
Rapporteurs: 

Abstracts 

J.P. Gray 

Dr. T. Anderson 
Mr. S. Dlay 

1. Structured Design and Unstructured Implementations 

It is often stated that design in its broadest sense is 
implementation independent, i.e. the designer can use a set of 
abstractions in developing a design that allows the suppression of 
physical details of the implementation medium. However good 
engineering is also concerned with the elegant exploitation of the 
medium. In VLSI systems this medium is silicon. Its simplest 
abstraction is a two and a half dimensional 
interconnect/communications space. Historically, hardware design has 
favoured the view that structural design and physical design can be 
separated. This lecture explores this principle by describing a 
design methodology based on hierarchical structural design and 
unstructured physical design. 

2. Structured Design and Structured Implementations 

This lecture will cover the now almost classical design 
methodology based on hierarchical structural design and an isomorphic 
physical design. There will be emphasis on what cost functions are 
relevant in developing such a design, and how this methodology can be 
supported with software tools. An attempt will be made to compare 
characteristics of parts designed in this style against similar parts 
designed in the style described in lecture 1. 

35 



STRUCTURED DESIGN AND UNSTRUCTURED IMPLEMENTATIONS 

1. Introduction 

In the process of designing any piece of hardware in ge:leral, or 
a chip in particular there are usually three separate descriptions 
generated: a structural description of the architecture (block 
diagrams to logic diagrams), a physical description of the 
implementation (chip artwork definition) and a behavioural 
description (simulation model). As any of these descriptions may be 
hierarchical it follows that producing a design amounts to massaging 
some hierarchical structural description into a hierarchical 
(possibly one level) physical description . Verifying a design may 
amount to exercising a hierarchical behavioural description. As the 
integrity of the design is based on keeping these separate 
descriptions consistent it is important that any design style which 
helps in this respect is useful. Before going on to discuss one such 
style and how it helps, it is necessary both to clarify what is meant 
by "design style" and to make some comments on the integrated circuit 
design process, the representations used and the underlying 
descriptions they generate. 

In what follows emphasis is placed on the structural ~ and 

physical aspects of design and the temporal/performance aspects are 
not dealt with. This is not seen as placing the cart before the horse 
as it is not possible to discuss timing issues without some notions 
of architecture and implementation in the first place . 

2. Representations and Descriptions 

A superficial examination of the classical levels of design 
abstraction (Bell 1971) in hardware, from device through circuit to 
PMS level, can produce an impression of unnecessary complexity due to 
the number of levels and possible representations. Each level of 
abstraction seems well defined and one can generate a number of 
representations that provide a notation for capturing design data. A 
possible simplification is to note that design data can be separated 
into at most three classes: structural data, physical data and 
behavioural data. Structural data is simply the description of 
units/modules/components and their interconnection/intercommunication 
e.g. block diagrams, logic diagrams, program specifications. 
Structural design has a consistent meaning across a number of 
engineering disciplines. Physical data is the description of a 
physical implementation of a design e.g. the artwork definition of a 
chip. Behavioural data is the description of what the parts of this 
design do. It is usually a simulation model. At different levels of 
design abstraction there are different amounts of data, possibly none 
in these catego~ies. Note that "designing" is usually taken to mean 
the production of a physical description from a structural 
description. 

36 



Representations may be thought of as notations that allow the 
capture of design data in one or more categories. Thus a Sticks 
representation allows both structural and physical design to be 
described at the lower levels of abstraction. A logic diagram 
representation is both a structural and behavioural description as 
gate symbols have "standard" semantics. A "good" representation may 
be one that gives maximum assistance in generating the three basic 
descriptions. 

3. Design Style Taxonomy 

It is possible to classify integrated circuit designs with 
respect to two features of their physical description : the type of 
interconnect and the variation in size of the basic units, cells, in 
the design. Interconnect may be thought of as coming in two 
flavours ; regular or random. Cells may be any size but certain 

design styles use cells of a standard size. Thus gate array exhibit 
regular cell size and random interconnect, while memory designs 
exhibit regular cell size and regular interconnect. Five design 
styles are thus classified in the figure below 

Type of 
Interconnec 

I 
t 

Regular 

Random 

Structured Design Memory 
(Mead & Conway) Design 

True Standard Gate 
Custom Cell Arrays 

Variable c; -- Regular 

Variation in Cell Size 

FIGURE 1 TAXONOMY 

One can imagine other design metrics like functional density and 
design time as surfaces over this plane. The reader is encouraged to 
do this to convince himself/herself of the usefulness of the 
structured design style . 

