
Rapporteurs:

Abstract:

TEST PATTERN GENERATION
FOR VLSI : STATUS AND TRENDS

J. Rivierre

Mr. J.G. Givens
Mr. K. Heron

What used to be an accessible component in the MSI AND LSI
periods is now embedded within a VLSI chip ann surrounded by hundreds
of similar components which cannot any longer be physically accessed.
This is making test pattern generation one of the most challenging
problems of the VLSI era.

The present methods and techniques used for test pattern
generation will be recalled. Emphasis will be given to their
respective strengths and limits when used for VLSI chips. Although it
will be addressed, showing the need for novel approaches to cope with
the VLSI ~hallenge.

Under the new concept of design for testability, techniques such
as scan path and signature testing will be developed as representing
the present trends in the industry.

Introduction

An integral part of designing a network is the ability to test
it such that the faulty ones can be detected and eliminated. Prior to
LSI, elementary circuits or gates could be tested separately using
simple methods at the lowest level of packaging while more elaborated
methods were devised for large clusters of gates at higher levels of
packaging . While the LSI era has forced some refinements into the
methods used for cards and boards for the generation of test
patterns, no major theoretical breakthroughs have occurred in the
last decade.

We are now moving from LSI to VLSI and the problem of test
pattern generation, not fully resolved for LSI, is becoming even more
crucial. It is imperative today that the designer be aware of the
concepts, the capabilities and limits, the cost of fault detection,
and also of the new techniques under development, in order to produce
designs testable in a cost effective way.

In the first part of this paper we will review the techniques
developed and used in the industry for LSI circuits. Emphasis will be

129

plrtced on their present limits and weaknesses. Cost figures will also
be ~iven as a function of circuit count.

The second part will address novel approaches and techniques,
already in use or under development to cope with the VLSI Testing
challenge. These techniques such as Level Sensitive Scan Design, Scan
Path, Signature analysis, which imply the need to consider
testability at the early stages of a design, are part of the general
concept of "Desi~n for 1'estrtbil i ty".

Faults, Defects and Test

We will start by making a distinction between two terms that may
appear equivalent: fault and defect.

A fault in a network will yield an incorrect result for a given
input oattern. A defect on the other hand mayor may not cause a
fault. On an integrated circuit, this could be an open diode, shorted
nets, a high value resistor, an underetched contact, etc.

A test for a defect is 3. set of conditions that would cause the
defect to revertl itself as a fault if it were present. Stimulus and
resoonse are the two constitutive elements of a test. In the case of
logic networks, the stimulus is a sequence of binary values to be
rtpplied to the input pins. The response is the set of binary values
that appear at the output pins.

Test generation is the process of developing these stimulus -
response pairs.

Exhaustive Testing

In the pre-LSI days, we tested the parts for all possible
combinations. Tooay, Ssr a 50-input

1s
ombinational network, the number

of tests would be 2 or about 10 • Even if a test could be applied
every 10 ns, it would take 4 months to execute.

A solution to the exhaustive testing problem is to treat the
logic network the way we treat assemblies. That is, test that each
logic gate is good, that they are inter-connected correctly, and then
by implication, the total network is good.

Fault-Model

The high number of potential defects per gate (about 30 in
present technologies) necessitates to represent them by a model. The
model most commonly used throughout the industry to represent defects
is the Stuck-At model. The Stuck-At model assumes that a logic gate
input or output is fixed to either a logic zero or a logic one.

130

Let us consider a single 3-input AND gate. Figure 1 shows a list
of tests which detect all possible stuck faults for this gate.

