
Rapporteurs: 

Abstracts 

THE TEACHING OF VLSI DESIGN 

Mr. J.G.B. Heal 
Mr. S. Mansi 

J. Allen 

1. Representational Issues in VLSI Design 

In VLSI design, many different representation levels, e.g. 
architecture, logic, circuit, device, layout, must be manipulated and 
maintained in a consistent way. This leads us to consider algorithms 
competence/performance distinctions, cells represented as programs 
that generate them, equivalence of text and graphic representations, 
new MOS digital system and timing models, placement and routing 
constructs, and the role of modularity and hierarchy in these 
representations. 

2. Compilation of VLSI Layouts 

Many different target structures can be generated by progrms 
that operate on a high-level functional description . These programs 
can generate logic array (including PLAs), state machines, register 
files with localised ALU capability, and parallel co-operating 
processors. These techniques are reviewed, and parallels between 
hardware and software compilation are noted. 

3. Performance Optimization of VLSI Architecture 

We view computer architecture as the specification of computer 
performance. Techniques for exploring and manipulating space/time 
tradeoffs while maintaining algorithm competence are described. The 
realisation of fully parallel data dependence graphs with operators 
bound locally to relevant memory cells is discussed as well as large 
parallel systems, including the use of restructurable wafer-scale 
VLSI. Consideration is also given to the architecture of special 
hardware for VLSI design, including high-performance work stations. 



LEC~~RE 1 

REPRESENTATIONAL ISSUES IN VLSI DESIGN 

~he overall problem of VLSI design can be considered as the conversion 

of gn algorithmic representation to a custom integrated circuit layout through a 

succession of different representational levels by means of a set of 

transformations. From this perspective, it can be seen that a major focus of 

research in integrated circuit design is the determination of the particular 

levels of representation, as well as the transformations that interrelate them. 

Modern design requires the careful characterization of many different aspects of 

the design. The initial specification is often provided in some functional form 

that specifies what the circuit is to achieve. At the next level, an algorithm 

provides not only what must be achieved, but how that result is to be obtained 

and at this level, of course, the question of architecture is raised since in 

general there will be many architectural alternatives appropriate to a 

particular functional requirement. Once the architecture is fixed, then it must 

be realized, in terms of a set of modular components, including memory 

structures and arithmetic logic units, generally realized as a set of gates. 

The interconnection of these structures is specified by means of a topological 

representation. Each of these constituent modules must, of course, be realized 

in terms of a particular circuit representation and these circuits will contain 

a variety of electronic devices. Finally, the devices and their interconnect 

are realized in terms of a geometrical layout specification sufficient to permit 

the generation of integrated circuit masks appropriate for manufacture. From 

2 



this brief overview, it can be seen that the variety of representations needed 

to specify a custom integrated circuit is extremely diverse, and that it is 

necessary to be able to transformationally pass from one representation to 

another representation level. Furthermore, it is important that information 

specified at one representational level be aligned with that at other levels and 

that this information be kept consistent across all representational levels. An 

additional difficulty is introduced due to the unsettled state of current 

techniques for representing architectures, algorithms, and functional 

specifications. Thus, a great deal of current research in integrated circuit 

design is devoted to the determination of appropriate representations and the 

means to manipulate them. This of course is nothing more than the usual 

scientific quest for appropriate abstractions that allow the designer to focus 

on those attributes of the overall design that are of interest at a given point. 

Due to the history of computing technology, it is unfortunately the case 

that'l.lgorithms have been specified in terms of a particular architecture, 

namely the single sequence Von Neumann machine. Thus, it is common place to 

find the precise characterization of algorithms given in terms of a program 

intended for execution on such a single sequence machine. Because of this 

orientation, latent parallelism within the algorithm is often not exploited and 

the expression of the algorithm may take on an unnatural form. What we would 

like is a formal means to specify the algorithmic competence as distinct from 

the algorithmic performance. By competence we mean the functional nature of the 

algorithm or what it has to perform, no matter how the algorithm is implemented. 

Performance, however, refers to that which is optional in the algorithm and 

hence may be fixed by a variety of implementations. Unfortunately, there is at 

3 



present no well developed formalism that allows us to characterize algorithms in 

terms of separate but coordinated structures for competence and performance. It 

appears that some sort of declarative structure, related to the functional 

requirements for the algorithm, may be appropriate for this task. For example, 

simultaneous sets of linear equations, such as those found in linear circuit 

theory, characterize a set of constraints that must hold over this equation 

system without any specification for the way in which the independent variables 

are to be solved. It is possible to construct a network of these constraints 

for every such system and to erect on this network a variety of different 

solutions. In fact, it is easy to obtain from these networks several different 

sets of independent variables which may lead to equivalent but alternative forms 

of the equation system. 'vJhile these constraint representations are attractive 

as a means to represent algorithmic competence, they have not been extended to a 

wide variety of algorithmic classes and it is not clear how that extension can 

be achieved. Nevertheless, they do provide an insightful static declarative 

specification of those conditions that must hold under any admissible solution , 

and they do indicate the possibility of a large variety of solution techniques 

or performance strategies based on this static structure. The proper 

specification of algorithmic competence and performance should be regarded as a 

basic problem for computer science, as well as integrated circuit design. This 

is a very difficult problem and it is appropriate to look for alternate 

techniques for achieving the means of varying performance strategies without the 

necessity of explicitly revealing a representation for algorithmic competence. 

