ON PROTOCOL ENGINEERING

H. Zimmermann

Rapporteur: F. Hedayati

245

ON PROTOCOL ENGINEERING
Hubert ZIMMERMANN

Centre National d’Etudes des Télécommunications, P.T.T.

Paris, France

Distributed processing will play a key role in the development of data-processing and
telecommunications.The technical novelty of distributed systems resides in the appearance of
protocols to define the dialogue among entities participating in distributed activities.
Protocol sciences are still in an early stage of very rapid development. The complexity of
distributed systems, as well as the variety of applications and configurations require that
their development be based on solid architectural and structured engineering practices. The
experience gained so far in data-processing and in data-transmission have led to the
definition of an architectural framework and an initial set of structuring tools for
distributed systems and their protocols. The corresponding protocol engineering tools are
identified in this paper, along with some areas in which further research should be conducted.
The paper concludes that the key rules for safe development of distributed systems are

simplicity, structuring and standardization.
1 - INTRODUCTION
There is no doubt that distributed processing is

going to play a key role, in both
data-processing and telecommunications.

The most visible part of this evolution started
in the early seventies with the development of
computer communications in research projects
such as ARPANET [l1] and CYCLADES [2]. This
association between traditional data-processing
systems and telecommunications facilities 1is now
offered on a commercial basis by computer
manufacturers in the form of informatic networks

[3] as well as by Telecommunications
Administrations in the form of telematic

services (4].

As important, though less visible to the public,
is the progressive introduction of distributed
processing inside data-processing systems

hemselves and inside telecommunications
networks as well.

Inside data-processing systems, this evolution
corresponds to the converging development of
local area networks (5] and of multiple
micro-processors which themselves can be treated

as networks of communicating processors.

Inside telecommunications networks, distributed
processing is appearing first within circuit and
packet switching nodes which are now developed
as local networks of processors, and second in
"common channel signalling systems” (6) where
the telephone switching network tends to be
controlled by a separate computer network which
transfers and processes all signalling
information.

What exactly is this new technical domain of
distributed processing ? And indeed, 1is it
really new ? At first glance, the equation of
distributed processing is as simple as :

(Distributed processing] =
[Local processing] + [Transmission] [1]

and, since both operands in the right hand part
of eq. [l] are not new, one could conclude that
distributed processing is just a new name for
old methods.

Indeed, the difficulty resides precisely in the
"+" operator in eq. [l], i.e. in how to
associate local processing and transuilssion to
form distributed processing systems. This
operator was felt so important that it was
f{dentified as a technical domain of its owm
under the name of "protocols"” [7] and that the
equation of distributed processing was rewritten
so that it reads

[Distributed processing]=
protocols [Local processing, Transmission](2]

Protocols turn out to be one of the major keys
to distributed processing, which, as outlined
above, i{s an essential ingredient of future data
processing systems and telecommunications
networks.

Despite their recognized importance, one must
admit that "protocol sciences"” are still in
their infancy, and that much work remains to be
done to bring them to the required level of
completeness and maturity.

This situation has gome similarities with the
evolution data=-processing where product
development has been lagging computer science,
and where, nowadays, despite much progress,
software engineering still needs serious work.

246

r—p -

With the help of this experience, one should try
to accelerate and smoothen the development of
protocol science and hasten the establishment of
solid protocol engineering practices.

This paper should be viewed as a contribution to
this collective effort. It attempts to draw from
initial experience in protocols and from past
experience in data-processing, and give some
indications on future directions. Following this
introduction, section 2 of this paper insists on
the importance of a reference architecture and
draws attention to the OSI * Reference Model as
a suitable basis for further architectural
developments. Section 3 calls for the definition
and establishment of simple structuring tools as
a basis for protocol design and {mplementation,
while developments in formal description,
validation and certification techniques are
mentioned in section 4. The conclusion in
section 5 recommends that simplicity,
structuring and standardization be the basis and
the objective of all research and development in
protocols and distributed systems.

2 - PROTOCOLS ARCHITECTURE

2.1 = Need for a reference architecture.

Distributed processing systems are potentially
complex, for the following‘reasons :

[a] Contrary to traditional data-processing
systems, usage of switched data-transmission

networks allows one to envisage a large variety

of configurations when assembling
data-processing and data-transmission elements
to form a distributed system.

