us assume we want to generate a test for a Stuck-At 1 fault 
(D) at the output of gate 2. The process consists of the following 
three steps: 

Step 1: 

Step 2: 

Step 3: 

apply the values at the inputs of gate 2 that will 
make the fault appear if it is present (A4 = 0, 
A5 = 1). 

drive the D or D forward from the gate under test 
towards a primary output, assigning sensitizing 
values along the way. In this case, we first go to 
gate 4. If the top input to gate 4 was a 1, the 
output would be a 1 independently of the test value 
on the bottom input. Therefore, the top input's 
sensitizing value must be 0. This causes the output 
of gate 4 to become D. We next trace to gate 5, and 
make -the top input a 1, its output then becomes a D. 

justify the internal net values by driving backward 
towards the inputs, assigning input values to the 
gates which will produce the desired value. For gate 
3, this implies that A1 or A2 or both be assigned a 
0. We arbitrarily choose to assign both. For gate 1, 
the remaining non assigned input must be assigned a 
1. 

The test is then A1 = 0, A2 = 0, A3 = 1, A4 = 0, A5 = 1. 

Unfortunately, the above algorithm is usually complicated by the 
fact that critical choices are frequently involved in tracing forward 
to a primary output, and in selecting gate input values during 
justification. When incorrect choices are made, the process must 
allow back-up and retry with other choices. The number of 
combinations to retry can be quite large, inducing large execution 
times. To minimize this problem, the algorithm implementations 
usually incorporate heuristics that bring global information to tHe 
major decision points. 

The handling of sequential networks is considerably more 
difficult. Globally it implies the transformation of the network into 
a combinatorial one by multiple replications (time-images) of the 
original network. 

Figure 3 shows a graph of the ability of today's automatic test 
generators to generate tests as a function of the number of gates for 
combinatorial and sequential networks. 
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The graph shows that as the size of a general sequential network 
gets in the range of 1000 to 2000 gates, the ability to generate 
tests dec~eases to unacceptable levels. If the network is 
combinatorial, however, the test generation algorithms are adequate 
for networks of 5000 gates and above. This fact is exploited in the 
next part of this paper, in which the sequential networks are 
basically reduced to combinatorial networks. 

Fault-Simulators 

Fault-simulators perform the main function of determining for a 
given set of test patterns what faults have been undetected and of 
computing the test coverage. 

Assuming a network with 5000 stuck faults, fault simulation is 
then the process of applying every given test pattern to the fault 
free network and to each of the 5000 copies of the good network 
containing one and only one of the Stuck-At faults. Parallel fault 
simulation uses the word size N of the computer to process N faulty 
networks at a time. 

Deductive fault simulation [5J which allows all the faults to be 
simulated in one pass is faster, but is much harder to implement and 
requires enormous memory capacity for large circuits. 
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But even with the implementation of these techniques, gate level 
fault simulation, although deterministic in nature, is still an 
expensive task as we will see now. 

Test Generation Cost 

The test generation problem, like other classes of DA problems, 
has been proven to be theoretically NP - complete [6J. This implies an 
exponential growth in test pattern generation costs (cost here is 
considered equivalent to computer run time) with increasing gate 
count G. Of course, t~e use of heuristics mentioned earlier allows us 
to achieve a slower than exponential growth rate, and analysis of 
practical results [7J with the state of the art test generation 
methods and gate counts under 100,000 show that for the comb~_na torial 
networks : 

(a) test pattern generation cost grows as G2, 

(b) parallel fault simulation cost grows as G3 , 

(c) deductive fault simulation cost grows as G2 , 

(d) test data volume grows as G. 

With this G2 -growth, the change in going from 1000 to 100,000 
gates will result in a 10,000 fold increase in test pattern 
generation and fault simulation cost. With cost of the order of 
minutes of CPU time for a 1000 gate structure, CPU time will reach 
the thousands of hours for the 100,000 gate structure! 

This clearly means that test generation for combinational logic 
circuits is not a solved problem. This fact has been understood for 
some time by the companies (mainly mainframe manufacturers) which 
have used automatic test-pattern generation at the card and board 
level before . And a lot of thought has already been devoted to 
overcome the difficulties : "design for testability" is the generic 
term which covers all the techniques elaborated as potential 
solutions to the testing of VLSI. 

Design for Testability 

Test points, degating, multiplexing, control lines, ••• etc., are 
techniques [8, 9, 10] developed for cards and boards to improve their 
testability and which are now being applied for VLSI. These 
techniques are often called "Unstructured" or "Ad-hoc" since their 
application to a design is specific to this design, and cannot be 
generalized and implemented as a test generation system. 
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These techniques are "after the fact", since they are generally 
implemented after the logic design has been done. Although they 
provide some help to improve the testability, and should not be 
neglected, they are not by themselves sufficient to solve the problem 
of testing VLSI and we will not elaborate more on them here. 

It is widely recognized today that testability has to be taken 
into account at the logic design phase and that rigorous design 
practices [8J are necessary to insure testability, both at the 
generation and manufacturing levels and to allow the development of 
test generation systems. 