We will return to this topic later in this series of lectures. 

4 



At the architectural level, it is desirable to have a variety of modular 

functions available which can be juxtaposed to form a comprehensive set of both 

logical and memory structures that can be drawn upon in any particular custom 

design. The particular selection of these structures is highly dependent on the 

particular technology employed and in these lectures He will be focussing only 

on those structures appropriate for MOS design. In such a technology, the 

simplest logical forms can be derived by generalizing upon the simple inverter 

circuit replacing the active device by either two pass transistors in parallel 

or in series, yielding either a NOR gate or a NAND gate, respectively. For 

circuit reasons, the NOR gate is the preferable structure to use since the 

number of terms in the NOR gate can be changed without forcing any change in the 

specification of the load device of the circuit. It is important to realize 

that this fact reveals the modular nature of NOR circuits and the fact that they 

can be readily modified in the context of a larger canonical framework without 

forcing major revisions in that framework. Thus for example, NOR gates have 

been combined for many years into larger regular structures, such as the 

so-called Weinberger Image, which is a convenient way to juxtapose a collection 

of NOR gates into a regular geometric structure. This approach is particularly 

important, since it is easy to write a computer program to generate such arrays 

from an input logical specification and the ease of such programming is 

substantially enhanced by the modular nature of the NOR circuits that are 

employed. Generalizing a step further, NOR gates are frequently used as the 

basic elements of program logic arrays which are implemented as two planes of 

NOR gates, even though they are often referred to as performing the AND 

function, followed by the OR function, in order to realize any arbitrary logic 

5 



function as a sum of products. The modular nature of ~aR-~aR ?LAs is also 

responsible for the ease of PLA partitioning, segmentation, minimization and 

provision of input iecoding, all of which are performance refinements to the 

basic ~ogical capability. Just as it is easy to generate Weinberger image 

arrays, by means of a program, many codes have also been written for the 

generation of PLAs. These programs are exceedingly useful, since they provide 

the means for generating circuitry to compute any arbitrary class of logic 

functions in terms of well-defined regular structures, without the necessity for 

the designer to specify any of the circuit or layout details. Thus, the 

desi gne r may use such a program interactively to estimate the size of the PLA 

structure, its speed, its power consumption and the precise location of all 

interconnect points to it. T~is capability should be regarded as an example of 

the desirable performance of all design tools in that the designer is able to 

ask questions that are important to the overall design of the system, without 

the need for instantiating all of the details. An important topic for further 

research in VLSI design is the search for additional canonical structures that 

will provide both memory and logic capability appropriate to a wide variety of 

tasks, but which can be generated automatically by means of design programs 

similar to those used for PLAs. 

MaS technology has a large effect on the realization of logic in custom 

integrated circuits. Many designers are familiar with models appropriate to TTL 

design that utilize the so-called Boolean gate model. This model is 

unidirectional, in the sense that there are well-specified inputs and outputs in 

each model form and that all memory must be provided for explicitly in the 

design. This model is not, however, appropriate to MaS design, since past 

6 



transistors provide a bidirectional flow of information and circuit modes are 

often used for the storage of information without being explicitly represented 

as memory storage devices at any level of the representational structure for the 

design. For this reason, there has been a need for new representations that 

consistently and accurately model the full range of logic structur~s available 

to the MOS integrated circuit designer. An appropriate theory for this purpose 

has recently been devised wherein the MOS transistor is modelled as a switch 

that has three possible states. These states are either the closed state in 

which the switch is conducting, the open state in which there is no current 

flow, and the so-called x-state which specifies that the conductive state of the 

transistor is currently unknown. A very useful unit delay logic simulator has 

been built around this model that provides the designer with the means to 

accurately characterize both combinational and sequential logic circuits. A 

particularly important advantage of this simulator is the fact that its input 

representation can be derived algorithmically from the geometrical layout 

information of the circuit, resulting in a topological connection of idealized 

switches appropriate for simulator action. At any given time, the simulator 

establishes equivalence groups of nodes that are interconnected by conducting 

transistors and then sequences the circuit through its successive states, thus 

mirroring the flow of charge through conducting transistors to establish logical 

values by means of charge distribution at these nodes. An additional feature of 

the topological representation of interconnected transistors is that several 

tests for well-formedness of the circuit can be performed at this topological 

level. For example, the inadvertent connection of distinct power buses can be 

detected, as well as floating circuits and other ill-formed structures. A 

7 



pa~ticularly useful test is that which chec~s to see if every internal node can 

be varied between both binary logical values. ~his test has revealed many 

subtle difficulties in circuits that could not be readily discovered by other 

means. 

Moving on from the logic level of representation, we encounter the 

circuit realization of the desired logic. It is important to realize that there 

is a many-one relationship between a given set of logic equations and the 

circuitry needed to realize that logic. For example, an exclusive OR gate can 

be realized by means of combining NAND structures, but it can be achieved much 

more simply by means of a simple pass transistor network i n a generalized 

inverter structure. It is particularly important to realize that although 

designers frequently specify a circuit in terms of a so-called stick diagram 

that shows how the various levels of interconnect are related, there is a strong 

tendency to infer from this topological stick diagram circuit properties or 

geometrical relations that are not necessary. Thus, the designer must be 

constantly aware that not only can the desired logic be characterized in terms 

of several different topological structures, but that each of these topological 

structures can be realized by a variety of different circuits and that each of 

these circuits can in turn be implemented in terms of geometrical layout 

artifacts in a large number of different ways. Thus, there are many degrees of 

freedom which are often not exploited by the designer. We feel that while many 

designers are sensitive to architectural space/time tradeoffs, they are much 

less sensitive to these low level engineering choices that are ~qually important 

to a successful design. In fact, at the topological level many aspects of 

performance, dictated by the actual geometrical layout are abstracted away. 

