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Abstracts: 

1. A Notation for Designing Restoring Logic Circuitry in CMOS 

A program notation will be introduced in which every 
syntactically correct program specifies a restoring logic component, 
i.e. a component whose outputs are permanently connected via 'not too 
many' transistors to the power supply. It is shown how the components 
thus specified can be translated into transistor diagrams for CMOS 
integrated circuits. As these components are designed as strict 
hierarchies, it is hoped that the translation of the transistor 
diagrams into layouts for integrated circuits can be accomplished 
mechanically, i.e. without interference from or consultation of the 
programmer. (In this lecture the dynamic behaviour of components, 
i.e. how they react to transitions on their outputs, will not be 
addressed) • 

2. Some Observations on Partially Ordered Computations 

In general, a partially ordered computation consists of a 
collection of sUbcomputations and relations between them. Some 
computations are not subdivided and are called atoms. A trace is a 
finite-length sequence of atoms. The role of sets of traces as a 
formalism for characterising partially ordered computations will be 
explored and a composition rule will be introduced, i.e. a method of 
constructing the set of traces characterising a computation from the 
sets of traces of the constituting subcomputations, together with a 
program in which every program corresponds to a partially ordered 
computation. 
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1 . INTRODUCTI ON 

As the under l yi ng silicon fabrication technology has become 
capable of p r oduci ng chips with transistor counts in excess of 
1 , 000,000 , problems associated with correct design are assuming ever 
greater i mportance . Exhaustive checking of mask artwork for errors 
becomes prohibitive . Te chnologies and design styles which obviate large 
classe s of potential e rrors are enormously preferable to those that do 
not . 

A modular , hierarchical design style can, with proper 
r estriction , confine many types of checks to one level of the hierarchy 
within each module . A set of such restrictions is given in this paper, 
together with a mechan ism for their enforcement. These restrictions 
capture a substan t ia l f r a ction of the design style given in [~]. 

As feature s izes are scaled below one micron, ratio logic 
processes like nMOS and r2L become progressively less attractive . 
Straight fo rward scaling to smaller sizes results in a linear increase in 
current per un i t chip area . Technological tricks such as high 
resisti vi ty polysili con pullup devices or very small injector current 
can be used t o decrease curren t drain, but the resulting devices become 
inc r easingly vulnerabl e to "soft error" problems from alpha particles, 
etc. Fully restored "static" logic using a complementary process is the 
natural choice for systems with submicron components. Present bulk CMOS 
processes have a number of very ugly analog rules associated with the 
4-layer nature of the process . As a result, the designer must be awa r e 
of details of the technology to an alarming degree. CMOS on an 
insulating substrate is, on the other hand, a conceptually clean 
process : it requires no analog rules · .... hatsoever if proper timing 
conventions are observed. There are recent signs tha t it may become 
reliably producible as well. 

We introduce a programming notation in which every syntactical ly 
correct program specifies a restoring logi c component , i . e., a component 
whose outputs are permanently connected , vi a "not too many " transistors , 
to the power supply. It is shown how the specified components can be 
translated into transistor diagrams for CMOS integrated circui ts . As 
these components are designed as strict hierarchies , it is hoped that 
the translation of the transis t or diagrams into layouts fo r integra ted 
circuits can be accomplished mechanically. 



In this paper we do not address the dynamic behavior of the 
logic components. The "proper timing conventions," alluded to above, are 
left for a subsequent paper. 

2 . SWITCHES IN CMOS 

The CMOS technology uses two types of transistors: the N-channel 
enhancement transistor (la) and the P-channel enhacement transistor (lb) • 

• 
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• 
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Fig. 

Both of them act as switches but they are "on" and "off" for complemen­
tary values on their gates. Denoting a high voltage by "1" and a low 
voltage by " 0", switch la is on if the gate is 1 and 1b is on if the 
gate is O. When the switches are on, however, they do not convey a 1 
and a a on their paths (in Fig. 1 the horizontal connections) equally 
well . Switch la conveys a 0 virtually perfectly, but it is not a 
perfect switch for a 1 . Switch 1b, conversely, is a good conveyor for a 
1 only. 

Using these CMOS transistors we want to make two types of 
switches, a "normally-off" switch (2a) and a "normally-on" switch (2b). 
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lte 
• e 2 e1 • y • e2 
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Fig . 2 

If the gate is a switch 2a is o f f (nonconveying) and 2b is on 
(conveying) . Ot herwise 2a i s on and 2b is off. The points el and e2 
are c alled the end points of the switch . We call the connection between 
the end poi n ts its path. If no t hing is known about the values conveyed 
through its path , except that they are a's and 1 IS, the realization of a 
s wi t ch requires two transistors : (the complement of g is denoted as g') 
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These double transistors make our switches good conveyors for 
both O's and l's, which allows the use of longer strings of switches. 
These strings of switches, however, should not be too long: the distance 
to the "power supply" must not be excessive, otherwise the signal will 
become inaccurate and the circuit slow. To do justice to the nature of 
restoring logic we disallow the driving of external outputs by long 
strings of switches. This shall be reflected in the composition rules 
to be formulated in Section 3. 

