
ON PROTOCOL ENGINEERING

H. Zimmermann

Rapporteur: F. Hedayati

245

ON PROTOCOL ENGINEERING

Hubert ZIMMERMANN
Centre National d'Etudes des TtHecommunications. P.T.T.
Paris. F ranee

Distributed processing will playa key role 1n the development of data-processing and
telecommunications. The technical novelty of distributed systems resides in the appearance of
protoco ls to define the dial ogue among entities participating in distributed activities.
Protocol sciences are still in an early stage of very rapl~ development. The complexity of
distributed systems, as well as the variety of applications and configurations reouire that
their development be based on solid architectural and structured engineering practices. The
experience gained so far in data-processing and 1n data-transmission have led to the
definition of an architectural frame~ork and an initial set of structuring tools for
distributed systems and their protocols. The corresponding protocol engineering tools are
identified in this paper, along with some areas in which further research should be conducted.
The paper concludes that the key rules for safe development of distributed systems are
simplicity, structuring and standardization.

l - INTRODUCTION

There is no doubt that distributed processing is
going to playa key role, in both
data-processing and telecommunications.

The mOSt visible part of this evolution started
in the early seventies with the development of
computer communications in research projects
such as ARPANET [11 and CYCLADES [21. This
association between traditional data-processing
systems and telecommunications facilities is now
offered on a commercial basis by computer
manufacturers in the form of informatic networks
[3J as well as by Telecommunications
Administrations in the form of telematic
services (4 I.

As important, though less visible to the public,
is the progressive introduction of distributed
processing inside data-processing systems

hemselves and inside telecommunications
networks as well.

Inside data-processing systems, this evolution
corresponds to the converging development of
local area networks [SJ and of multiple
micro-processors which themselves can be treated
as networks of communicating processors.

Inside telecommunications networks, distributed
processing is appearing first within circuit and
packet switching nodes which are now developed
as local networks of processors, and second in
"common channel signalling systems" (6) where
the telephone switching network tends to be
controlled by a separate computer network which
transfers and processes all signalling
information.

~hat exactly is this new technical domain of
distributed processing? And indeed, is it
really new? At first glance, the equation of
distributed processing is as simple as :

[Distributed processing] ~

LLocal processing] + [Transmission] [11

and, since both operands in the right hand part
of eq. (1 J are not new, one could conclude that
distributed processing is just a new name for
old methods.

Indeed, the difficulty resides precisely in the
"+" operator in eq. (II, i.e. in how to
associate local processing and transtlission to
form distributed processing systems. This
operator was felt so important that it was
identified as a technical domain of its own
under the name of "protocols" [7J and that the
equation of distributed processing was rewritten
so that it reads :

[Distributed processingJ-
protocols [Local processing. TransmissionJ(2]

Protocols turn out to be one of the olajor keys
to distributed processing, which, as outlined
above, is an essential ingredient of future data
processing systems and telecommunications
networks.

Despite their recognized importance, one must
admit that " protocol sciences" are still in
their infancy, and that much work reD-lains to be
done to bring them to the required level of
completeness and maturity.

This situation has SOme similarities with the
evolution data-processing where product
development has been lagging computer science.
and where, nowadays, despite ~uch progress,
software engineering still needs serious work.

With the help of this experience, one should try
to accelerate and smoothen the development of
protocol science and hasten the establishment of
solid protocol engineering practices.

This paper should be viewed as a contribution to
this collective effort. It attempts to draw from
initial experience in protocols and from past
experience in data-processing, and give some
indications on future directions. Following this
introduction, section 2 of this paper insists on
the importance of a reference architecture and
draws attention to the 051 * Reference Hodel as
a suitable basis for further architectural
developments. Section 3 calls for the defit,ition
and establishment of simple structuring tools as
a basis for protocol design and implementation,
while developments in formal description,
validation and certification techniques are
mentioned in section 4. The conclusion in
section 5 recommends that simplicity,
structuring and standardization be the basis and
the objective of all research and development in
protocols and distributed systems.

2 - PROTOCOLS ARCHITECTURE

2.1 - Need for a reference architecture.