8 



Fortunately, programs a~e available t~at provide t~e analytic techniques for 

going from a geometrical layout to an equivalent circuit that is in a form 

appropriate for a circuit simulator. ~hus, an integrated circuit specification 

can be completely simulated at the circuit level in an accurate way that 

predicts performance of the final circuit. What is missing at present is the 

synthetic capability for generating a geometrical layout under the constraint of 

a particular performance specification. Instead, our current capability 

restricts us to generating alternative implementations and then using analytical 

techniques for characterizing their performance. 

Finally, we turn to the specification of the detailed geometrical 

layout. Many of the means for specifying these artifacts have been derived 

through experience with practical devices used in integrated circuit manufacture 

that are not necessarily appropriate forms for use by the designer. Thus, some 

systems require the designer to specify rectangles and others allow the designer 

to indicate the opaqueness of the several mask layers with reference to a coarse 

geometrical grid. Designers have had to cope with a variety of limitations of 

such representations, such as the specification of rectangles in terms of not 

only their length and width, but also their center point and angle of rotation. 

This choice of representation was guided by the design of a particular device 

for generation of masks, but increasingly rotated rectangles are not allowed in 

designs since the use of orthogonal geometries provides for much easier layout 

generation as well as much more efficient design rule checking. The use of 

wires is another example of an awkward construct in many representational 

schemes. For example, in some cases wires have been specified as having round 

ends, but when the wires are of different width, this can cause substantial 

9 



difficulties at interconnect points. Furthermore, it is often necessary to 

represent these wires in terms of a juxtaposed set of rectangles whose 

connectivity must be maintained through a variety of operations on the mask 

data. Traditionally, the geometrical layout information has been represented as 

a set of static forms, represented in terms of some simple syntax. 

Nevertheless, recently modern computational techniques for the procedural 

representation of knowledge have been successfully used. Thus, it is possible 

to represent a detailed geometrical layout as a program which when executed will 

generate the final requisite static forms needed by the mask generation 

apparatus. This procedural form allows for easy parameterizatio~ of the design, 

as well as the symbolic naming of different parts of the design. For example, 

it is possible to relate one part of the geometrical layout to another in 

symbolic terms without having to specify the actual numerical distance between 

them, later binding these symbols to the particular geometry without requiring 

the designer to be cognizant of these details. The use of procedural techniques 

for representing layout can be regarded as an instance of delayed binding, a 

frequently used technique in computing that preserves degrees of freedom for the 

designer without the necessity to cope with a variety of low le~el 

implementation details. 

An important aspect of the geometrical layout representation is the need 

to perform design rule checking, an exercise which consists of verifying that 

the widths of structures, as well as their mutual separation obey a set of 

constraints called design rules. Traditionally, these design rules have been 

expressed in geometric form, but there is some debate at present concerning the 

use of semantic constraints at the design rule level. For example, a so-called 

10 



'twisting "snake" of diffusion wiring can be regarded either as a ';lire or as a 

resistor and when it is regarded as a wire it may be possible to disregard some 

of the spacing constraints, but this is not possible if it is to be regarded as 

a resistor. ~his raises a very large representationl issue since if semantic 

considerations are to be employed, the natural tendency would be to require the 

designer to indicate not only what structures are present, but what their 

functional intent is. Another example of such specification would be the 

require~ent in some systems that designers indicate explicitly each and every 

in~ended transistor, so that if transistor structures are discovered by means of 

analytical computational techniques applied to the final detailed layout, then 

the structures would be regarded as spurious if they had not been explicitly 

called for by appropriate symbolic designation from the designer. Lastly, it is 

important to remark that design rule checking and indeed all procedures that 

operate directly on the geometrical layout are computationally intensive. 

~odern circuits can require the specification of several million rectangles on 

the various mask layers and since design rule checking requires computation of 

mutual overlap between distinct rectangles, enormous amounts of computer time 

can be consumed by naive versions of design rule checking algorithms. Two 

approaches have been taken to alleviate this problem. In the first approach, 

the design has either been naturally or arbitrarily broken up into a set of 

cells and the design rule checks are carried out for the most part within these 

cells, thus leaving only a small number of checks to be performed at the 

boundaries between cells. In another approach, each cell is designed in such a 

way that it is well-formed by itself, even though it may contain shared 

structures with adjacent cells. It is then possible to adapt the design rule 

11 



checking software, so that once each constituent module is checked for 

well-formedness only a small amount of boundary checking must be done when the 

modules are interconnected together. These techniques comprise so-called 

hierarchical design rule checking techniques and have currently been :mplemented 

in three or four different versions. A last approach to the complexity of 

artwork analysis programs is the use of special purpose hardware, which can 

utilize novel custom circuits to speed up the computations by at least two 

orders of magnitude. 