A

B 0-- AND z

C

EXPECTED FAULTY
INPUTS RESPONSE RESPONSE FAULTS DETECTED

ABC Z Z - -- -
0 0 A - sa 1, Z - sa1
1 0 1 0 B - sa 1, Z - sa1
1 1 0 0 C - sa 1, Z - sa1

0 Z - saO, (A,B,C)-saO

sa = Stuck-At

Figure 1

Let us now consider, as an example, a chip consisting of 2000
AND gates and having 50 inputs. Assuming we can somehow apply each of
the 4 basic tests to each of the gates and observe the output of each
gate, the number of tests will be 2000 x 4 = 8000, a very important
reduction with regard to the 10 15 required for exhaustive testing.
However, the Stuck-At model does not acurately represent all possible \1
defects which may cause faults. For example, the model does not ,
include shorts between nets. But, historically a test with a high
level of Stuck-At fault coverage has resulted in acceptable defect
levels being shipped.

Nevertheless new circuit types (e.g. three states) and new
technologies may be sensitive to other types of defects which cannot
be modelled as stuck faults [1J. It has been recommended (Fault
Tolerant VLSI Design Workshop, April 1980) that more research work be
devoted to the area of fault modelling.

131

Another app~rent weakness of the Stuck-At model is the following: when
generating tests for a faulty network, the faulty network consists of the good
network with only one Stuck-At fault present. This assumption is imposed since
it is ahsolutely impractical to generate tests for networks having all the
possible combinations of multiple faults. Here again history has proved that
the single Stuck-At f~ult assumption in prior technologies is adequate. But
this does not me~n in any case that this adequacy would also apply for new
circuit types and new technologies, and for these the implications of the
single Stuc~-At fault ~ssumption ahould not be overlooked.

Test Generation Systems

Most test generation systems contain two sets of programs, test
pattern generators and fault simulators. The test oattern generator
~nalyzes a model of the network to produce a t~st set. The fault ~
simulator evaluates the test set to determine the fault coverage and
list of undetected faults. Each of these will now be described.

Test Generators

Several methods to perform automatic test generation have been
proposed. They can be classified in two categories : the synthetic
methods and the analytic methods. ;

Synthetic methods are based upon the checking of the
state-tables of the networks and of the transitions from state to
state. The most well known are the Hennie 2 and Poage 3 methods.
These methods are well adapted to small networks but, in general, are
heuristic in nature and are much harder to implement than the
analytic methods.

The most commonly used analytic methods are the path
sensitizing, pseudo-random, D-algorithm, manual patterns, and methods
directly derived from the above. Pseudo-random pattern generation is
fast and economic but has severe limitations with high fan-in
circuits. The path sensitizing method implies the use of algorithms
and of heuristics. But it cannot detect faults which re~uire to
sensitize several paths at a time. The D-algorithm [4J may be
considered to be a formalized version of the path sensitizing method
with the added intelligence necessary to sensitize multiple paths.

In a test generation system, these methods are exercized
concurrently for a given network to achieve a sufficient test
coverage.

In order to provide an appreciation for the limits and the
capabilities of these methods and understand where further
development is necessary, we will now describe the D-algorithm, on
the example of figure 2.

132

The algorithm uses a 5-valued algebra as follows:

0 Normal meaning

Normal meaning

X Unknown or don ' t care (0 or 1)

D if no fault is present, 0 if the fault is

D 0 if no fault is present, if the fault is

o
0-----

o
0 -

:
-- ----1 NAND

i
i
I

--- -- ----i
r-----"'.!- , iD _ NAND f---

I

31 51
~____ _J

,- -
0 r D NOR OR !J---- i--

0
41 O--r 1 I

I I

i I I

I Dj ~ AND
I
I

1 i

C 2
i

Figure 2 D- algori thm

133

present

present

(,\ Y

D o z

Let us assume we want to generate a test for a Stuck-At 1 fault
(D) at the output of gate 2. The process consists of the following
three steps:

Step 1:

Step 2:

Step 3:

apply the values at the inputs of gate 2 that will
make the fault appear if it is present (A4 = 0,
A5 = 1).

drive the D or D forward from the gate under test
towards a primary output, assigning sensitizing
values along the way. In this case, we first go to
gate 4. If the top input to gate 4 was a 1, the
output would be a 1 independently of the test value
on the bottom input. Therefore, the top input's
sensitizing value must be 0. This causes the output
of gate 4 to become D. We next trace to gate 5, and
make -the top input a 1, its output then becomes a D.

justify the internal net values by driving backward
towards the inputs, assigning input values to the
gates which will produce the desired value. For gate
3, this implies that A1 or A2 or both be assigned a
0. We arbitrarily choose to assign both. For gate 1,
the remaining non assigned input must be assigned a
1.