Distributed processing systems are potentially
complex, for the following'reasons

(aJ Contrary to traditional data-processing
systems, usage of switched data-transmission
networks allows one to envisage a large variety
of configurations when assembling
data-processing and data-transmission elements
tQ form a distributed system.

(b] Contrary to traditional telecommunicati ons
networks, which offer highly specialized
services, distributed processing systems will be
required to perform any of the large variety o f
functions in the still growing field of
applications of information processing.

{c] Contrary to traditional programming, which
is 99 % based on sequentiality, the natural
starting point for distributed processing is
parallelism which is much more complex than
sequential processing.

[d] Contrary to traditional data-processing,
errors and failures are to be considered part o f
everyday's life in distributed processing, and
thus error recovery procedures tend to add their
own complexity to normal case procedures.

It should be noted that points (a], (c] and (d]
above are well under control in
telecommunications networks. while point (b] is
no problem in data-processing. The inherent
complexity of distributed systems comes from the
conjunction of these constraints within the same
system, where they tend to multiply rather than
simply add.

{* J Open Systems Interconnection

247

How should one tackle the inherent complexity of
distributed processing? Indeed the well known
trick for solving complex problems consists o f
dividing them into less complex sub-problems ..•
In systems engineering, this trick has been
heightened to the rank of a technique under the
name of systems architecture. The answer to our
question above is clear : systems architecture
techniques should also be used for designing
distributed systems. However, this is not going
to be sufficient because the definition of
distributed processing is actually recursive and
should read :

(Distributed processing] - Protocols
(Distributed processing, Transmission] [3]

Indeed, most distributed systems will be
assembled from already existing distributed
systems, such as multiple micro-processors,
local area networks, telecommunications
networks, computer networks. etc .••

This recurrent construction of distributed
systems will be much facilitated if all
distributed systems would refer to the same
architecture and if this architecture would
allow recurrent construction. In other words,
what we need is a common reference architecture
for all distributed systems.

How can we get such a common reference
architecture ? If we were in a "nor~al"

Situation, this architecture would very likely
emerge f rom a natural "trial and error"
selection process among various architectures by
which the best architecture would survive while
the others would die •.. But we are not in that
"normal" situation! The market is frowing so
fast that huge investments will be aade before
any selection has taken place. At that time,
selection would be synonymous with
catastrophy .•. It is therefore essential that
the absence of natural selection be supplemented
by a voluntary process so as to obtain in time
[i.e. very early!] the necessary common and
stable reference architecture.

Such a voluntary process has been undertaken by
the ISO* soon joined by the CClTT**, reSUlting
in the now famous 051 Basic Reference Model (10)
which covers the most urgent needs for a common
reference architecture for informatic networks
and telematic services.

2.2 - The 0 51 Basic Reference Model

2.2.1 Purpose of this subsection.

The purpose of this subsection is not to give a
detailed description of the 051 Reference Model
(ehe brief overview of the 051 Reference Model
which follows is provided only as a reminder].
The reader interested in a more detail~d
description may refer to [8J which is the
official ISO text, or eo [9J for a summarized
description.

(*] International Organization for
Standardization
(**] Comite Consultseif International pour le
Teldphone et Ie Telegraphe.

Rather in this subsection, we will attempt to
analyse the design choices made in the OS t
Reference Model and discuss in which measure
they can apply to any distributed system. We
will successively discuss : usage of modelling
techniques [2.2 . 31, separation between
data-transmission and data-processing [2.2.41,
separation between end-to-end and network
control functions [2.2.5J, structure of the
higher Layers [2.2.6.J and structure of the
Application Layer {2.2.7J.

2.2.2 Brief overview of the 05 1 Reference
Model

The OSt Reference Model deals only with
interconnection aspects, i.e. protocols, of
distributed s ystems. It uses therefore a
modelling technique in which each "real" open
system is modelled by an "abstract" open system
made of seven layers of "abstract" subsystems.
This decomposition results in a layered network
architecture made of seven layers, as
illustrated in figure l.

Each layer plays a specific role in the
architecture, as outlined below :

raj Physical Layer : The Physica l Layer has two
roles. First it is responsible for interfacing
systems to the physical media for 051 . Second,
the Physical Layer is responsible for relaying
bits, i . e. performing the function of
interconnecting data-circuits. Note that the
con trol of this interconnection (namely routing)
is performed by the Network Layer and not by the
Physical Layer . (See c below).