If the maturity of a design style is related to the 
effectiveness of tool support then there is no doubt that the gate 
array design style is the most mature. It is possible to work from a 
structural description to a physical description largely 

37 



automatically by using placement and routing algorithms . Thus the 
gate array design style simplifies "designing" by constructing a 
physical description from a structural description. Other design 
styles "finesse" this problem in more elegant ways. 

4. The Gate Array Design Style 

In its simplest form a gate array can be envisaged as a two 
dimensional array of gates , of variable granularity, separated by 
wiring space . Thus a physical design can be achieved by reducing a 
structural design to a set of interconnected gates and mapping these 
onto the 2- D chip image. Two important factors must be taken into 
account. Firstly, as it is impossible to attach additional wires to a 
chip it is essential to get all the wires to fit into the given chip 
image . Secondly, designs may be large and complex but have to be 
reduced to a one level interconnection of primitive components (which 
will be larger). 

To address the first of these problems it is possible to use 
wirability "theory" (Heller et al 1978) as a guide book in defining 
chip images . It is never possible, however, to guarantee the 
wirability of a specific design without incurring a large area cost. 
In fact designing in this style is concerned with managing a 
structural description so that its wiring demand is reduced beneath 
the wiring capacity of a particular image. Note that Heller's results 
show no particular limit to the size of gate array implementations, 
at least from a wiring point of view . 

To address the second problem it is necessary to manage 
complexity by allowing hierarchical description. A convenient way to 
do this is to use a high level programming notation tailored to 
structural description . Figures 2 , 3 and 4 show the top down 
refinement of an adder with full carry lookahead and Figure 5 shows a 
programmatic description of the same thing. Leaving aside any 
discussion of the design of this particular language, it is important 
to note the conciseness of the textual description and its formality . 
Because it has defi ned syntax and semantics it is possible to carry 
out extensive design debugging by compilation . Structure rules may be 
rigorously enforced . This, together with a physical design subsystem , 
allows the fully automatic design of gate arrays . It is of course 
sensible to exploit the designer's natural structuring of the design 
in layout algorithms . 

5. Summary 

By choosing a gate array design style it is possible to coerce 
hierarchical structural descriptions into one level physical 
descriptions. The model of programming notations and program 
debugging can be exploited to produce a new design environment for 
hardware design with real benefits in quicker and more correct 
designs. 

38 



References 

C.G. Bell, A. Newell (1971). "Computer Structures: Readings and 
Examples", McGraw-Hill, 1971. 

W.R. Heller, W.F. Mikhail, W.E. Donath (1978). Proceedings of 14th 
Design Automation Conference, pp. 32-43 (J. Design Automation and 
Fault-Tolerant Computing, Vol. 2, No.2, pp. 117-144, 1978). 

39 



a( 1 ) fb (1 ) a(2 ) b(2) aO bO) a(4~ 

Cine> 
~ 

g(¢) 

7 
c(¢) 

g( 1 ) -- , 

SLICE 1 p (1 ) 

c (1 ) 

g(2 ) 

SLICE 2 
p(2 ) 

c(2) 

gO) 

pO) 
SLICE 3 cO) 

I 

I I--

I f---

I SLICE 4 
I 
I t cou 

-
Figure 2 ATIDER 



a 

b 

j 
) 

cin 

· i-1 ) · · · 

· ) · · :)-1 
· 

prop 

1 

} [)o 
'-----

.e:en 

prop gen 

figure 3 

LOOK. 

I 

SLICE. 
l. 

l 

!) _)I----sum 

cout 

.... 



g(n) p(1) .. . p(n) g(n) p(i) •.. p(n) g(n) 

and . 
1 

carry 

Figure 4 LOOK. 
1 

p(n) g(n-1) 

and 
n 



{N-bit binary full adder with fast carry, similar to TI part SN14LS283] 

Include "modlib:library.inc" 

Constant bits=4 

Input Pad a(1:bits),b(1:bits),cin 

Output Pad s(1:bits),cout 

Part look [n] (p(1:n),g(O:n» ~ carry 
Signal temp(1:n) 
Integer j 
For j=1:n Cycle 

and (p (j: n) ,s (j-1 » ~ temp (j) 
Repeat 
nor( s (n) , temp ( 1 : n) ) ----'>- carry 

End 

Part slice [n] (a,b,p(1:n-1),g(O:n-1),cin) ~sum,cout,prop,sen 
nand (a, b) ----? prop 
nor (a, b) -7 gen 
xor( cin, and ( prop, not (gen) ) ) -----7" sum 
look [n] (p(1:n-1),prop,g(0:n-1),gen) ~ cout 