In this lecture, we have sought to give a view of the diverse 

representational requirements of modern custom integrated circuit desig~. Much 

current research is focused on the discovery of appropriate structures that 

allow for both concise and insightful generation of integrated circuit layouts 

as well as the efficient determination of their well-formedness at all of the 

different representational levels. Perhaps the greatest difficulty has been 

encountered with the specification of functional representations and although a 

number of harqware design languages and other techniques have been suggested for 

this purpose, there is by no means consensus at present and we can expect that a 

substantial amount of continued research, as well as accumulated experience will 

be needed before a satisfactory solution is obtained. 

12 



Discussion 

Professor Dijkstra was interested in how much the designer had 
to be aware of the variability of the processing. Dr. Rideout said 
that the small University user was in effect getting infrequent 
snapshots of the production line, and is particularly dependent on 
variations, so some form of characterisation of the process was 
essential. 

Professor Randell speculated that perhaps foundries should be 
sharing wafers between chips of different users, spreading the 
variation - a form of time sharing instead of batch processing. 

13 



LECTURE 2 

COMPILATION OF VLSI LAYOUTS 

In the previous lecture, we discussed the various levels of 

representation involved in the design of custom integrated circuits, together 

with the transformations needed to go between these representations. In this 

lecture, we will focus more on the transformations than on the representations, 

and in particular on means for transforming automatically from a high level 

functional representation to the low level artwork details, characterizing the 

geometrical layout. In order to effect these transformations, it is important 

to be able to both precisely characterize the input specification in terms of a 

formal functional representation, but also to be able to utilize canonical 

target structures that are sufficiently restricted that programs can build 

particular structures of this type corresponding to the input specification. 

Over the years, a variety of target structures have been introduced and we will 

trace several of these leading up to a modern perspective on the current status 

of what is often called silicon compilation. 

Perhaps one of the earliest attempts to provide a technique for building 

large circuits from small elements was the so-called stannard cell or polycell 

approach. In this technique, a variety of small cells are designed, using a 

rectangul~r bounding box of uniform height, but varying width. In the earliest 

approaches, interconnect has been provided on only one side, but in more racent 

versions, interconnect was provided on two opposite sides. ~he idea was to 

provide a small, but growing set of structures, including gates and memory 



elements that could be composed to form larger circuits by means of interconnect 

paths. Typically, the standard cells were arrayed in rows, side by side, since 

they were all of uniform height, and the interconnect was provided in channels 

between the rows. Generally, two rows were arranged back to back and although 

earlier approaches required so-called end-runs of routing along one row, around 

the end of the two back-to-back rows and along the opposite row, more general 

systems allow for feed-throughs 8etween the back-to-back rows. Each of the 

cells of the standard cell system is completely characterized in that the cell 

has been designed, simulated, and all of its performance characteristics are 

well-known. In terms of binding time then, these designs are completely bound 

and no changes can be made to the cells in any regard. Channel routers have 

been provided for interconnecting the I/O points of these cells, so that a 

completely routed chip can be formed. It is fairly easy for the designer to 

specify his circuit in terms of these composite standard cells and to provide an 

interconnect list. The design software then arranges these cells and provides 

all the interconnect. In this way, a custom circuit can be generated very 

quickly. The main objection to this technique has been the large amount of 

space needed for the wiring channels, often amounting to as much as 50% of the 

area of the chip. Nevertheless, it is important to remember that the standard 

cell discipline is sufficiently constrained that placement and routing can take 

place automatically without any designer intervention, and this is a very large 

advantage which in large measure offsets the objections due to channel routing 

area. In high performance circuits, however, the delays associated with long 

wires may be unacceptable and a more flexible means of placing and 

interconnecting the cells may be required. It is important to remember, 

15 



however, that the standard cell approach is in no way obsolete, and for many 

applications where speed of design is more important than circuit performance 

considerations, these techniques will be readily accepted. They have even been 

applied for rather complex circuits, such as a 32-bit microprocessor. An 

additional advantage is the ability to place large amounts of memory on a 

standard cell chip,~so that it can also be wired into the remaining set of 

standard cells. 

There has been a continuing search for other ways to constrain the 

layout process so that a compilation strategy could be used. A variety of these 

have already been mentioned, including the so-called Weinberger Image of NOR 

gates and the PLA designs that are so frequently used. It is well to point out 

at this point that PLAs can also be generalized through the use of feedback to 

provide finite state machines, so that any techniques that lead to highly 

optimized PLA designs have great utilization, not only for logic but also for 

state machines. Recently, another regular technique used for CMOS arrays, has 

been proposed by Lopez and Law at Bell Laboratories, and this has led to the 

ability to create large circuits very quickly from a high level functional 

specification. We should not, of course, forget gate arrays as another example 

of a highly constrained architecture into which various designs can be compiled. 

Gate arrays, sometimes called master slice circuits, are available in a wide 

variety of technologies and provide another point on the scale of binding time 

of design. In the case of gate arrays, the gates are fabricated on a standard 

format, but the interconnect is bound later in accordance with the customer's 

desires. In this way, it is possible to provide very rapid turn around of gate 

array circuits and due to the exploitation of a number of aggressive 

16 



technol0~ies, high performance circu~ts can be readily fabricated in this way. 