(bl Data Link Layer :The basic function of the
Data Link Layer is to perform framing, and
possibly error detection and error recovery
between adjacent open systems. The Data Link
Layer may also be responsible for coordinating
the sharing of multi-endpoint
physical-connections {e.g. polling and
selec ting] •

Names of
layers

End
Open System

Intermediate
Open System

Application

Presentation

Session

Transport

Network

Data-Link

Physical

I Physical Medium J I

{cl Network Layer: The basic and essential
function of the Network Layer is to perform the
relaying of packets and the routing of both
packets and data-circuits. In addition, the
Network Layer may perform multiplexing, error
control of ar.d flow control when this is useful
to optimize usage of transmission resources.

[d] Transport Layer: The essential functions
of the Transport Layer are to perform
end-to-end control and end-to-end optimization
of transport of data between end-systems. The
Transport Layer always operates end to-end. All
functions related to the transport of
information between systems are performed
within the Transport Layer or in the layers
below.

(el Session Layer: The Session Layer performs
those functions necessary to support the
dialogue between processes, including
initialization, synchronization and
termination.

[f] Presentation Layer: The function of the
Presentation Layer is to take care of problems
associated with the representation of
informations which applications wish to
exchange or to manipula t e. In other words, the
Presentation Layer covers syntactic aspects of
information exchange, permitting
application-entities to be concerned only with
semantic aspects of informations.

(g] Application Layer : The functions of the
Application Layer are all those necessary for
distributed app l ications and ~hich are not
available from the presentation service, [i.e.
performed by the Presentation Layer or by any
of the layers below it].

End
Open System

Physical ~edium I
fIGURE 1 The seven layers of the OSl Reference Hodel .

248

..

2.2.3 Us age of modell ing techniques

The modelling technique used 1n the 051
Re ference Model defines the be haviour of an open
system as a ~hole, i.e. without making any
assumption about its internal o rganizati on. This
is very s imilar to what is done in high level
pr ogramming languages which provide an abstract
definition of a data-processing machine which
can be ada pt ed [b y a compiler] to a va riet y o r
real computers.

This limitation of protocol specifica ti ons to
interconnection aspects withou t impos ing any
specific int e rnal o rganization is essen tial to
permit adaptation {e.g . by means of gateways]
and progressive evaluation towa rd s OS1 of
systems which have bee n implemented befo re OS1
sta ndards were available.

This modelling technique is ce r ta inly a must fo r
any distributed Sys tems arc hit ec ture. I t will
permit partial evolution of implementation
techniques and technologies as we ll as
progressive introduc tion of new systems wit hout
making previous implement a tions (and the
corresponding investmentsJ o bsolete.

It should be clea r however that any system which
is able t o a li gn its interna l s tructure with the
protocols a r chitecture will benefit through ease
of implementation and testing, and ease of
adaptation to evolution of protocols . It is
therefore likely that the r eference
archit ecture, despite it being an abs.tract
model. will also be a refe r ence for s tructuring
real systems. j us t as high level languages tend
to influence the des i gn of r eal compute r s.

2.2.4 Se para tion between data-transmission and
data-processing.

One key design decision in the OS I Re ference
Model i s the establishment of a f irm transport
service boundary which splits distributed
systems functions i nto a da ta-transmission
domain on one hand and a [dis tributed] .
data-processing domain , on the o t her hand, as
illustrated in figure 2

Distributed
Data
Processing
Functions

Data
Transmission
Functions

1- _.

The reason fo r this sepa ration is that data­
transmission functions form a homogeneous domai n
which is "naturally" separated from data
processi ng for the following reanons :

raj Data- transmiss i on is func ti onnaly pr imi ti ve
since it performs a highly specialized function
while data processing is functionnaly complex
since it covers an unlimited variety of
func t ions worked on fo r yea rs becoming a
technica l doma in of its own ;

[bl Da t a-t ransmission and data-processing have
been worked on separa tely f o r yea r s , each
becoming a technica l domain of its own.