[b] Contrary to traditional telecommunications
networks, which offer highly specialized
services, distributed processing systems will be

required to perform any of the large variety of

functions in the still growing field of

applications of information processing.

[¢] Contrary to traditional programming, which
is 99 % based on sequentiality, the natural
starting point for distributed processing is
parallelism which is much more complex than
sequential processing.

(d] Contrary to traditional data=processing,
errors and failures are to be considered part of

everyday's life in distributed processing, and
thus error recovery procedures tend to add their
own complexity to normal case procedures.

It should be noted that points (a], [c] and [d]
above are well under control in
telecommunications networks, while point [b] is
ano problem in data-processing. The inherent
complexity of distributed systems comes from the
conjunction of these constraints within the same
system, where they tend to multiply rather than
simply add.

(*) Open Systems Interconnection

247

How should one tackle the inherent complexity of
distributed processing ? Indeed the well known
trick for solving complex problems consists of
dividing them into less complex sub-problems...
In systems engineering, this trick has been
heightenad to the rank of a technique under the
name of systems architecture. The answer to our
question above 1is clear : systems architecture
techniques should also be used for designing
distributed systems. However, this is not going
to be sufficient because the definition of
distributed processing is actually recursive and
should read :

(Distributed processing] = Protocols
[Distributed processing, Transmission) (3]

Indeed, most distributed systems will be
assembled from already existing distribucted
systems, such as multiple micro-processors,
local area networks, telecommunications
networks, computer networks, etc...

This recurrent construction of distributed
systems will be much facilitated if all
distributed systems would refer to the same
architecture and i{f this architecture would
allow recurrent construction. In other words,
what we need i{s a common reference architecture
for all distributed systems.

How can we get such a common reference
architecture ? If we were Iin a "normal”
situation, this architecture would very likely
emerge from a natural "trial and error”
selection process among various architectures by
which the best architecture would survive while
the others would die... But we are not in that
“normal” situation ! The market is growing so
fast that huge investments will be made before
any selection has taken place. At that time,
selection would be synonymous with
catastrophy... It i{s therefore essential that
the absence of natural selection be supplemented
by a voluntary process so as to obtain in time
[i.e. very early !] the necessary common and
stable reference architecture.

Such a voluntary process has been undertaken by
the ISO* soon joined by the CCITT**, resulting
in the now famous OSI Basic Reference Model (10)
which covers the most urgent needs for a common
reference architecture for informatic networks
and telematic services.

2.2 - The 0SI Basic Reference Model

2.2.1 Purpose of this subsection.

The purpose of this subsection is not to give a
detailed description of the 0SI Reference Model
[the brief overview of the OSI Reference Model
which follows is provided only as a reminder].
The reader interested in a more detalled
description may refer to [8) which is the
official ISO text, or to [9] for a summarized
description.

(*] Internatifonal Organization for
Standardization

(**] Comité Consultatif International pour le
Téléphone et le Tél3graphe.

.

Rather in this subsection, we will attempt to
analyse the design choices made in the 0SI
Reference Model and discuss in which measure
they can apply to any distributed system. We
will successively discuss usage of modelling
techniques (2.2.3], separation between
data-transmission and data-processing [2.2.4],
separation between end-to—end and network
control functions [2.2.5], structure of the
higher Layers [2.2.6.] and structure of the
Application Layer [2.2.7].

2.2.2 Brief overview of the OSI Reference

The 0SI Reference Model deals only with
interconnection aspects, L.e. protocols, of
distributed systems. It uses therefore a
modelling technique Iin which each “real” open
system {s modelled by an "abstract” open system
made of seven layers of "abstract"” subsystems.
This decomposition results in a layered network
architecture made of seven layers, as
fllustrated in figure L.

Each layer plays a specific role in the
architecture, as outlined below :

[a] Physical Layer : The Physical Layer has two
roles. First it is responsible for interfacing
systems to the physical media for 0SI. Second,
the Physical Layer is responsible for relaying
bits, i.e. performing the function of
interconnecting data-circuits. Note that the
control of this interconnection (namely routing)
is performed by the Network Layer and not by the
Physical Layer. (See c below).

[(b] Data Link Layer :The basic function of the
Data Link Layer is to perform framing, and
possibly error detection and error recovery
between adjacent open systems. The Data Link
Layer may also be responsible for coordinating
the sharing of multi-endpoint
physical-connections [e.g. polling and
selecting].