End 

Part adder Cn] (a(n:1 By -1),b(n:1 By -1),cin)~cout,s(n:1 By-1) 
Integer j 

End 

Signal c(O:bits),p(1:bits),g(O:bits) 
not(cin) ~ g(O) 
not(g(O» ~ c(O) 
c(n) -~ cout 
For j=1:n Cycle 

slice r j ] (a (j ) , b (j ) ,p ( 1 : j -1 ) ,g (0: j -1 » ~ s (j ) ,c (j) ,p (j ) ,g (j ) 
Repeat 

adder [bitSJ (a(bits:1 By -1),cin) ~ cout,s(bits:1 By -1) 

Endoffile 

Figure 5 MODEL Description 

43 



DISCUSSION (1) 

Professor Sequin enquired if a programming notation had any 
advantages over logic diagrams? Dr. Gray considered that his 
programming notation was more consisted and checkable. Some of this 
checking could be autnmated, and as a result designs could more 
easily be debugged. Professor Sequin observed that tools such as 
SCALD were available to represent and manipulate the relevant 
information in diagrammatic form. Such techniques could be economic 
in the near future. However, Dr. Gray claimed to have worked with 
similar tools for many years and now considered them to have been 
oversold. Professor Hoare challenged Professor Sequin to read and 
understand the details of a 3000 gate circuit diagram when presented 
on a CRT display . Professor Coulouris noted that another advantage 
of a programming notation is that iteration can be made explicit 
whereas in a large diagram repetition would be obscured. 

P r ofessor Lewin felt that the lecturer had been somewhat 
disparaging in his remarks on testing and simulation - surely these 
were essential in order to have confidence that a design would 
actually work as intended. Dr. Gray suggested that the programming 
language techniques of compiler diagnostics, debugging and program 
verification could all contribute to confirming the validity of a 
design expressed in a programming notation. 

Professor Aspinall felt that a hardware description language 
should not be tied to a particular implementation technique such as 
gate arrays, since this limited the freedom of the designer. 
Dr. Gray approved of limitations on a designer's freedom and claimed 
that gate arrays were an excellent technique for exploiting silicon 
technology. Appropriate stress is placed on the problems of 
interconnecting modules rather than the modules themselves. 
Pro fe'ssor Aspinall suggested that the management of complexity was 
the vital issue, with which Dr. Gray agreed. The problems of 
interconnecting modules can be alleviated by a hierarchical 
appproach. 

Professor Kung wondered if any experimental results on the 
structured design approach were available. Dr. Gray replied that the 
work of Heller et al (1978)was relevant here but that as larger 
designs were attempted design approaches were likely to change (for 
example, wiring metrics were of increasing importance). 
Professor Kinniment pointed out that when a structured approach is 
adopted in a large custom design the outcome can be very close to 
that resulting from the gate array approach. 

44 



DISCUSSION (2) 

Professor Kung asked how old was the multiplier design, and at 
what speed did it operate? Dr. Gray thought that the chip had been 
designed in 1978. 

Professor Randell wondered if routing algorithms should be 
eschewed in favour of designing so as to identify structural and 
physical descriptions. Dr. Gray's view was that routing algorithms 
often produce inelegant designs. Professor Randell suggested that 
obvious analogies could be drawn between board layout and text 
composition - perhaps Knuth's TEX system could be used to set up a 
floor plan for a chip. 

Professor Whitfield expressed concern that tracks leading from 
one cell might have to be permuted before connecting to a destination 
cell. Dr. Gray asserted that cells were usually in the correct order 
and the only problem frequently encountered in making track 
connections was a pitch mismatch, and this was easily dealt with. 
Professor Kinniment observed that a PLA is a nice example of a cell 
in which input and outputs can be arbitrarily permuted. 

Professor Rem asked if Dr. Gray was disparaging the top-down 
approach to design. Dr. Gray denied this and claimed he was 
attempting to link a top-down style with concern for the standard of 
wiring achieved. Even with the top-down approach there are always 
problems with wiring. Professor Randell felt that low-level wiring 
issues conflicted with the notion of having a large library of 
general purpose cells. Dr. Gray agreed, and pointed out that his 
approach meshed well with the structure provided by soft cells. 

Professor Kung asked why Dr. Gray did not recommend the 
Cal-Tech approach based on an assortment of tools. Dr. Gray replied 
that the only method of eliminating errors was by checking. 

45 