The gate inputs are run in two-rail logic to accommodate both 
the g and the g' signals. For switches that are known to convey always 
the same value there are two instances in which they can be realized by 
just one transistor: 

value 0 value 
• 

i and 

f 
are realized as 

• • • J....[ • li 
T 
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T 
Fig. 4 

In that case, the two-rail representation of the gate signal is not 
necessary. It is assumed that the compiler can recognize instances in 
which one transistor suffices. From now on we shall simply design in 
terms of switches and apply the above knowledge only if we wish to count 
the number of transistors a component requires. 
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3. RESTORING LOGIC COl1PONENTS 

A restoring logic component (RL) has external ports. The pur­
pose of an RL is to establish a relation between the values it communi­
cates via its external ports. We restrict ourselves to the values 0 and 1. 

We design components in a hierarchical fashion. A typical RL is 
shown in Fig. 5. 

Fig. 5 

It consists of subcomponents A, B, and C, which are also RL's, 
and a pattern of connections between them. We restrict the possible 
connection patterns to guarantee that the composite is again an RL. 
Such restrictions are only useful if they can be formulated in terms of 
the connection pattern, i.e., independent of the internal structures of 
the subcomponents thus connected. Before we can formulate these 
connection rules we have to give a few definitions. Each port is either 
an input port or an output port. The connection pattern of an RL 
specifies connections between its external ports and the external ports 
of the subRL's. We call the external ports of a subRL internal ports of 
the RL. An external output port of a subRL is an internal input port of 
the RL. Conversely every external input port of a subRL gives the RL an 
internal output port. The rules on connection patterns will be stated 
in terms of external and internal ports of the RL. 

We assume that the distribution of power and ground to all 
components is taken care of by the compiler. Johannsen [11 has outlined 
a method for the distribution of power and ground over hierarchically 
defined components. In our nomenclature: each RL has two constant 
internal input ports, denoted by 0 and 1. These constants are the power 
supply rails which must be present in every component. 

In Section 2 we have introduced the term path for the connection 
between the two end points of a switch. We now generalize that term. 
We say that there is a path between two ports p1 and p2 if either they 
are connected by a wire---ra-"wire path") or there is a switch such that 
there are paths between p1 and one end point of the switch and between 
p2 and the other end point. In the' latter case we say that the switch 
is on the path. A path is called a conveying path if all switches on 
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the path are on . The values on the input ports (external or internal) 
determine which switches are on and which are off, and hence between 
which ports there are conveying paths. (Whenever we do not specify 
whether a port is external or internal, that is done intentionally.) 

Two input ports are said to be fighting if there exists any 
assignment of values to all input ports such that there is a conveying 
path between the two input ports. 

We introduce three rules the connection pattern must satisfy: 

Ru le 1. [no fighting]: No two input ports are fighting. 
Ru le 2. [ restored external outputs]: Every external output port 

(a ) has a wire path to an internal port, or 
(b) has a conveying path to 0 or 1 for every assignment 

of values to all input ports. 
Rule 3. [nonfloati ng internal outputs]: For every internal 

output port p and for every assignment of values to all 
inpu t por ts ~~ere is a conveying path between p and an 
input port. 

Notice that Rule 1 includes 0 and 1 (the two constant internal input 
ports) . Remember that internal outputs are regarded as (external) inputs 
of the subcomponent and that the subcomponent's external outputs are 
internal inputs for the component. 

The justification of Rule 1 is obvious. The result of Rule 2 is 
that all external outputs are driven by power or ground. They may be 
driven via a number of switches, but such a string of switches is 
confined to one component, viz. the component in which the actual 
connection to 0 or 1 is made. 

The rules for internal outputs, i.e., outputs to subcomponents, 
are more liberal. We allow that inputs from subcomponents and inputs 
from the environment are directed through switches before they are 
output to subcomponents. For inputs from subcomponents this is 
reasonable: they are restored by the subcomponents. With inputs from 
the environment we have to be more careful. We have to allow that such 
a signal from an external input port goes through a switch to an 
internal output port. Otherwise we would be unable to make the flip-
flop to be shown in Example 3. But it does allow long strings of switches 
"going into" the hierarchy, as sketched in Fig. 6 . 

We do not consider this a serious drawback. One may expec t a sub­
component to have (physically) shorter connections than the component 
itself. Restoring in the "inward" direction, therefore, seems less 
vital than in the "outward" direction. Still, if we wish to bound the 
lengths of such inward strings of switches we could have the compiler 
insert amplifiers into them to restore their signals. 

The consequence of allowing the switches in the outputs to sub­
components is that Rule 2 has to be stronger than one might expect. In 
Rule 2 we could not allow wire paths between external input ports and 
external output ports. This may seem to disallow running through a 



Fig. 6. 

-c::::J- stands 
for a connection 
via one or more 
switches 

component wire whose signals are not used by the component. In fact, it 
does not. Such a wire is just not part of the component. (On the chip 
a wire between two components may run through the "area" of another 
component, but that is a matter of chip layout. It is a physical 
property, not a functional one.) Allowing wire paths between external 
input ports and external output ports would have given rise to the 
possibility of ill-restored outputs. Fig. 7 sketches an RL that is 
allowed by Rules 2 and 3. Now assume that each Siis just a wire path 
from its input to its output, which would be allowed if we weakened Rule 
2. The output of the RL is then not restored. Imagine now that each Si 
actually has the same structure as the whole RL~ It is clear that this 
would violate our goal of having restored external outputs. 