The test is then A1 = 0, A2 = 0, A3 = 1, A4 = 0, A5 = 1.

Unfortunately, the above algorithm is usually complicated by the
fact that critical choices are frequently involved in tracing forward
to a primary output, and in selecting gate input values during
justification. When incorrect choices are made, the process must
allow back-up and retry with other choices. The number of
combinations to retry can be quite large, inducing large execution
times. To minimize this problem, the algorithm implementations
usually incorporate heuristics that bring global information to tHe
major decision points.

The handling of sequential networks is considerably more
difficult. Globally it implies the transformation of the network into
a combinatorial one by multiple replications (time-images) of the
original network.

Figure 3 shows a graph of the ability of today's automatic test
generators to generate tests as a function of the number of gates for
combinatorial and sequential networks.

134

TEST

COVERAGE

100 %

80 %

r~-- -, -, Combinational

II -----~ ----- ne~ .
Sequential ~ ~

, ,
network ~

I
I
I

L ___ _
1000 2000

Figure 3

>

GATES

The graph shows that as the size of a general sequential network
gets in the range of 1000 to 2000 gates, the ability to generate
tests dec~eases to unacceptable levels. If the network is
combinatorial, however, the test generation algorithms are adequate
for networks of 5000 gates and above. This fact is exploited in the
next part of this paper, in which the sequential networks are
basically reduced to combinatorial networks.

Fault-Simulators

Fault-simulators perform the main function of determining for a
given set of test patterns what faults have been undetected and of
computing the test coverage.

Assuming a network with 5000 stuck faults, fault simulation is
then the process of applying every given test pattern to the fault
free network and to each of the 5000 copies of the good network
containing one and only one of the Stuck-At faults. Parallel fault
simulation uses the word size N of the computer to process N faulty
networks at a time.

Deductive fault simulation [5J which allows all the faults to be
simulated in one pass is faster, but is much harder to implement and
requires enormous memory capacity for large circuits.

135

But even with the implementation of these techniques, gate level
fault simulation, although deterministic in nature, is still an
expensive task as we will see now.

Test Generation Cost

The test generation problem, like other classes of DA problems,
has been proven to be theoretically NP - complete [6J. This implies an
exponential growth in test pattern generation costs (cost here is
considered equivalent to computer run time) with increasing gate
count G. Of course, t~e use of heuristics mentioned earlier allows us
to achieve a slower than exponential growth rate, and analysis of
practical results [7J with the state of the art test generation
methods and gate counts under 100,000 show that for the comb~_na torial
networks :

(a) test pattern generation cost grows as G2,

(b) parallel fault simulation cost grows as G3 ,

(c) deductive fault simulation cost grows as G2 ,

(d) test data volume grows as G.

With this G2 -growth, the change in going from 1000 to 100,000
gates will result in a 10,000 fold increase in test pattern
generation and fault simulation cost. With cost of the order of
minutes of CPU time for a 1000 gate structure, CPU time will reach
the thousands of hours for the 100,000 gate structure!

This clearly means that test generation for combinational logic
circuits is not a solved problem. This fact has been understood for
some time by the companies (mainly mainframe manufacturers) which
have used automatic test-pattern generation at the card and board
level before . And a lot of thought has already been devoted to
overcome the difficulties : "design for testability" is the generic
term which covers all the techniques elaborated as potential
solutions to the testing of VLSI.