Recent practice in the compilation of circuits from a functional 

specification has sought to further delay the binding time of various design 

parameters in accordance with the input specification. Furthermore, these 

approaches have sought to design entire systems on a chip, rather than 

individual modules. A well-known example of this approach is the so-called 

bristle blocks technique which allows the designer to place a series of 

arithmetic logic and memory elements along a two-bus structure. This data path 

structure is then controlled through a set of signals which are generated from a 

set of decoders which in turn act upon an input instruction word. The bristle 

block system automatically generates the register for the instruction word and 

the decoders which operate on the various fields of the instruction to provide 

th e contro l led signals for the data path. Test access circuitry is also 

provided by the bristle block system. It is important to remember that the 

bristle block system as it is currently conceived provides only a single 

architecture and that systems requiring different kinds of architecture would 

have to use an entirely different compilation approach. Some designers have 

speculated that a small number, perhaps less than 10, of canonical architectures 

would suffice and that a compiler could be built for each of these. In this 

way, specialized compilation strategies might be employed to generate the 

different kinds of canonical architectures. While it is not clear just how many 

specialized target architectures would be needed, this approach has so far not 

been realized and there is only a very limited initial experience with the 

original bristle blocks architecture. 

17 



',!/hen a microprocessor is being designed, it may be possible to 

characterize the action of the microprocessor in terms of a set of microcode 

specifications. These specifications may then be used by a compiler to generate 

not only the control structure, but the data path to achieve the functionality 

specified. Such techniques have been applied recently in the design of a 

special processor for the language LISP, called SCHEME, which has utilized 

regular arrays of memory and PLAs for control and computation, with a minimal 

amount of random logic. Unfortunately, it has still been necessary to generate 

much of the interconnect by hand. Such an approach, however, is indicative of 

the kinds of software-oriented techniques that can be effectively utilized to 

design custom architectures very quickly. To the extent that these 

architectures utilize very regular components, such as memory arrays and PLAs, 

they can be quite efficient and there is an undoubtabl e tendency for designs of 

even commercial microprocessors to utilize these regular structures to cut down 

design time by relieving the amount of complexity that has to be specified by 

the designer. The use of these regular structures is also useful in delaying 

the binding time of various nesign decisions, including the instruction sets of 

modern microprocessors. For example, it is possible to design a microprocessor 

completely except for specifying the details of microcode decoding as executed 

by a PLA. These details may be specified quite late in the design, thereby 

providing the designer with a substantial amount of flexibility and allowing the 

circuit design to proceed in parallel with low leve~ architectural decisions. 

Modern compilation strategies can also provide for a great deal of 

parallelism in the design. For example, if the functionality to be implemented 

is best represented in terms of a multiple set of processes, then the control 

13 



for 8ach of th8se processes can be dedicated to a separate finite state machine, 

sep8r8t81y implemented on the chip. ~his is a relatively easy and 

straightforward thing to do in custom Ie design. These separate control 

processes can easily, however, manipulate the same data path structure, which 

can also employ a great deal of parallelism. The data path of a modern central 

processing unit can be thought of as comprising a register array, together with 

an arithmetic logic unit. Typically, operands are fetched from the register 

array and then transformed to produce one or more results, which are then 

inserted back into the register array. In the case of a custom design, however, 

it may be possible to provide special arithmetic logic unit capability for 

particular sets of registers within the register file. For example, if it is 

desi red to increment a particular register in the register file, then an 

incrementer can be provided locally, directly adjacent to that register with its 

own local busing arrangements, independent of the overall busing provided for 

the register file. Similarly, if one wishes to compare two registers in the 

file, then a comparator can be inserted between the two registers, together with 

local busing so that this comparison can proceed independently of other 

operations involving the register file. Techniques are currently available for 

generation of such distributed arithmetic logic unit register files that can 

provide a large degree of parallelism. This is, of course, another example~of 

delayed binding in the design of processing units, since the provision of this 

specific capability is task dependent and is only feasible once the detailed 

nature of the processes to be performed is available. Such techniques are only 

valuable, of course, if the designs can be created quickly in response to a 

particular functional requirement and this is the great advantage of modern 



silicon compilation techniques. There is, however, a penalty to be paid by 

these techniques, since the area consumed by contemporary compiled circuits is 

approximately 2-3 times the area consumed by a good manual design. 

Nevertheless, this penalty may be acceptable in a wide variety of cases and 

there are a substantial number of research efforts currently being devoted to 

improving the area utilization, speed of performance, and power consumption of 

compiled designs. 

Another necessary component for modern compiled systems is the ability 

to both place and interconnect the components of a system efficiently and 

rapidly. The ca~onical problem which contemporary research faces is the need, 

given a set of rectangles of arbitrary aspect ratio with interconnect on all 

four sides, to place and interconnect these modules in minimal area. This is a 

difficult combinatoric problem and initial solutions are currently becoming 

available. As experience grows, we can expect by the middle of this decade to 

have capable systems that will allow us to conveniently juxtapose a substantial 

number of orthogonally related rectangular modules on a circuit very quickly and 

in minimal space. To the extent that these techniques are incorporated within 

compilation techniques, greater efficiency can be expected, although the packing 

strategies used are not necessarily compatible with the canonical architectures 

typically employed by compilation procedures. 