In one respect is Rule 3 stronger than necessary. It requires 
that all SUbcomponents receive well-defined inputs, even a subcomponent 
whose ouputs are not used. We could have restricted the rule to 
subcomponents whose outputs are actually used in the computation, but 
that would have made both the rule and the checking whether it is obeyed 
more complicated. 

Fig. 7 
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4. THE PROGRAMMING NOTATION 

In this section we introduce a programming notation in which 
connection patterns can be specified that satisfy the three rules of the 
preceding section. There are two properties a good notation should 
enjoy. First, it should be relatively simple for the compiler to check 
that a program is syntactically correct. If this mechanical check i& 
simple, it will probably be simple for programmers to convince 
themselves that their designs satisfy the rules. We shall show how the 
syntactic checking can be performed. Second, it should be possible to 
_give a formal definition of the semantics of our programs. We have not 
yet achieved the second goal, but ultimately we must be able to prove 
that a component performs a certain computation. That seems a much 
better technique than a demonstration of its effect with an a posteriori 
simulation. (Besides, how do we know that the simulation is correct if 
we do not have a rigorous definition of the meaning of our statements?) 
It will not be simple, but remember: a program of more than, say, 20 
lines is probably too long, we then have not chosen the right 
subcomponents. 

For-the formulation of connection patterns we introduce the term 
node. Every port is a node, but the program may introduce additional 
(interior) nodes. For each node n we shall introduce a connection 
condition C(n) and a connected-to-constant condition CC(n). We shall, 
furthermore, distinguish a directly driven set 0, which is a subset of 
the set of nodes. These concepts will be used in the syntax checking. 
A formal definition of how they depend on the connection pattern 
specified will be given later. Intuitively, C(n) will be the condition 
on the input values under which node n is connected to an input, and 
CC(n) will be the condition under which it is connected to a constant. 
The C(n)'s will be used to enforce the no-fighting rule. The set 0 will 
comprise all nodes that are connected by a wire path to an internal 
input port. 

The program consists of a sequence of statements. Each statement 
introduces a number of connections and switches between nodes, and 
thereby affects the C(n) and CC(n) of each node involved and the set D. 
Initially, i.e., prior to the first statement, 0 is the set of all 
internal input ports, C(n) is 1 for each input port and CC(n) is 1 for 
the two constant internal input ports. The C(n) and CC(n) are 0 for all 
other nodes. ("1" should be interpreted as "true" and "0" as "false.") 

The program is complete if finally we have: 

for every external output port p 
for every internal output port p 

P € 0 V CC(p) 
C (p) = 1 

(These completeness conditions correspond to Rules 2 and 3. The observ­
ing of Rule 1 is discussed below.) 

EXAMPLE 1 comp inverter (in?,out!): 
begin in' + out = 1; in + out = 0 end 
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The above is a simple example of an RL, it does not have 
subRL's. The first line specifies the name of the component and its 
external ports. A question mark or an exclamation point indicates that 
the port is an input port or an output port, respectively. In the 
connection pattern two switches are specified, textually separated by a 
semicolon. The first statement expresses that the output port out is 
connected to the constant input port 1. The condition in front of the 
arrow specifies under which circumstances the switch in the connection 
should be on. In this case a normally-on switch whose gate is connected 
to the input port in (or a normally-off switch with its gate connected 
to in') is specified. The second statement specifies the second switch. 

For the more pictorially inclined reader we observe the resem­
blance of the program and the following diagram. 

in---I out 

a 
Fig. 8 

Why is the program syntactically correct? In order to be able to show 

that the only output port out satisfies 

ou t e: D V CC ( ou t) = 1 

we have to be more precise as to how a statement affects C(n), CC(n) and 
D. 

In a program switches are introduced by statements 

BE -+ x = y 

in which x and yare nodes, and BE is a boolean expression in terms of 
nodes, more precisely: BE is a production of the grammar 

<boolean expression>:: = <term> {V <term> } 

<term>: : = <factor> { ,,<factor>} 

<factor>::= <primary> I <primary>' 

<primary>::= <node> I «boolean expression» 
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Prior to the statement 

BE -+ x Y 

we should have 

for all nodes n in BE : C(n) = 1, and 

(C(x) A C(y) A BE) = 0 

The first requirement is introduced to permit the syntax check­
ing to be done incrementally at each statement of the program. A con­
sequence, however, is that not every order of the statements in the 
program is permissible. It is still an open question whether this 
serializability requirement is not too strong. If we succeed in design­
ing our components under this regime it will certainly enhance both the 
readability and the checkability of our programs. 

The second requirement guarantees the observance of the no­
fighting rule. The statement does not have an effect on the set D. The 
effect on C(n) and CC(n) is 

Z(x):= (Z(x) V (Z(y) A BE» 

Z ( y ) : = (Z ( y ) V ( Z ( x ) A BE» 

in which Z stands for C or CC. 