These so-called "structured techniques" can be divided into 
three categories: scan path techniques, new concepts, and compound 
techniques. 

Scan Path Technigues 

In this category, we place the techniques that capitalize on the 
current test pattern generation methods which have been reviewed in 
the first part. They are built upon the concept that, with some 
additional c~rcuitry, all the memory elements of a network can be 
made directly accessible. Probably the best known and most widely 
practiced implementation is IBM LSSD (Level Sensitive Scan Design). 
It consists in tieing together all the memory elements, in order to 
create a shift register (Fig. 4). A control signal is provided to 
switch the memory elements from their normal mode of operation to the 
shift register mode. With a shift input and a shift output accessible 
at the circuit pins, the states of the memory elements can be set and 
read directly by shifting data in and out. 

Moreover, the possibility of implementing several shift register 
chains, which results in partitioning the combinatorial circuits into 
smaller independent clusters will lower the effects of the G2 curve 
in terms of cost. 
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Another example of a method to achieve direct accessibility of 
the memory elements, is called Random Access Scan [8, 11J. It 
consists of implementing all the memory elements in a RAM, and by 
adding X and Y decoders on-chip. With data-in and data-out signals 
accessible at the circuit pins, all the memory elements can be 
written and read individually. 

The net effect of these implementations is that the network can 
now be considered as combinational, the memory elements playing the 
role of extra virtual input and output pins. The "classical" 
techniques of test pattern generation and fault simulation can then 
be used again. 

Hew Concepts 

The second category includes techniques which do not capitalize 
on past developments, but approach testability with new principles . 
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The most appealing technique which has emerged for VLSI in the 
late 70's is the Built-in Test, also called Self-test. It consists in 
implementating hardware test pattern generators and test data 
checkers directly on the integrated .circuit. (Fig. 5). 

TEST 

PATTERN 

GENERATOR 

CIRCUIT 

UNDER 

TEST 

Figure 5 

TEST 

DATA 

CHECKER 

In order for this technique to be practical, the extra hardware 
required has to be kept within reasonable limits. 

For the test data checker, this can be achieved by the use of 
data compression techniques. An example implementation, called 
Signature Testing, uses linear feedback shift registers. From the 
theory of linear machines [12J, the linear shift register of figure 
6, where Z1 to Z8 are the outputs of the circuit under test, acts as 
a polynomial divider of the output sequence and will store the 
residue of this division, called the signature of the test. 

Figure 6 
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It can be shown that the probability that a faulty circuit is 
not detected can be as low as 2-m, where m is the length of the 
linear feedback shift register. This is of course dependent upon the 
choice of the polynomial divider (it has to be a primitive 
polynomial) and of the completeness of the input sequence. 

The on-chip generation of test sequence can be realized by using 
parts of the active logic (i.e . ROM's), but this is design dependent 
and does not lend itself to systematic implementation. Linear 
feedback shift registers can again be used here. With its parallel 
inputs tied to a given logic value, a linear feedback shift register 
can be made to develop a sequence of patterns of maximal length 
2m - 1, at the rate of the clock, with the adequate feedback lines. 

Besides the extra hardware required, the main drawbacks, today, 
of the huilt-in test described here are due: 

(a) to the considerable data compression which does not allow 
for any diagnostics and does not provide any fault coverage figure; 

(b) to the pseudo random test sequences which are known to have 
some weaknesses to detect faults for circuits with high fan-in. 

Compound Techniques 

The need to overcome the above drawbacks has led researchers to 
come up with an approach compounded of scan path and linear feedback 
shift registers. It is called BILBO: Built-in Logic Block 
Observation [8, 13J . 

Each register (Fig. 7) is composed of a string of latches with 
some extra logic for shift and feedback, and two extra inputs B1 and 
B2 to control the 4 modes of operation of this register: 

Figure 7 
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(i) B1, B2 = 1,1. Thi s is the system operation mode. All the 
latches take the data from the inputs Z, and after the 
clock, these data will appear on the output Q. 

(ii) 

(iii) 

(iv) 

B1, B2 = 0 , 0 . 
register. 

The register acts then as LSSD shift 

B1, B2 = 1 ,0. The register is then a linear feedback shift 
register which can be used as a signature register or as a 
test pattern generator by setting its inputs to a given 
logic value. 

The 4th mode (0,1) will reset all the latches. 

The major merit of this technique may very well be that it 
provides a bridge between techniques which have already been 
implemented into test generation systems and the new techniques. This 
bridge is likely to provide an easier and smoother implementation of 
these new techniques into automatic systems and broaden their usage 
much faster. 

Concluding Remarks 

The intent of this paper, besides a quick review of the 
evolution and the state of the art of test generation techniques, was 
to point out the areas where more research work is felt necessary, 
such as fault modelling, implementation of test generation 
algorithms, development of new techniques and integration of these 
into fully automated test generation systems. 

Also , aside of the research work, it is felt that students 
specializing in integrated circuits should be educated in test 
generation to a level at which they will appreciate the need to 
integrate the solution of testing problems at the logic design stage 
and be able to choose and implement the most appropriate technique. 
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