There has been a large amount of borrowing of software compilation 

techniques into the VLSI design silicon compilation practices. Thus, the 

recognition of common subexpressions, the elimination of dead code and a variety 

of other techniques familiar to the software compiler designer are readily 

employed in the hardware area as well. It is well to remember, however, that 

20 



unlike the software compilation approach where the target architecture is fixed, 

in the case of silicon compilation, it ~ay be possible to generate a substantial 

variety of target architectures providing a number of different space/time 

tradeoffs. The analogy between software compilation and hardware compilation is 

thus by no means perfect, but we may expect a continuing tendency to unify 

systems through simultaneous design of hardware and software. Frequently, the 

decision as to what capability to provide in hardware vs. software can be made 

on performance grounds and system design of the future should certainly 

contemplate such a unified approach. Certainly, contemporary VLSI design 

sof:ware doe s not contemplate such a unified design practice, but within the 

~ex: :ew years we can expect to see such an approach emerging. 

=t i s well to remark at this point, that the techniques which we have 

bee~ ~esc~ibing that transform a high level specification into low level mask 

specifications avoid the usual steps required in custom integrated circuit 

design devoted to ascertaining the well-formedness of the circuit. For example, 

topology tests, logic simulation, design rule checking and timing simulation are 

all procedures that do not necessarily have to be applied to a design generated 

through silicon compilation. That is to say, if the procedural techniques for 

generating the low level mask information are correct, then there is no need to 

ascertain the well-formedness of the resulting structures. Since, however, we 

can expect this software to introduce its own errors, conservative practice will 

require the use of these well-formedness checks for some time to come. Thus, 

the so-called "correctness by construction" approach can be taken seriously only 

by those who believe that it is possible to generate a program that will also be 

correct by construction. 

21 



In this lecture, we have given a view of the various techniques for 

achieving rapid circuit design through the use of program generation of circuit 

elements together with interconnect procedures. While these techniques can 

often lead to rapid design time, they are not very well optimized for 

performance at present. In the next lecture, we will deal with these 

performance conditions as well as the structure of overall design systems. 

22 



Discussion 

The discussion concentrated on the appropriateness of using 
design rule checkers in addition to higher level design tools. 
Professor Randell thought it the wrong level of abstraction -
rather like checking the output of a compiler for program bugs. 
Professor's Allen and Sequin held that it was important in 
practice, both because the design tools themselves might have bugs, 
and because their output might be mixed with hand-produced layouts. 
The use of hierarchical design rule testing in which boxes known to 
be correct were not re-tested was approaching, but is still a few 
years off. 

23 



LSC~URE 3 

PERFORMANCE OPTIMIZATION OF VLSI ARCHITECTURES 

In the previous lectures of this series, we have discussed the many 

factors affecting the choice of representations at various levels in integrated 

circuit design, as well as the transformational process affording connectivity 

between these representations. We also discussed how the use of standard 

canonical forms could be used to maximize the degree of regularity of designs 

and hence minimize the number of individual distinct circuits that have to be 

designed manually by the designer. This led naturally to a consideration of 

programming techniques for the conversion of input functional specifications to 

output mask layout representations. These procedural techniques can be readily 

parameterized and hence used for a wide variety of structures that are regular, 

but nevertheless customized for the individual application. lNhile these 

software techniques are highly valuable and can generate correct layouts very 

quickly, the resulting circuits often consume more area and operate in more time 

than is desirable. We may regard as one of the major challenges of contemporary 

integrated circuit design practice, the need for retaining the efficiency 

provided by procedural techniques, while simultaneously providing the means to 

optimize these designs along the traditional performance dimensions of space, 

time and power. At the outset, it well to remark that perhaps the most 

effective means for performing this optimization is through process innovation, 

a technique that the custom integrated circuit designer usually does not have at 

his disposal. Nevertheless, the change from a one-level-metal technology to a 

24 



two-level-metal technology can result in area savings of a factor of two, and 

the use of novel self-aligned contacts that can be used over active device area 

can add yet another factor of two in area savings. The scaling down in overall 

dimensions of modern IC processes not only implements a given circuit in less 

area, but also provides for a substantial increase in operating speed. 

Currently, there is a trend toward a larger number of CMOS circuits, generally 

implemented in some sort of bulk technology, and we are approaching a period 

when these circuits give acceptable performance in time and space and of course 

provide very low power dissipation. These remarks are meant to indicate that 

the integrated circuit designer should be aware of the tremendous influence that 

the choice of technology has on design practices. For example, the researcher 

who is designing routing programs for the automatic provision of interconnect in 

large scale circuits should realize that an additional level of metal 

interconnect will have profound influence on the routing algorithms under 

development. Thus, it is important to not necessarily regard the technology as 

a given, but to understand where technology improvements can improve the design 

process in ways that could not be equalled by innovative design practice in a 

less aggressive technology. 

When discussing integrated circuit performance, it is well to 

distinguish between architectural performance and circuit performance. We have 

discussed in the first lecture of this series, the limited success obtained 

through the use of constraint representations for algorithmic competence. We 

remarked at that time that it is currently not possible to formally separate 

algorithmic competence from algorithmic performance. Nevertheless, it is 

possible to manipulate a given algorithmic formulation along various performance 

23 



dimensions in a way that is guaranteed not to perturb the underlying competence 

of the algorithm, even though that competence is not explicitly exhibited at any 

stage of the process. A recent theoretical study has shown that the means for 

preserving transformations is critically dependent upon the notion of conflict. 