The set D is affected only by a statement that specifies a 
direct connection , i.e., one that does not go through a switch. We 
obtain such a statement by dropping the conditional part "BE-+-": 

x = y 

As for the effect on C(n) and CC(n) this statement is like a switch 
specification with "1" as its boolean expression. Prior to the 
statement the condition 

(C(x) A C(y» = 0 

should hold, and its effect is that Z(x) and Z(y) both become Z(x) V 
Z(y) (Z still standing for C or CC). The effect on the set D is that if 
either node x or node y was a member of D then D is extended with the 
other node. 

program 
CC(out) 
C(in) = 

In the example of the inverter we initially have out t D. As the 
leaves the set D unchanged we have to show that it establishes 

1. The first statement is legitimate as we initially have 
1 and 

C(out) A C(l) A in' = 0 A 1 A in' 
o 

The effect is that both C(out) and CC(out) become in'. The second 
statement is legitimate as well: C(in) is still 1 and 
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C(out) A C(O) A in = in' A 1 A in 
o 

It establishes CC(out) 
program. 

in' V in, which is 1. Hence, it is a complete 

Notice that both switches in the inverter are of the type that 
can be implemented by one transistor. The inverter, ccnsequently, 
requires only two transistors. We shall use this inverter as a sub­
component in our third example. 

EXAMPLE 2. 
comp nor(a?, b?, out!): 
begin a V b + out = 0; a' A b' + out = 1 end 

In the first statement the boolean expression is a disjunction 
of two nodes. This gives rise to a diagram in which two switches are 
placed in parallel. The boolean expression of the second statement 
specifies two switches that are placed in series. The whole component 
requires four transistors. The following picture shows a diagram of the 
component. 

Fig. 9 

out 
b 

A new node is introduced by mentioning it in the right-hand side (in the 
part to the right of the arrow) of a statement. There is no example of 
this in the paper. 

EXAMPLE 3. 

comp flip-flop(in?, ld?, q!, qbar!): 
begin sub i1,i2: inverter; 

end 

i2.in = i1.out; 
ld' + i1.in = i2.out; ld + i1.in in; 
q = i2.out; qbar = i1.out 

The second line of the program specifies that the component 
flip-flop has two subcomponents, named i1 and i2, of type inverter. As 
each inverter has two external ports, this declaration provides the 
component with four internal ports. An internal port that corresponds 
to the external port p of a subcomponent S is denoted as S.p. As both 
i1 and i2 have an external output port out, the component flip-flop has 
the internal input ports i1.out and i2.out. Likewise, it has the 
internal output ports i1.in and i2.in. 
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The reader is encouraged to check tha~ the component satisfies 
the rules by formally deriving that all statements are legitimate and 
that the program establishes 

qED, qbar E D, C(il.in) 1, C(i2.in) = 

A possible diagram or the component is 

in qbar 

ld 

q 

Fig. 10 

5. BUSES 

If we want to design a random access memory out of inverters, we 
must be able to connect their inputs and outputs via buses to the inputs 
and outputs of the memory. We want to connect the outputs of many 
subcomponents (inverters) to the same bus. Just connecting these 
outputs (internal inputs to the memory) to the bus would violate the 
no-fighting rule. We shall remedy this by putting switches in these 
connections. 

To indicate when the memory cell has to drive the bus 
("reading" ) and when it has to receive a value from the bus ("writing") 
two inputs, rand w, go into the cell: 

r ----' I'----r-----------

memory cell 

W ____ -J ~--------~~-----

bus 
Fig. 11 

We attach a number of cells to the same bus. Such a composition wil l 
only be an RL if we guarantee that, at most one of the cells can have 
its r equal to 1. The signals r come from another subcomponent of the 
memory, usually called the "decoder." The purpose of the decoder is to 
assure that at most one r equals 1. Given that the outputs of the 
decoder satisfy that requirement, we can show that the composition is 
again an RL. This is a new phenomenon: a condition on the values output 
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by a subcomponent has to be taken into account to prove that a 
connection pattern specifies an RL. We call such a check a semantic 
check. 

The following program is a 1-of-2 decoder. 

comp 1-of-2 decoder(in?, out1!, out2!): 
begin in -+ out1 = '; in -+ out2 = 0; 

in' -+ out1 = 0; in' -+ out2 = , 
end 

By a syntactic check, as described in Section 4, we can show that this 
is a legitimate RL. In this case it is also simple to check that the 
output values satisfy (out1 A out2) = 0, but that is a semantic check. 

The moral is that we will design components that are only 
"conditional RL's," i.e., they are RL's under the condition that the 
output values of other components satisfy certain constraints. When 
such components are put together we will have to see to it that such 
semantic constraints are indeed satisfied. 

6 . A GLANCE INTO THE FUTURE OF COMPUTING 

In this paper we have not addressed the dynamic behavior of 
components, i.e., how they react to transitions on their inputs. That 
is obviously the next step. By adopting proper timing and signaling 
conventions (cf. Chapter 7 of [2]) one should be able to address the 
dynamic behavior in an equally discrete fashion. The purpose of such 
conventions is to generate "data valid" inputs that signal that the 
input data are well-defined and may be inspected. Such a data valid 
signal may come from a clock or it may be an asynchronous acknowledge 
signal. 