{c] Er r or recovery in da ta-transm i ssion is much
simple r than in da t a - pr ocessi ng, due to the fact
that , when transmitting, a copy of the da ta is
equivalent to the o riginal, permi tting easy
retransmission a nd duplicate el imination.
Conversely, error recovery in data-processing
may be very complex and will of ten be
applicat ion dependent.

[d] Techniq ues have been developed to pe rf orm
data-transmission ove r network configurations ,
(includi ng automatic reconfiguration i. e.
adaptive routing) by taking advantage of the
specificities of data-transmission . Conve r sely ,
most current conf igurations for distributed
processing are s imply either point-to-point or
poin t-c o-multi poin t.

These considerations ap ply to all gene ral
purpose distributed sys tem, leading to the
conclusion that a f irm transport se rvice
bounda r y is an essential fea ture of any
distributed systems archi tecture.

11-----11 1'-------11

nCURE 2 Separati on between transmission and proc ess ing

249

..

Of cou r s e. this does not mean that the current
definition of the OS 1 transport service {lOI i s
comp l e t e e nough to satisfy all requirement s o f
futu re distributed systems . The aS ! transport
service will have to be expanded to cover new
modes of transmission such as connectionless
(llJ and broadcast. In mis regard, it is
interesting to no te that, In the absence o f a
well established {connectionless] message
transport se rvice , message transfer must , for
the time being, be consideredas a specific
application built on top of connection o ri ented
tra nsport se rvice s [12J. The normal evolution
will be to include it later In the s tandard
transport s ervice.

2 . 2.5 Sepa rations between "end-co-end" and
"netwo r k"t ransml s slon control functions .

Among the data-transmission fu nctions, t he OS1
Refe rence Mode l c learly distinguishes between

(a/ end-t o-end transpo rt con trol functions on
one hand, and
(bl ne twork con trol functions on the o ther
hand.

Contrary to what has sometimes been s uggested,
the reason for this distinction is not an
administrative one [compute r manufactu r ers would
con trol the ends while PTTs would control
networks ... I. The reason is a strong technica l
one, as explained below .

The Network Layer deals with network
confi gurations, roucing [i.e. finding routes ! ,
adap t ing r ou te s t o changing conditions,
recovering from line o r node failure,
co ntro lling flow over netwo r k configurations.
These netwo rk control functions c alI o n specific
techniques which a ttain a high availability by
me ans o f dynamic reconfiguration, but which are
no t well suited for e rr or recovery.

Each of chese two layers ?lays a s pecific role,
caking advan t age of ics specific configuration.
This would not be possib le if the two laye rs
were in t e rmixed.

Co nver sely, the Transport Layer deals only with
s imple configu r ations (currently . pOint-to-point
:onnections). In such configurations, the well
known error and flow control techniques
developed for line control procedures can be
us ed to recover easily from any error [namely
netwo r k e rro r s] between ends, and thus to r each
any desired level of overall reliability.

Spec ific
/
,

Da ta - // Pr ocess i ng -;r- -/ -/ - - - --func ti ons -
Basic /'/
Data - / / /'

//
,

Proce ssing /
Functions

>~//~ T'" - - - - - --
/ / Data- trans. ./ /' / Functions ,

fiGURE J St ructuring o f h igher la ye rs.

..

Looking a t the cu rrent evolu ti on of distributed
pr ocess i ng systems , it appears that this
sepa r a ti on \,/ 111 be essential. Indeed , the need
f o r reliability ne twor k configu rati ons become
mo re comp lex since more and mo re ne tworks of
simila r and of d issimila r types (e . g . packet o r
ci rcuit s wit ching , local or wi de a r ea , private
o r publi c , etc ., . J are bei ng int e rconnec ted. The
reguirement t o d isti nguish between the Network
Layer and t he Transport Layer will s tand and
even will increase, and thus. it i s a wise
choice fo r any distribut ed sys t ems a r ch it ec ture
to keep this sepa rati on.

2.2 .6 Structure o f the higher layers.