Intermediate
Open System

Names of End
layers Open System

Application

Presentation

Session

Transport

(c] Network Layer : The basic and essential
function of the Network Layer is to perform the
relaying of packets and the routing of both
packets and data-circuits. In addition, the
Network Layer may perform multiplexing, error
control of and flow control when this {s useful
to optimize usage of transmission resources.

[d] Transport Layer : The essential Ffunctions
of the Transport Layer are to perform
end-to-end control and end-to-end optimization
of transport of data between end-systems. The
Transport Layer always operates endto-end. All
functions related to the transport of
information between systems are performed

“within the Transport Layer or in the layers

below.

[e] Session Layer : The Session Layer performs
those functions necessary to support the
dialogue between processes, including
initialization, synchronization and
termination.

[f] Presentation Layer : The function of the
Presentation Layer is to take care of problems
associated with the representation of
informations which applications wish to
exchange or to manipulate. In other words, the
Presentation Layer covers syntactic aspects of
information exchange, permitting
application-entities to be concerned only with
semantic aspects of Informations.

[g] Application Layer : The functions of the
Application Layer are all those necessary for
distributed applications and which are not
available from the presentation service, [i.e.
performed by the Presentation Layer or by any
of the layers below it].

End
Open System

Network

Data-Link

Physical

Physical Medium

Physical Medium

FIGURE 1 : The seven layers of the OSI Reference Model.

248

2.2.3 Usage of modelling techniques

The modelling technique used in the OSI
Reference Model defines the behaviour of an open
system as a whole, i.e. without making any
assumption about its internal organization. This
is very similar to what is done in high level
programming languages which provide an abstract
definition of a data-processing machine which
can be adapted [by a compiler| to a variety or
real computers.

This limitation of protocol specifications to
interconnection aspects without imposing any
specific internal organization {s essential to
permit adaptation [e.g. by means of gateways]
and progressive evaluation towards OSI of
systems which have been implemented before 0SI
standards were available.

This modelling technique is certainly a must for
any distributed Systems architecture. It will
permit partial evolution of implementation
techniques and technologies as well as
progressive introduction of new systems without
making previous implementations [and the
corresponding investments] obsolete.

It should be clear however that any system which
is able to align its internal structure with the
protocols architecture will benefit through ease
of implementation and testing, and ease of
adaptation to evolution of protocols. It is
therefore likely that the reference
architecture, despite it being an abstract
model, will also be a reference for structuring
real systems, just as high level languages tend
to influence the design of real computers.

2.2.4 Separation between data-transmission and

data-processing.

One key design decision in the OSI Reference
Model is the establishmenc of a firm transport
service boundary which splits distributed
systems functions into a data=-transmission
domain on one hand and a (distributed]
data-processing domain, on the other hand, as
illustrated in figure 2

=== —=== s m— - - -~

Distributed
Data
Processing
Functions

The reason for this separation is that data-

- transmission functions form a homogeneous domain

which is "naturally" separated from data
processing for the following reasons :

[a] Data-transmission is functionnaly primitive
since it performs a highly specialized function
while data processing is functionnaly complex
since it covers an unlimited variety of
functions worked on for years becoming a
technical domain of {ts own ;

[b] Data-transmission and data=-processing have
been worked on separately for years, each
becoming a technical domain of its own.

[c] Error recovery in data—-transmission is much
simpler than {n data-processing, due to the fact
that, when transmitting, a copy of the data is
equivalent to the original, permitting easy
retransmission and duplicate elimination.
Conversely, error recovery in data-processing
may be very complex and will often be
application dependent.

[d] Techniques have been developed to perform
data-transmission over network configurations,
(including automatic reconfiguration i. e.
adaptive routing) by taking advantage of the
specificities of data-transmission. Conversely,
most current configurations for distributed
processing are simply either point=to=point or
poilnt=to-multipoint.

These considerations apply to all general
purpose distributed system, leading to the
conclusion that a firm transport service
boundary is an essential feature of any

distributed systems archicecture.

e SRR

Data
Transmission
Functions

FIGURE 2 : Separation between transmission and processing

249

——— et = ———

P——

J——

T TTE——

ey Tsiynis

Of course, this does not mean that the current
definition of the OSI transport service [l0] is
complete enough to satisfy all requirements of
future distributed systems. The 0SI transport
service will have to be expanded to cover new
modes of transmission such as connectionless
(11) and broadcast. In this regard, it is
interesting to note that, in the absence of a
well established [connectionless] message
transport service, message transfer must, for
the time being, be consideredas a specific
application built on top of connection oriented
transport services [l2]. The normal evolution
will be to include it later in the standard
transport service.