After that there are two roads we can follow. We can make a 
machine . That machine will accept programs and execute them. We then 
concentrate on the programs and if we wish to have a certain computation 
performed, we write a program for it. That is the traditional road. 

We are led to the other, more promising, road if we observe that 
we are already designing programs, programs that can be compiled into 
transistor diagrams for CMOS. We make components out of sUbcomponents. 
Every time they will be more "powerful" or "sophisticated" than their 
subcomponents. We can inspect how a component is implemented by looking 
at its program text to see how it is composed out of subcomponents. 
Every component is again an implementation of a "higher level" concept. 
We can, e.g., introduce components that communicate other data types 
than just a's and 1's. If we look at the implementation of that 
concept, we may notice that it is achieved by multiplexing or by the use 
of multiple ports. In that way the components we introduce will give us 
new modes of expression so that we can formulate our programs in terms 
of concepts that are more appropriate to our computations. After a 
while, we will have a mode of expression that one would customarily call 
a "higher level programming language." 
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Throughout all the levels of the hierarchy we have maintained 
that we program by composing components out of communicating sub­
components. But by expressing a program in such a notation we have also 
specified an implementa tion for it , we have actually specified for the 
program a transistor diagram in CMOS. From there, the step to a 
complete silicon compiler is a (nontrivial) matter of generating the 
proper geometric representation of the transistor diagrams. 

Of course, we do not have to translate all our programs into 
silicon to have them executed. We could also compile them into machine 
code, e.g . , into code for a machine designed by taking the other 
aforementioned road. Our choice will depend on such external factors as 
the speed with which the computation has to be performed or the expected 
frequency of its use. It is also possible that we want to make a 
translation into machine code first in order to get some experience with 
the program a nd that we do not have it compiled into silicon until it is 
in a form t hat suits us. 

POSTSCRIPT 

Is this an article about machine design or about programming? 
The answer to that question is definitely "Yes!". 
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Discussion 

Dr. Rideout felt that the terms "normally-on" and 
"normally-off" were somewhat con fusin>1;. Pro fessor Rem agreed that 
terms other than "normally-on" and "normally-off" should have been 
chosen. He then added that the compiler chooses N or P type 
transistors based on the analysis of the program. 

Professor Dijkstra asked if the validity check leads to a 
combinatorial explosion depending upon the number of input parts. 
Professor Rem said that this could be so, but that he ordered the 
statements to prevent this. The ordering is such that any expression 
to the left of an arrow must have the connection condition true. All 
components produced so far have been designed this way, but it is 
unclear if any designs are excluded by this ordering. 

Professor Michaelson asked about problems arising in the 
analysis of a component if any of the sUb-components had memory, such 
as a flip-flop. He felt that the connected-to-constant condition 
would then depend upon the previous history of the system. 
Professor Rein replied that this was not so for instantaneous states 
and that timing would be considered later. 

Professor Katzenelson said that the flip-flop example looked 
dynamic and asked if it was dependant upon the ordering of the 
statements. Professor Rem replied that the order of the statements 
was immaterial except as stated previously. 
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1. T ntrouuction 

l\ prCJ<,J ram specifies a relation between input and output values. As the 

n lJ!nbr'r of poss ible input values may be infinite, that relation cannot be 

;;pvci fi , :d by ] isting all pairs of values satisfying the relation. In a 

] ,r O(JI iJIII t hh t relation is, therefore, defined by an effective procedure 

: .])(.c;i fying how the output values can be derived from the input values. That 

IJr ()cc'c3 11re IIJUs t b e expre ssed in a notation that allows the derivation of the 

o u t p u l va] llf-, S to be TII (:! chanized . 

One form the effective procedure can take is that of an arithmetic 

Its free variables then denote the inputs. This approach is 

known a s functional programming. We adopt a different view: a program 

c onsists of subprograms (or statements) and relations between these subprograms. 

The meaning of a program depends solely on the meanings of the subprograms 

and tIle relations betwe en them. Order, as expressed by the semicolon in many 

program not dtions, is a pos s ible relation between subprograms. The more 

order a prog ram expresses the more constrained the range of possible mechani­

zations is. Of course, one could try to localize irrelevant order expressed 

in the program, but such a "search for potential concurrency" is in general 

a difficult task to mechanize. We would rather have a way of programming 

that does not introduce irrelevant order in the first place. Ideally, any 

order e..'Cpressedin the program should be necessary for the program's correct­

ness. We may wish to introduce order to exclude inefficient mechanizations. 

But be careful: whether a program can give rise to inefficient mechanizations 

depends on properties of the media in which the mechanizat ions are realized, 

and we would like our programs to allow a wide range of possible mechanizations. 

Our notation should be sufficiently general to allow its usage as a design 

notation for VLSI circuits. 
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ive have said that a program spe cifies a relation between the values 

it CO!;l!lIUn icates with its environment. We call our programs components. 