Design for Testability

Test points, degating, multiplexing, control lines, ••• etc., are
techniques [8, 9, 10] developed for cards and boards to improve their
testability and which are now being applied for VLSI. These
techniques are often called "Unstructured" or "Ad-hoc" since their
application to a design is specific to this design, and cannot be
generalized and implemented as a test generation system.

136

These techniques are "after the fact", since they are generally
implemented after the logic design has been done. Although they
provide some help to improve the testability, and should not be
neglected, they are not by themselves sufficient to solve the problem
of testing VLSI and we will not elaborate more on them here.

It is widely recognized today that testability has to be taken
into account at the logic design phase and that rigorous design
practices [8J are necessary to insure testability, both at the
generation and manufacturing levels and to allow the development of
test generation systems.

These so-called "structured techniques" can be divided into
three categories: scan path techniques, new concepts, and compound
techniques.

Scan Path Technigues

In this category, we place the techniques that capitalize on the
current test pattern generation methods which have been reviewed in
the first part. They are built upon the concept that, with some
additional c~rcuitry, all the memory elements of a network can be
made directly accessible. Probably the best known and most widely
practiced implementation is IBM LSSD (Level Sensitive Scan Design).
It consists in tieing together all the memory elements, in order to
create a shift register (Fig. 4). A control signal is provided to
switch the memory elements from their normal mode of operation to the
shift register mode. With a shift input and a shift output accessible
at the circuit pins, the states of the memory elements can be set and
read directly by shifting data in and out.

Moreover, the possibility of implementing several shift register
chains, which results in partitioning the combinatorial circuits into
smaller independent clusters will lower the effects of the G2 curve
in terms of cost.

137

COMBINATIONAL

CIRCUITS

OUTPUTS
SHIFr
ENABLE

1
SHIFr- IN

1
SHIFT

RffiISTER

(MEMORY
ELEMENTS)

SHIFT-OUT

Figure 4

Another example of a method to achieve direct accessibility of
the memory elements, is called Random Access Scan [8, 11J. It
consists of implementing all the memory elements in a RAM, and by
adding X and Y decoders on-chip. With data-in and data-out signals
accessible at the circuit pins, all the memory elements can be
written and read individually.

The net effect of these implementations is that the network can
now be considered as combinational, the memory elements playing the
role of extra virtual input and output pins. The "classical"
techniques of test pattern generation and fault simulation can then
be used again.

Hew Concepts

The second category includes techniques which do not capitalize
on past developments, but approach testability with new principles .

138

The most appealing technique which has emerged for VLSI in the
late 70's is the Built-in Test, also called Self-test. It consists in
implementating hardware test pattern generators and test data
checkers directly on the integrated .circuit. (Fig. 5).

TEST

PATTERN

GENERATOR

CIRCUIT

UNDER

TEST

Figure 5

TEST

DATA

CHECKER

In order for this technique to be practical, the extra hardware
required has to be kept within reasonable limits.

For the test data checker, this can be achieved by the use of
data compression techniques. An example implementation, called
Signature Testing, uses linear feedback shift registers. From the
theory of linear machines [12J, the linear shift register of figure
6, where Z1 to Z8 are the outputs of the circuit under test, acts as
a polynomial divider of the output sequence and will store the
residue of this division, called the signature of the test.

Figure 6

139

It can be shown that the probability that a faulty circuit is
not detected can be as low as 2-m, where m is the length of the
linear feedback shift register. This is of course dependent upon the
choice of the polynomial divider (it has to be a primitive
polynomial) and of the completeness of the input sequence.

The on-chip generation of test sequence can be realized by using
parts of the active logic (i.e . ROM's), but this is design dependent
and does not lend itself to systematic implementation. Linear
feedback shift registers can again be used here. With its parallel
inputs tied to a given logic value, a linear feedback shift register
can be made to develop a sequence of patterns of maximal length
2m - 1, at the rate of the clock, with the adequate feedback lines.