2.2.5 Separations between "end-to-end” and
“network”transmission control functions.

Among the data=-transmission functions, the 0SI
Reference Model clearly distinguishes between :

(a] end-to-end transport control functions on
one hand, and

(b] network control functions on the other
hand.

Contrary to what has sometimes been suggested,
the reason for this distinction is not an
administrative one [computer manufacturers would
control the ends while PTTs would control
networks...]. The reason is a strong technical
one, as explained below.

The Network Layer deals with network
configurations, routing [i.e. finding routes],
adapting routes to changing conditions,
recovering from line or node failure,
controlling flow over network configurations.
These network control functions call on specific
techniques which attain a high availability by
means of dynamic reconfiguration, but which are
not well suited for error recovery.

Each of these two layers plays a specific role,
taking advantage of its specific configuration.
This would not be possible if the two layers
were intermixed.

Conversely, the Transport Layer deals only with
simple configuracions (currently, point-to-point
ronnections). In such configurations, the well
known error and flow control techniques
developed for line control procedures can be
used to recover easily from any error [namely
network errors| between ends, and thus to reach
any desired level of overall reliability.

o= === —m— e m — - — - - === -

1
i

Specific i 7 L
Data- ! s ;
Processing ; ,f:::::j:;/ile/ /////T/

i e - o Bl i i e wh

Looking at the current evolution of distributed
processing systems, it appears that this
separation will be essential. Indeed, the need
for reliability network configurations become
more complex since more and more networks of
similar and of dissimilar types [e.g. packet or
circuit switching, local or wide area, private
or public, etc...] are being interconnected. The
requirement to distinguish between the Network
Layer and the Transport Layer will stand and
even will i{ncrease, and thus, it is a wise
choice for any distributed systems architecture
to keep this separation.

2.2.6 Structure of the higher layers.

The 0SI Reference Model structures the
distributed data-processing domain into two
parts [see figure 3]

(a] The lower part [the Session and Presentation
Layers| comprises basic functions of general use
for the operation of distributed agplications,
while

[b] the upper part [the Application Layer]
comprises all "application specific” [i.e.
remaining] functions which make use of basic
functions provided by the lower layers.

Despite its apparent novelty, this type of
structuring is not completely new. It has been
used successfully for many years in the
data-processing field where applications are
constructed on top of basic functioas provided
by operating systems and/or by the basic
constructs of high level languages. Of course
OSI generates new questions since it Ffocuses on
the communication and dialogue aspects while
traditional data-processing has so far paid
lictle attention to communication. Indeed, the
analogy is worth being developed to get a
clearer undestanding of the structuring offered
by the Reference Model in the higher layers.

Keeping in mind that 0SI focusses on
communication, figure 4 provides an informal
comparison among a few basic functions offered
by operating systems and programming languages
on one hand, and functions offered by the OSI
Session and Presentation Layers on the other
hand. .

|
|
1
1
_—— -]

functions [
L 7 !

Basic ////i/" ////, g ,///
4 :

Data- I s b

Processing

Functions

Data=-trans.

Functions i -

FIGURE 3 : Structuring of higher layers.

A,
e,

s

250

The almost universal usage of high level

! The table in figure 4 shows that primitive languages is a clear indication of the validity
J synchronization and communication functions of the approach taken in OSI for the higher
] i Offerei by :pe;g;ing systems find their layers of the architecture. It seems therefore
eq:ivahens ? session f:“CtiD“i' On the reasonable to consider that any distributed
. other hand, languages provide complete system architecture could adhere to the same
. constructs and processing structure which serve structure as 0SI for the higher layers
as a reference for both synchronization and data s
2 - definition. For fnstance, programg are Of course, the current definition of the 0SI
structured into “procedures” which form the Session Layer [13] provides only elementary
\ common reference for sequential synchronization synchronization schemes and will need to be
by means of procedure calls and for declaration enriched with other schemes [e.g. gulti-party
of local data and/or data-types. dialogue], though avoiding unnecessary

complication of synchronizatio h .
The organization of functions in the Session and e) il