Each component defines a set of traces, just like a grammar defines a set 

of sentences. With each set of traces an alphabet of symbols is associated. 

A trace is a finite-length sequence of symbols chosen from the alphabet. 

It may be interpreted as a possible sequence of communications. A component's 

set of traces then captures all possible con~unications with the environment. 

Notation 

(i) £ denotes the empty trace. 

(ii) If V is a set of traces then V' denotes the associated alphabet. 

* (iii) If A is a set of symbols then A denotes the set of all traces 

consisting of symbols in A. 

(iv) Whenever obvious from the context, the alphabets are omitted. Unless 

noted otherwise, small and capital letters near the beginning of the 

(Roman) alphabet stand for symbols and sets of symbols respectively, 

small and capital letters near the end of the alphabet stand for traces 

and sets of traces respectively. 

(v) V ~ W denotes the symmetric set difference of the sets V and W. 

Definition 2.1 We write t;comp(tO:A
O

' t
1

:A 1) 

can be composed from traces to (with alphabet 

A
1

). It is defined as follows. 

to indicate that trace t 

(with alpnabet 

t:comp(tO:AO' t 1: A1) 

to = E 1\ t1 = E 1\ t E 

V to auO 1\ t au 1\ a i Al 1\ u:comp(uO:AO' t 1 : A1 ) 

V tl aU
1 

1\ t au 1\ a t- AO 1\ u: comp (u
1 

:A
1

, to:AO) 

V to auO 1\ t1 = aU
1 1\ t:comp(uO:AO' U

1
:A

1
) 

The last alternative is called pli~ination of a. Notice that symbols in 

AO n A1 do not occur in t Obviously, composition is syrrunetric in to 

and t1 . If AO and A1 are disjoint t:comp(tO:AO' t 1 : A1) expresses 

that t is an interleaving of to and t1 

Definition 2.2 The composition of two sets V and W of traces, notation 

V + W , is defined by 

V + W { t : (3v E V, W E W: t: comp (v: V', w: W ' ) ) } 

The alphabet of V + W is V' ~ W' 

If V' and W' are disjoint then V + W is the set of all interleavings of 

traces from V and W. 
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?amp}e 2.2 Let V = {ab, cd} illld W = {be, df} . Then V + yJ = {ae, cf} 

To guide the reader's intuition we point out that the composition in 

Example 2.2 may be interpreted as follows. The environment of V chooses 

between the symbols a and c V then communicates that choice to W. 

W answers by e or by f. Input of a into V + W causes it to answer 

e , input of c gives output f. The fact that V + W communicates the 

choice internally has been eliminated; V + W has ae and cf as its 

only traces. 

_~X_d~-.l~.-?...:.l.. 

({ ab} + {ad) + { ad {bc, cb} + {ad { ab, ba} 

{ ab} + ({ ac.l + {ac} ) { ab} + {d { ab} 

Composition of sets of traces is symmetric. Example 2.3 shows that it 

is not associative. However, we have the following property. 

V ' o V ' 1 
illld V ' 

2 
then 

From now on we shall restric t ourselves to compositions in which each symbol 

occurs in at most two of the alphabets of the composing sets of traces. 

We now introduce a program notation and the mechanism by which programs 

define sets of traces. 

Notation If S is a program then T(S) denotes the set of traces defined by S. 

Definition 2.3 

(i) A symbol a is a program. T(a) 

only. 

{a}. Its alphabet contains symbol a 

(ii) If So and Sl are programs then solsl and SO;Sl are also programs. 

Both have T(SO)' U T(Sl)' as their alphabets. 

T(SoISl) 

T(SO;Sl) 

T(SO) U T(Sl) 

{tOtl: to E: T(SO) /\ tl E: T(Sl)} 

(iiD If So and Sl are programs with disjoint alphabets then SO'Sl is 

also a program. It has T(SO) , U T(SJ' as its alphabet. 

(So the comma denotes interleaving. For composition with elimination 

we shall introduce a separate notation, viz. that of a component.) 
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(iv) If S is a program then {S} is also a program. It has T(S)' as 

its alphabet. 

T({S}) n ~ 0 A (Vi: 0 $ i < n: t. E T(S»} 
1. 

Priority rules The comma has the highest priority, followed by the semicolon, 

and then the bar: 

Properties 2.2 

(i) T(SOi S
1) = T(S1iSO) 

(ii) T(SO,S1) = T(S1'SO) 

(iii) T«SOis 1 )ls
2

) T(SOI(S1IS2» 

(iv) T«SOiS1)iS2) T(SOi(S1iS2» 

( v ) T ( (S 0 ' S 1 ) ., S 2 ) T ( SO' (S 1 ' S 2 ) ) 

(vi) T(SOi (S1IS2» T(SOiSliSOiS2) 

(vii) T«SOIS1)iS2 ) T(SOiS2IS1iS2) 

(viii) T(SO' (S1IS2» T(SO,SlISO,S2) 

(ix) T({{S}}) = T({S}) 

(x) T({S};{S}) = T({S}) 

Notation 

(i) A symbol is either simple or it is of the form c.a Let V be a set 

of traces with an alphabet of simple symbols. Then C.V denotes the 

set of traces obtained from V by repl a cing in each trace each symbol 

a by the symbol c.a The alphabet of c.V is obtained from V' by 

changing each symbol a in V' into the symbol c.a 

(ii) If t is a trace then is called a prefix of t when there exists 

a such that 

(iii) If V is a set of traces then V~ denotes the set of all prefixes of 

traces in V. It has the same alphabet as V . 