Thus, if we start with an initial description of the algorithm in some sort of 

source level hardware description language, then we can examine the statements 

in that language to see whether or not there is sequential conflict between 

them. That is if in a sequence of n such statements, none of them depend on any 

of the others, then they may be done in parallel. On the other hand, if a 

sequential dependence is observed, then the effect of this dependence must be 

preserved by the implementation. The on-line detection of such sequential 

conflict has been implemented in a few high performance computer architectures, 

but general techniques for exploring architectural tradeoffs prior to 

fabrication are not in general use at present. We can expect, however, that in 

the near future, techniques for transforming between various classes of 

statements in a high level hardware design language, as well as the manipulation 

of iterative constructs in these languages, can be reliably manipulated to 

exhibit various performance tradeoffs. A good practical example of these 

techniques has recently been demonstrated for the special case of masterslice or 

gate array implementation, where the target architecture is somewhat constrained 

by the need to implement all logic in terms of an interconnected set of NAND 

gates. The basic idea of this approach has been to generate a naive 

implementation automatically from the given input functional specification which 

consists of a set of logic equations. The second step in the process is to 

incrementally improve the naive design which was obtained automatically, by 

26 



applying local transformations selected by the designer to vary the performance 

along dimensions that are important to the practical implementation. These 

transformations are provided to the designer for his possible use and are 

guaranteed not to perturb the correctness of the design from the functional 

point of view. That is to say, a design system is being provided for the 

implementer that constrains his degrees of freedom in manipulating the design, 

such that the original functionality is always preserved. These transforma~ions 

provide for explicit control of technology-specific factors. These include 

timing, fan-in and fan-out, rules for testability, and constraints on the 

numbers of gates and pins on the resulting circuit. The transformations embody 

local techniques that are very familiar to compiler designers, such as the 

identification of common subexpressions, and dead code elimination. In fact, 

the originators of these techniques all come from a software, rather than a 

hardware, background. Not only is it possible to perform these transformations 

under designer control, but it can be expected that any given design can be 

automatically inspected by programmatic means for satisfaction of various 

performance constraints and then a set of heuristics used to select the set of 

transformations needed at the next iteration of the design. Finally, of course, 

by whatever means are chosen, a satisfactory design is obtained and the 

interconnect between the set of NAND gates on the chip is bound according to 

this final satisfactory specification and fabrication proceeds. This is to be 

regarded as a good example of the use of performance transformations within a 

constrained design environment. We can expect to see many such additional 

instances in the future, perhaps in the context of less constrained target 

architectures. 

27 



A frequently used technique for implementing finite state machines is tc 

utilize program logic arrays for the combinational logic part, while providing 

feedback between the output and the input for the representation of state 

information. Nevertheless, these PLA based finite state machines are often 

quite large and it is desirable to try to minimize the area of the logic arrays. 

There are a number of formal techniques for such minimization, based on 

classical techniques from logic, but the designer can often utilize a 

well-developed set of heuristics for this purpose. For example, it may be 

observed that one output column in the PLA is the complement of another, so that 

one of those columns can be derived through an inverter from the other. 

Similarly, we often encounter the presence of state-dependent inputs, such that 

some inputs are only required in one set of states, while other inputs are 

required during other states. When this is the case, the inputs can be 

multiplexed into the input AND array in a state dependent way. Finally, it is 

often possible to choose the encoding of the states in such a way that rows in 

the PLA can be eliminated and this technique can have dramatic savings. It is 

not uncommon for the result of applying these various heuristic techniques to 

yield a 20% saving in the overall area of the design. It is important to 

realize, however, that there is an inherent tension between two tendencies 

displayed in these techniques. On the one hand, we generally prefer to have 

regular structures that do not have ad hoc appendages attached to them, since 

the latter imply additional design time and perhaps difficulty in ascertaining 

well-formedness. On the other hand, as we have just seen, sometimes the 

addition of a small amount of external circuitry, in addition to the basic 

regular structure such as a PLA, can provide dramatic savings in area, as well 

28 



as timing. The designer is thus faced with the need to decide how much 

regularity should be preserved as a function of the savings obtained by 

departing from that regularity. For this reason, designers have tried to group 

these ad hoc heuristic changes into well-formed canonical classes so that, while 

they do perturb the original basic regular design, they do so in constrained 

ways that preserve many of the desirable properties of the circuit. Thus, there 

is a constant battle between the various optimizing factors in the design, 

including the desire for regularity, modularity, hierarchy, minimal area, 

maximum speed, and mimimum power. The design of custom integrated circuits, 

even with the advent of a wide variety of helpful computer-aided design 

I 

software, is still very much an engineering enterprise and it requires a great 

deal of judgment on the part of the designer, as to the proper selection of 

circuit elements. It may be that in time we will be able to capture some of 

this engineering expertise in expert programs, utilizing techniques from 

artificial intelligence. For the present, it seems best to provide a set of 

techniques, constrained in such a way that the original functionality is 

preserved, but providing freedom to the designer to explore the design space and 

discover the consequences of various design decisions quickly and economically. 

This approach to custom integrated circuit design seeks to relieve the designer 

of the need to specify a great deal of low level artwork detail, but instead 

provide the designer with the need to specify only those decisions that are best 

done (under current understanding) by a human designer. 