' Presentation Layers have clearly been influenced 2.2.7 Structure.of the Applicati L
1 by high level languages [which nowadays, tend ppication Layer.
b themselves to include the types of functions In its current definition, the 0SI Reference
|
t foun in operating systems]. Model says very little about the organization of
i the Application Layer. It is clear however that
| (a] The Session Layer provides the the variety of functions and the need for
synchronization structure and synchronization different assembly of functions in the
H functions required by the application [analogous Application Layer will require general
i with procedures and procedure calls] structuring tools which still need to be
i . developed. In this regard, one should carefull
i [b] The presentation functions required by the follow the work started within ISO and CCITT
"
f application refer to the synchronization scheme about structuring of the Application Layer [l4]
f used by the application [analogous with data where "specific application service elements”
declarations within procedures] call upon “"common application service elements",
just as user programs call upon a library of
[c] Additional sub-synchronization may be common routines. We will come back in section 3
: required by presentation functions to handle on the general question of structuring tools Ffor
i presentation specific functions such as syntax protocols.
| negotiation.
j) TRADITIONAL DATA-PROCESSING 0. S. L.
Operating Systems Prog. Languages Session Layer Pres. Layer
functions functions functions functions
d Run Estab. Sess.Cy
il Send/Receive
i Enqueue/Dequeue Normal data
1 Send/Recelive
E Post / Wait Expedited data
& Semaphore Token
¥
Co-routines TWA dialogue
Procedure Call (Part of TWA)
Data Types Syntax
f Declarations Syntax
I Negotiat.
L
J End Release Sess.CH
Check Points Sync.
Restart Resync.

\

FIGURE 4 : Analogy between a few functions and in OSI
- in traditionnal data-processing

251

—

3 - PROTOCOL STRUCTURING

3.1 General need for structuring tools

The OSI Reference Model provides a solid
framework for organizing distributed systems by
f{dentifying major functional blocks [layers] and
defining the relations among them. However, it
does not specify the detailed functioning and
protocols of each layer, and this remaining task
is far from being trivial.

Indeed, despite the experience gained so far in
networking, the design and implementation of
protocols for each individual layer remains
difficult and relatively risky. This difficulty
results from the inherent complexity of
distributed activities, from the evolutionary
nature of distributed systems [new-applications,
new technologies, new ideas, etc...] and from
the lack of adequate tools.

One should realize that protocol tools are
almost twenty five years late compared with
programming tools, while the market for
distributed systems is growing very rapidly and
will soon equal today's data-processing market.

In this perspective and In order to make sure
that today's investments will not be lost
tomorrow, it is essential that protocols be
designed and implemented in an open-ended
fashion, so that future needs can be
accommodated by extending existing distributed
systems rather than by replacing them.

Such an open-ended approach to distributed
systems and protocols implies a permanent effort
for structuring both design and implementation
of protocols, in order to retain control on
their evolution. This should be facilitated by
the provision of standard structuring tools for
protocol designers to guide them towards well
structured protocols.

A complementary effort will be needed to keep
protocols simple and general while every one

will be tempted to adapt and optimize protocols
to one's particular environment.

It took more than twenty years for the
data-processing community to discover [or admit]
that structuring, generality and simplicity of
constructs provided by high level programming
languages were essential for software
development. The networking community will
hopefully learn much faster by building on past
experience.

In the following subsections, we will discuss
various aspects of the structuring of
distributed activities and protocols, namely
structuring in space [3.2] and in time [3.3],
data structuring (3.4), error recovery (3.5],
parameter setting [3.6] and assembly of
distributed activities [3.7]. We will try to
identify the basis upon which protocols can
already be developed safely, and the areas in
which further studies are still required.

3.2 Structuring in space

The structuring of an activity withk regard to
space, i.e. the configuration of the activity (s
the first aspect to be looked at, since the
complexity of a protocol will be very much
influenced by the configuration of the
activityit drives, f.e. how many entities
constitute it, and which entities communicate
with which.

A first rule for protocol designers should be to
always make explicit the configuration upon

which a protocol operates. [Point to point ,

point to multipoint, n-party conference, etc].
This particularly important when the
configuration varies in time [see section 3.3].

simplest possible configuration, mzking use, {f

necessary of additional substructuring.

The decomposition of an activity into several
sub-activities [see section 3.7] should allow
consider action of complex configurations as an
assembly of simple configurations, or to
restrict usage of complex configuration to
simple functions such as, for instance,
data-transmission [see section 2.2.4].