We now define the last form a program can have : the component. Syntactically, 

a component C is of the form 

corn C("alphabet"): "subcomponents" "equalities" S moc 

"alphabet" must be an alphabet of simple symbols. 

"subcomponents" is a list of zero or more components 

co:C
o

' c
1 

:C
1

, ... , c
n

_
1 

:C
n

_ 1 . 

"equalities" is a list of equalities of the form 

and b E T(C.)' with i ~ j . 
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c .. a 
1. 

C. , each with a name 
1. 

c. : 
1. 

c .. b 
J 

in which aET(C.)' 
1. 



S is a program as defined in 

the union of the alphabet of 

Definition 2.3. Its alphabet must be a subset of 
n-1 

C and . Uo c .. T (C. )' . 
1.= 1. 1. 

Every symbol of the form c .. a 
1. 

(0 $ i < n, a t T(C.) ') must occur either in 
1. 

T(S)' or in exactly one equality. 

Definition 2.4 Let component C be defined as above. Then 

In this composition symbols c .. a and 
1. 

c .. b are considered to be the same 
J 

symbol when C contains the equality c .. a = c .. b . 
1. J 

Each symbol c .. a 
1. 

occurs in exactly two of the sets 

C
1

·T(C
1
), ... , 

in T(C) ; All 

c l· T (C 1) • It, therefore, does not occur in the traces 
n- n-

traces in T(C) consist of symbols from the alphabet of C 

Because of Property 2.1 the composition above is associative. 

Example 2.4 

com id(xO, xl, yO, y1): xO; yO I xl; yl moe 

T(jd) = {E, xO, xO yO, xl, xl yl} 

~xample 2.5 

com binsem(p, v): {Pi v} moe 

TJet N (p) stand for "the number of occurrences of p". Then 

T(binsem) = {t t {P,v}*: 0 $ N(p) - N(v) $ 1 in every prefix of t} 

We say that T(binsem) is characterized by a $ N(p) - N(v) $ 1 • 

Example 2.6 

corn quinsem(p, v): 

sub bO,bl: binsem 

bOo v = bLp 

{Pi bO.p} , {bl.v; v} 

moe 

(The second line of the component's text expresses that the subcomponents are 

bO:binsem, bl:binsem .) 

T({p; bO.p})~ is characterized by a $ N (p) - N(bO.p) $ 1 

T({bLv; v}) ~ " " " 0 $ N (bL v) N (v) $ 1 

bO. T (binsem) " " " a $ N(bO.p) - N(bO.v) $ 1 

bl. T (binsem) " " " 0 $ N(bO.v) N (bl . v) $ 1 (bO. v=bl.p 
+ 

T (quinsem) " " " o $ N(p) - N(v) $ 4 

The above is an application of the so-called adding rule. 
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3. States and input/output as derived properties 

Given a set V of traces we call two prefixes sand t of traces in 

V V-equivalent when 

SU E V} = { u : tu E V} 

This is an equivalence relation. The equivalence classes are called states. 

We denote the equivalence class (state) of which prefix s is a member by [s]v. 

Whenever V is obvious from the context it is omitted. 

Example 3.1 The component 

com bufO(xO, xl, yO, yl): {xO; yO I xl; yl} moc 

has three states. The empty trace and all prefixes ending on yO or yl are 

equivalent. All prefixes ending on xO are equivalent and all prefixes. ending 

on xl are equivalent. The three states are thus [£], [xO], and [xl]. 

Component binsem has two states and component quinsem five states. 

We write [x]va for (3t: xat E V) . Again, we omit V whenever it 

is obvious from the context. We cal,l two symbols a and b V-related when 

{x: [x] a} = {x: [x] b} 
V V 

This is again an equivalence relation. Each equivalence class of this relation 

that contains at least two symbols is called an input. The singleton equivalence 

classes are the outputs. (This is actually a simplified definition of input/ 

output, but it suffices for the examples to be discussed below.) 

In component bufO symbols xO and xl are related and thus constitute 

one input. We may interpret them as the reception of a value 0 or a value 

1, respectively. The component responds to an input xO or xl with an 

output yO or yl , respectively. 

Example 3.2 

com binvar(xO, xl, yO, yl): 

hOi {yO} I xl; {yd} 

moe 

The pair (xO,xl) forms again one input, yO and yl are the outputs. 

Notice that We have constructed this component in such a way that it must 

be initialized before it can be inspected. 

Example 3.3 

com bufl(xO, xl, yO, yl): 

sub bO ,bl: bufO 

bO.yO = bl.xO, bO.yl = bl.xl 

{xO; bO .xO l.xl i b b.xl} , {hl. yO i yO I h1. yl; yl} 

moc 
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The pair (xO,xl) is the input. Component bufl may be interpreted as a 

four-bit buffer . 