Besides the extra hardware required, the main drawbacks, today,
of the huilt-in test described here are due:

(a) to the considerable data compression which does not allow
for any diagnostics and does not provide any fault coverage figure;

(b) to the pseudo random test sequences which are known to have
some weaknesses to detect faults for circuits with high fan-in.

Compound Techniques

The need to overcome the above drawbacks has led researchers to
come up with an approach compounded of scan path and linear feedback
shift registers. It is called BILBO: Built-in Logic Block
Observation [8, 13J .

Each register (Fig. 7) is composed of a string of latches with
some extra logic for shift and feedback, and two extra inputs B1 and
B2 to control the 4 modes of operation of this register:

Figure 7

140

(i) B1, B2 = 1,1. Thi s is the system operation mode. All the
latches take the data from the inputs Z, and after the
clock, these data will appear on the output Q.

(ii)

(iii)

(iv)

B1, B2 = 0 , 0 .
register.

The register acts then as LSSD shift

B1, B2 = 1 ,0. The register is then a linear feedback shift
register which can be used as a signature register or as a
test pattern generator by setting its inputs to a given
logic value.

The 4th mode (0,1) will reset all the latches.

The major merit of this technique may very well be that it
provides a bridge between techniques which have already been
implemented into test generation systems and the new techniques. This
bridge is likely to provide an easier and smoother implementation of
these new techniques into automatic systems and broaden their usage
much faster.

Concluding Remarks

The intent of this paper, besides a quick review of the
evolution and the state of the art of test generation techniques, was
to point out the areas where more research work is felt necessary,
such as fault modelling, implementation of test generation
algorithms, development of new techniques and integration of these
into fully automated test generation systems.

Also , aside of the research work, it is felt that students
specializing in integrated circuits should be educated in test
generation to a level at which they will appreciate the need to
integrate the solution of testing problems at the logic design stage
and be able to choose and implement the most appropriate technique.

Acknowledgements

I woul d like to exp ress all gratitude to Thomas Williams, from
IBM Boulder, who made available to me the results of his thorough
study and analysis of test generation throughout the industry. The
results of his findings have been widely used in the writing of this
note.

141

References

[3J

[5J

[8J

[9J

[10]

[13J

Elzig, Y., "Automatic Generation for Stuck-open faults in
CMOS VLSI", 18th DA Conference - June 1981.

Hennie, F.C., "Finite State Models for Logical Machines",
J. Wiley & Sons, N.Y., 1968.

Poage, J.F. and E.J. McCluskey, "Derivation of Optimum tests
for Sequential Machines", Proc. Fifth Annual Symp. on
Switching Circuit Theory and Logic Design, 1964.

Roth, J.P., "Diagnosis of Automata Failures : A. Calculus
and a Method", IBM Journal of Research and Development,
No. 10, Oct. 1966.

Armstrong, D.B., "A Deductive Method for Simulating Faults
in Logic Circuits", IEEE TC, Vol. C-22, No.5, May 1972.

Donath, W.E., "Complexity Theory and Design Automation",
17th DA Conference, June 1980.

Goel, P., "Test generation cost analysis and projections",
17th DA Conference, June 1980.

Williams, T.W., "Survey of Design for Testability", IEEE
Transactions on CAD. To appear Jan. 1982.

Williams, T.W. and Parker, K.P., "Testing Logic Networks and
Design for Testability". Computer, Oct. 1979.

Grason, J. and Nogle, A., "Digital Test Generation and
Design for Testability", 17th DA Conference, June 1980.

Ando, H., "Testing VLSI with Random Access Scan", Digest of
Papers Compcon 1980, Feb. 1980.

Kohavi, Z., "Switching and Finite Automata Theory",
McGraw-Hill, 1970, pp. 489-540.

Konemann, B., Mucha, J. and Zwiehoff, G., "Built in Logic
Block Observation Techniques". IEEE Test Conference, Oct.
1979.

142