Point_to point configurations are the simplest

possible configurations and will be the basis

for most protocols.

Star configurations can easily be reduced to
point to point by considering that the central
entity shares its time [multi-processing] among
several point-to-point activities.

Cascades and loops are much more difficult to
control, primarily in case of errors, and should
therefore be used only for simple functions.

Meshed network configurations are even more

difficult to control and should be carefully

avoided, except for data-transmission, or for
research type of experiments.

Of course, further research will permit
identification of functions and modes of
operation adequate for configurations other than
point to point, but, for the time being, and for
operational systems, it seems wise to keep
within the limits indicated above.

3.3. Time structuring

The structuring of an activity with regard to
time, L.e. the synchronization among entities {s
almost as {mportant as its structuring in space.
Indeed, as noted in section 2.1, distributed
processing means multiprocessing and thus is
naturally parallel. Synchronizing parallel
processes has always been tricky and the tools
for doing it are still very elementary. Despite
all of the work done on protocols, the situation
has .not progressed much during the last few
years. It turns out that many of the
difficulties in designing correct protocols come
from synchronization problems, i.e. making sure
that all possible occurrences of events have
been considered and properly handled. There is
no reason to expect the situation to change
suddenly. So, how should one organize
synchronization within distributed activities ?

252

iEr—rg—masess

Here again, one should draw from experience in
traditional data-processing where most
activities are organized in a sequential
fashion, and where usage of parallelism is
restricted to the cases where it i{s easy to
handle (e.g. independent activities in
multiprogramming systems] or unavoidable. The
same orientation should be valid for protocols.
One should as much as possible organize
distributed activities in a sequential fashion

: alternate dialogue for point=to=-point
activities, token-controlled dialogue for
multi-party activities. In the cases where
parallelism is necessary, e.g. for performance
reasons, one should stick to well known schemes
such as producer/consumer communicating through
a queue, or mutual exclusion by means of tokens
used as semaphores or schemes directly derived
from those used in data-link control
procedures.

In cases where parallelism cannot be avoided, it
will still be wise to structure the activity
into sequential phases with well identified
boundaries. Examples of such synchronization
tools permitting the organization of sequential
activities can be found in the OSI session
protocol [15], under the name of "major
synchronization points”.

Further research is clearly necessary to develop
more powerful synchronization schemes. In the
meantime one coule only recommend to stick to
the simple proven schemes mentioned above.

3.4 Data-structuring

Sophisticated and powerful data structuring
techniques have been developed in traditional
data-processing systems and {n particular within
high level programming languages and data base
systems. Remote access to such data=structures
should, of course, be no problem in distributed
systems. However, this is not going to be
sufficient since one expects more from
distributed processing than just remote access.
For instance, distribution should permit better
protection by localizing each piece of data
where it can best be controlled, or improved
reliability by duplicating data in different
systems.

Despite [and because of] their sophistication,
data structures developed for traditional
centralized systems turn out to be difficult if
not impossible to distribute [because of overall
synchronization problems in multi-access] and/or
to duplicate [because of consistency and error
recovery problems]. This area still needs
research in order to get practical solutions,
and it is likely that the constraints on
distribution will lead to different data
organization schemes than those currently used
in centralized data-base systems.

3.5 Error recovery

Distribution means better availabilicy since
failures only have local impact. Howevar it is
necessary to recover from such failures by
reconfiguring and continuing the activity on the
rest of the distributed system.

253

Traditional operating system check-polnt/restart
procedures have only a limited applicability in
distributed systems since they imply
transmission of all data corresponding to the
context to be saved at each checkpoint. It is
only if the corresponding amount of data is
small or if the transmission bandwidth is high
and cheap [e.g. on local area networks] that
these check=pointing techniques may be usable,
otherwise, new schemes are necessary.

The other source of Lnspiration for error
control is datatransmission where much
experience has been gained in on-line error
control procedures. Basically, these procedures
rely on the fact that redundancy of
data-transmission is easy to obtain [a copy of
the data is strictly equivalent to the original]
and that duplicates are easy to eliminate. It
turns out that this type of error recovery
scheme is not generally applicable in the
traditional organization of data-processing
because the execution of a program usually
results in a change in its environment and
therefore a program cannot be executed twice.
There are however domains such as process
control where this type of error control applies
[e.g. ordering the opening of a gate three times
is more reliable but equivalent to ordering it
just once]. It is not unlikely that this simple
scheme could also apply to other domains,
provided this constrain is taken into account in
the early design of the corresponding
activities.