There are sometimes surprising relationships between logical 

formulations and their consequent utilization of area. An example of such a 

relationship is the use of so-called two-bit decoding with FLAs. In a standard 

29 



FLA, 8ach logical input is supplied to the array in both its true and 

complemented form. ~hus, two input variables account for four logic values that 

must be bussed acr03S the input AND array. It is possible, however, to decode 

these two input values, using standard decoding techniques, such that the 

functional logical load of the four wires previously mentioned is substantially 

increased. If we examine the sixteen possible variations of the logical values 

on these four wires, we find that if the two inputs are not decoded and merely 

supplied in their true and complemented forms to the four wires, then there are 

seven false conditions and one don't care that are contained in this set. This 

means that of the sixteen possible logical configurations that could be enforced 

on these four wires, one-half of them are not possible and hence, we may think 

that the space consumed by these four wires is not doing as much logical work as 

it might. A way to improve this utilization factor is to employ the two input 

decoding. Under such a regime, there is only one false condition out of the 

sixteen possible cases and still one don't care. A number of new logical forms 

are generated automatically in this way, including the provision of the 

exclusive OR between the two input variables. This is a very interesting design 

example since it shows that by external manipulation of the input variables to a 

logic array, the area utilization in terms of logic functionality carried by a 

particular part of the circuit can be increased dramatically. In the design of 

central processing unit circuits, where matching is often needed and hence, 

exclusive ORs required, such techniques can be expected to provide a large gain 

in effective area utilization. Furthermore, since the two input decoding can be 

readily adapted within the driving buffers for the logic wires in the array, the 

cost in increased area outside of the array is minimized. 

30 



Lastly, we should remark on the growing tendency to build large systems 

on an entire wafer, rather than by means of interconnecting a number of discrete 

integrated circuits. When one attempts to build an entire system from a wafer, 

however, the yield of the entire wafer can be expected to be zero, unless 

redundancy and petitioning techniques are imaginatively utilized. Research in 

this area is very new, but already it is clear that a variety of new design 

considerations will have to be introduced, including the study of optimum 

partition size as a function of the defect distribution in a given technology, 

as well as the need to provide flexible routing schemes for defect avoidance. 

These considerations can be expected to have substantial impact on the class of 

algorithms that attempts to exploit locality, such as systolic systems. On a 

wafer based system, it is not possible to guarantee physical proximity of 

logically adjacent elements due to the random occurrence of defects. For this 

reason, it may be necessary to substantially revise the characterization of 

these locally organized systems to reflect the system level technological 

constraints. 

Not only is it important to provide for the manipulation of circuit and 

architectural performance on the circuit itself, but it is also desirable to 

provide for the designer high performance computational environments for not 

only the synthetic task of generating the modules of a given system, but also 

for the more analytic techniques used to ascertain the well-formedness of the 

constituent modules and their hierarchical relation in the resulting system. In 

the early part of this decade, we are witnessing a rapid growth of the design of 

work stations for custom integrated circuit design. Typically, these 

installations are personal computers, providing mainframe CPU capability and 

31 



large address space in order to deal with the large number of artifacts in 

integrated circuit design. Desktop 32-bit architectures of this kind are 

rapidly appearing and seem well suited to this need. They should also p~ovide 

for high resolution black and white and color graphics and a large amount of 

bulk storage capability (several hundred megabytes) directly attached to each 

individual work station. These stations can be connected together by a local 

network to a large file server, that can serve as the main library for all 

designs, as well as a controller far input/output services, including plotting 

and listing. Thus, the custom integrated circuit design environment of the 

future will include a collection of such work stations, interconnected so that 

individual designers are part of a larger community that can share a wide 

variety of computational resources, as well as previously designed circuits. 

One can thus imagine a large circuit being designed by a team of workers who can 

readily communicate their progress to each other. It will be important, 

however, to enhance these systems with the provision of special hardware for 

certain computationally intensive tasks, such as various kinds of artwork 

analysis, including design rule checking. Currently under study are a variety 

of techniques for providing special hardware to speed up such checking by as 

much as two orders of magnitude. Such techniques can be expected to allow the 

designer to interactively generate and analyze a large variety of structures 

without undesirable delay. By the middle of this decade, then, we can expect 

the integrated circuit design community to have at its disposal a set of 

techniques for rapidly, correctly, and economically generating ~ery impressive 

integrated circuits in a way that allows the designers to focus on those 

representational issues that are important to the initially given 

32 



specifications. In this way, the huge potential provided by the ever improving 

modern integrated circuit technology can be exploited and the fears of excessive 

design time expressed in the context of previous design styles can be 

confidently set aside. 

33 

.~. 



Discussion 

Professor Dijkstra queried the need for logic simulator, but 
Professor Allen was emphatic as to its usefulness. There was some 
discussion with Professor's Tanenbaum and Michaelson about how far 
one could take the analogy with software, as in software one re-uses 
resources in time, but in hardware one must replicate in space. A 
system must handle both if the designer is to be able to choose 
solutions appropriately. 

Professor Allen confirmed that the placement programs he had 
mentioned were all written in LISP, and emphasised the importance of 
having all the design tools mounted on one machine. At Berkeley this 
was eased because of the standardisation on VAX machines running 
UNIX, but at MIT they had to contend with a DEC20 and five different 
programming languages, besides the problems of an 18-bit address 
space. 

34 