.!?ample 3.4 

com buf2(xO, xl, yO, yl): 

sub bO, bl: hufO 

moc 

{(xO; bO.xO 

{(bO.yO; yO 

xl; bO.xl); (xO; bl.xO 

bO.yl; yl); (bl.yO; yO 

xl; b1.xl)} 

b1.yl; yl)} 

The components bufl and buf2 define the same set of traces. Up to now 

the aulhors have only been able to demonstrate this by an elaborate case analysis. 

Internally the two components are very different. Only in bufl is there 

communication between the two subcomponents. In buf2 the two subcomponents 

are "used" alternately. 

We now look in more detail at another example. 

com fulladder(aO, al, bO, bl, cO, cl, dO, dl, sO, sl): 

{aO,bO; dO , (cO; sO cl; sl) 

I a1,bl ; dl , (cO; sO c 1; s 1) 

I (aO ,bl I a1 ,bO) ; (cO; dO,sl I cl; dl,sO)} 

moc 

The symhols aO and al are related, bO and bl are related, and cO and 

cl are related. rne component, consequently, has three binary inputs: (aO,al) 

(bO,bl) ,and (cO,cl) It may be interpreted as a full-adder element: 

(aO,al) and (bO,bl) represent the two bits to be added, and (cO,cl) 

represents the carry-in. The carry-out is represented by the outputs dO and 

dl; sO and sl represent the sum. 

For each output symbol we list the input symbols that precede it, i.e., 

those that are separated from it by at least one semicolon: 

dO: aO ~ bO v aO ~ bl ~ cO v al ~ bO ~ cO 

dl: al ~ bl V aD ~ bl A cl V al ~ bO A cl 

sO: aD ~ bO A cO V a1 ~ b1 ~ cO V aD ~ bl A cl V a1 ~ bO A c1 

s1: aD A bO A cl V al ~ bl ~ c1 V aD A bl A cO V al A bO A cO 

Seitz discusses a PLA-like full-adder element on p. 251 of [1]. The 14 terms 

in the four lines above give exactly the 14 crossings in his PLA at which the 

horizontal and vertical wires are connected. Seitz's realization could thus 

be derived directly from our program text. 
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4. Conclusions 

We have defined the meaning (the semantics) of a component in terms of 

traces. Each trace is a sequence with the symbols of the component as 

elements. Also the communication with a component has been expressed in terms 

of the symbols of that component. Actually, the meaning of a component 

constitutes exactly all possible ways in which it can communicate with its 

environment. All internal communication has disappeared from it. This 

"information hiding" was taken care of by our elimination rule. 

Our way of defining the semantics of programs may be contrasted with 

approaches based on states and state transistions. In the latter approaches 

the meaning of a program is defined as a function from states to states or 

from sets of states to sets of states. As we do not consider the notion 

of state to be fundamental in partially ordered computations, we believe 

a formalization in terms of all possible communications to be more appropriate. 

We are currently working on three extensions of the material presented. 

First of all, we need more theorems on sets of traces: a trace theory. We 

must, for example, be able to find a nice proof that T(bufl) = T(buf2) 

Secondly, we want to find a method of deriving transistor diagrams (so-called 

schematics) from the definitions of components. Communication along wires 

introduces delays. Making no assumptions about these delays amounts to the 

construction of self-timed systems. In the long term we want to make a 

silicon compiler for programs that express partially ordered computations. 

But that requires the solving of the nontrivial problem of mapping schematics 

on the two-dimensional medium of silicon. This may be simpler for self-timed 

systems than for synchronous systems . Thirdly, we want to introduce values 

and ports. We have the intention of i ntroducing these as abbreviations. For 

each type there will be an instantiation scheme defining how values and ports 

of that type are to be represented in terms of symbols. 
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Fig. 7 .15 Full -adder element. 

Another thing to notice about this element is that the carry-out function CHI is 
generated as soon as the operands {Ii and hi become defined if they are in either the 
00 (carry-kill) or II (carry-generate) conditions . The lime required to perform an 
addition is generally limited by the worst-case carry propagation through the en­
lire length of the adder. However, this case occurs only rarely. For operands 
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Discussion 

During the lecture Professor Wells asked about the purpose of 
the notation which was being developed. Professor Rem replied that 
the purpose of the notation was to describe the communications of a 
component with its environment. He agreed with 
Professor Katzenelson who suggested that components were being 
characterised in terms of their input/output behaviours. 

With regard to the full adder example Professor Sequin asked 
whether the solution showed full symmetry between the three inputs. 
Professor Rem replied that the inputs a and b were symmetrical, but 
not c; this was a deliberate decision made in order to enable 
generation of the carry-out signal as early as possible. 
Professor Sequin asked to be shown how a particular trace would be 
shown to satisfy the program text, or not, and Professor Rem did so 
for a randomly chosen trace. 

Professor Katzenelson then asked whether the simultaneous 
arrival of inputs should not be excluded from the specification. 
Professor Rem explained that the order of arrival was immaterial, 
and that the concurrent behaviour was modelled by all possible 
interleavings of the input signals. 
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