It is clear that much research still needs to be
done to design error control schemes adequate
for distributed systems. Before such new schemes
are available, it would be wise to stick to one
of the two traditional schemes inherited from
data-processing on one hand and from
data-transmission on the other hand.

3.6. Parameter setting

It is often necessary to automatically set or

ad just parameters in a distributed activity, and
check that they are supported by the parties
participating in the activity.

Since this problem does not arise in traditional
data-processing *or in data-transmission, one is
tempted to get inspiration from another source,
namely human activities. [It Ls interesting to
note for instance that the term “negotiation" is
often used to vefer to parameter adjustment].
With this bias, a number of "negotiation
schemes” inspired from diplomacy have been
proposed, with "offers™, “"counterproposals”,
etc..., permitting Iin theory very refined mutual
adaptation and global optimization. The drawback
of these schemes is that they are often complex
and difficult 1f not impossible to use in
practice ; for instance optimization criteria
are obscure as soon as there i{s more than a
single parameter. What happens very often with
such "negotiation” protccols is that
implementers agree on parameters values to use
for each type of application and simply do not
use the negotiation capabilities of the
protocol.

e g e

fae i am e =

b= = e

Keeping in mind that programs are much less
adaptable than humans, the "negotiation” scheme
could be limited, as in [16] to
"Question-Answer” about parameters values
supported and "Set" parameters to values decided
by one of the parties.

In this area too, research is required, no to
design new "negotiation” schemes or protocols,
but to get a deeper understanding of what are
the meaning and the possibilities of parameters
ad justment and optimization in a distributed
environment.

3.7 Assembly of distributed activities

In order to keep protocols simple, while
performing complex activities, it is necessary
to be able to assemble simple activities into
more complex ones. Morever, in order to keep
control of the resulting assembly, it is
essential to keep the fnterface of each activity
to its simplest definition. In other words, the
internal functioning of an activity should not
be visible outside.

This structuring into modules with functional
interfaces is already a well established
tradition in data=-transmission and in
dataprocessing as well. This technique has also
been used in the OSI Reference Model where the
definition of services provided by a layer fis
defined independently of the protocols used to
provide these services. This decoupling between
the services offered and the way they are
provided internally should be used
systematically in distributed systems.

In addition to this decoupling, there is a need
to establish standard assembly schemes so that
each designer need not invent his own.The two
well-known standard schemes currently in use,
namely layering and phases are not sufficient to
cover the variety of situations which will soon
be found in distributed applications. Further
studies are urgently needed in this area.

4 = FORMAL TECHNIQUES

It should not be possible to conclude this paper
on protocol engineering without noting thact, in
the discussion of protocol architecture [section
2] and protocols structuring [section 3] we have
not mentioned the ongoing developments of formal
description, and validation techniques for
protocols [17], nor certification techniques for
protocols implementations [18, 19]. These
studies are also essential for the development
of distributed systems, and the initial resulcts
are already very promising. However, these
techniques will have very little impact {f cthey
do not rest on solid engineering practices
concerning the organization of distributed
systems. This {s the reason why this paper
Insists on establishing solid protocols
engineering practices which, while perhaps less
formal, are simply vital for future networks and
a necessary step in the development of *proctocol
sciences.

5 - CONCLUSION

The future of data-processing and =
data-transmission relies in part on the smooth
and rapid development of distributed systems.
There is very little time to learn, since users
already need products which do not even existing
in research laboratories.

The only way to progress safely and to minimize
the risk is through simplicity, structuring and
standardization. SIMPLICITY is the only choice
for rapidly putting real systems into operation.
STRUCTURING is the only way to manage the
fnherent complexity of distributed systems, and
to maintain control of their necessary
evolution. STANDARDIZATION is the only means to
ensure the required heterogeneity of distributed
systems, by defining precisely the communication
rules and interface specifications to be
followed by each system, leaving the rest of
their design open the innovation.

Hopefully, the necessity of standards for
distributed systems has been perceived early,
both in ISO and CCITT, and the highest priority
has been given to structuring, resulting in the
OSI Reference Model. As indicated in this paper,
finer grain structuring is still required.

Although simplicity is not much favoured by the
"agreement by compromise"” process which is
traditional in standardization bodies, one must
admit that the results obtained so far are quite
acceptable. Moreover it is very likely that
“natural selection” will bring the additional
simplification which may still be necessary in
some cases.

As noted along this paper, much research is

still necessary and researchers have a large
responsibility in the smooth development of “
future distributed syscems.

Moreover, the research and development cycle for
distributed systems is so fast that researchers
often have a direct responsibility in design
choices for commercial products. The research
community should not miss to apply the
fundamental rules of simplicity, structuring and
standardization. In this regard, the active
participation of researchers in the
standardization effort is worth being noted. To
complement this effort to link research with
standardization, one should strongly encourage
research for simple distribuced system.

When simple, structured, standard, distributed
systems have been put into operation and are
used, engineers and researchers will have more
time and more experience to work on optimizing
them, but this is the next step.

254

ey

-

e

==

r I ITY S g N

FURE

Exrrs

Ny maes ey

=

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

REFERENCES

L.G. Roberts, B.D. Wessler, Computer network
development to achive resource sharing,
Proceedings of the SJCC'70, 1970, 543-549

L. Pouzin et al., The CYCLADES Computer
Network, North-Holland, icce Monograph n° 2,
Amsterdam, 1982

A. Meijer, P. Peeters, Computer Networks
Architectures, Pitman, London, 1982

CCITT, Telegraph and Telematic Services
Operations and tariffs, Series F
Recommendations, Yellow Book, 1980

D. Clak, K. Pogran, D. Reed, An introduction
to local area networks, Proceeding of the
IEEE, Vol. 66, n° 11, November 78,

1497-1517

CCITT, Specifications of signalling system
n® 7, Rec. Q 701=741, Yellow Book, 1980

L. Pouzin, H. Zimmermann, A tutorial on
protocols, Proceedings of the IEEE, vol. 66,
n® 11, November 1978, 1346=1370

IS0, Open Systems Interconnection= Basic
Reference Model, IS 7498, 1983

H. Zimmermann, Progression of the OSIL
Reference Model and its applications,
Proceedings of the NTC'8l, December 1981,
F8.1.1 - F8.1.6

(10) Is0/TC97/SCl6, Open Systems,

Interconnection=Transport Service
Definition, DP 8072, 1982

255

(1L)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

I1S0/TC97/5Cl6, Working Draft for an
addendum to IS0 7498 covering
connectionless mode transmission, Doc N
1194, June 1982

CCITT Special Rapporteur on Message
Handling, Draft Recommendation X.MHSLl-
Message Handling Systems - System Model -
Service Elements, September 1982

IS0/ Basic connection oriented session
service definition, DP xxx, March 1983

1S0/TC97/5Cl6, Application Layer Structure,
Doc N 904, January 1982

150/ Basic connection oriented session
protocol specification, DP xxx ,
March 1983.

CCITT, Control Procedure for the Teletex
Service, Recommendation S.62, Yellow Book,

1980

C.A. Sunshine, Survey of protocol
definition and verification techniques,
Computer Network, n® 2, 1978, 346-350

C. Sunshine ed., Proceedings c¢f the Second
International Workshop on Protocol
Specification, Testing and Verification
Idyllwild, California, North-Holland
Ed., May 1982

J. P. Ansart et al., Description simulation
and implementation of communication
protocols using PDIL, ACM SIGCOMM '83 on
communica= tion Architecture and
Protocols, Austin, Texas, March 1983.

ey)~y

DISCUSSION

Dr. Zimmermann pointed out that there was a need for the common
reference architecture in order to cope with heterozeneity as a
result of the rapid evolution of systems.

Dr. Panzieri stated that if systems evolve, then the common
reference architecture would have to evolve likewise. Otherwise how
could the reference model continue to be the best in the face of
evolution?

Dr. Zimmermann replied that in order for systems to interact
with ones that evolve in the future, they must have something in
common. The common reference model would thus provide this minimal
level of commonality that is required.

Professor Randell remarked that a limitation of the reference
model was that it was 'flat' in the sense that the structure could
not be applied recursively.

Dr. Zimmermann replied that the structure did not recognise a
recursive construction of distributed systems but did permit such a
construction.

Dr. Burkhardt pointed out that a recursive functionality was
required at the application rather than the system level.