The 05 1 Reference Model structures the
dist ribut ed data-processing doma in into t wo
pa rt s (see figu re 31 :

la] The lower part [the Sess i on and Presentat ion
Laye rs] comp ri s es basic fu nctions of gene ral use
fo r the operati on o f distributed a~plications,
wh ile

(b] the upper part (the Application Layer)
comprises all "application specific" (i.e .
remaining) functions which make USE o f basic
functions pr OVided by the lower larers.

Desp it e its apparent novelty , this type o f
s tructuring is not completely new. It has been
used s uccessfully for many yea r s in the
dat a-processing field whe re applica ti ons are
cons tructed on t op of basi c functions provided
by ope rating systems andlor by the basic
cons tructs o f high leve l l a nguages. Of cours e
0 51 gene rates new questions since it focuses on
the communication and dialogue aspects whil e
traditional data - processing has so far paid
little a tte nt i on t o communicati on. [ndeed. the
analogy is worth being developed to get a
clea rer undestanding of the s truct u ring o ffered
by the Reference Model i n the hi gher la yer s .

Keep ing in mind that OS I foc usses on
commun ication, figure 4 provides an informal
c ompar i son among a few basic functions o ffered
by operating systems and programming languages
o n one hand , and functions offered by the 051
Sess ion and Presen tation Layers on the other
hand.

/;///
/ - -~- -'

/'

/ ,

77/ I
i
I

250

..

The table in figure 4 shows that primitive
synchronizati on and communication functions
offered by operating systems find their
equivalent 1n OS! session functions. On the
other hand, languages provide complete
constructs and processing structure which serve
as a reference for both synchronization and data
definition . For instance, programs a re
structured lnto "procedures" which form the
common reference for sequential synchronization
by mea ns of procedure calls and for declaration
of local data and / or data-types.

The organizati on of functions 1n the Session and
Pre sentation Layers have clearly been influenced
by high level languages [which nowadays, tend
themselves to include the types of functions
foun in ope rating systems] .

{a] The Sessio n Layer pr ovides the
synchronization structu r e and synchronizati on
f unctions required by the applicati on (analogous
with procedures and procedure calls]

(b] The presentation functions required by the
application refer to the synchronization scheme
used by the application (analogous with data
declarations within procedures]

(cl Additional sub-synchronization may be
required by presentation functions to handle
presentation specific functions such as syntax
negotiation.

TRADITIONAL DATA-PROCESSING

Operating Sys t ems Prog. Languages
functions functions

Run

Enqueue/Deoueue

Post / Wait

The almost universal usage of high level
languages is a clear lndication of the validity
o f the approach taken In 051 fo r t~e higher
layers of the architecture. It seeols therefore
reasonable to conSider that any distributed
system architecture could adhere to the same
structure as 051 for the higher la r ers.

Of course, the cu rrent definition of the 051
Session Layer (13] provides only elementary
synchronization schemes and will need to be
en ri ched with other schemes [e.g. aulti-party
dialogue I , though avoiding unnecessary
complication of synchronization schemes.

2.2.7 Structure of the Application ~ayer.

In its current definition, the 051 Reference
Hodel says ve r y little about the o r ganization of
the Application Layer. It is clear however that
the variety of functions and the nEed for
different assembly of functions in the
Application Layer will require genEral
structuring tools which still need to be
developed. In this regard, one should carefully
follow the work started within ISO and CClTT
about s t ructuring of the Application Layer (14J
where "specific application servi ce elements"
call upon "common application service elements",
just as use r pr ograms call upon a library of
common routines. We will COme back in section 3
on the ge neral question of structuring tools for
pro t ocols.

O. S. 1.

Session Layer Pres. Layer
functions functions

Estab. Sess.C
Send / Receive
Normal data
Send/Receive
Expedited dat

Semaohore Token

Co- routines TWA dialogue

Procedure Call (Part o f TtJA)

Data ~es

Decla r ations

End Release Sess.C

Check Points Sync.

Restart

FIGURE 4

Resync.

Analogy between a few functions and in 051
in traditionnal data-processing

25 1

~ntax

Syntax
Negotiat.

) - PROTOCOL STRUCTURING

3.l Cenera l need for structuri ng tools

The OSt Reference Model provides a solid
framewo rk for organizing distributed systems by
identifying major functional blocks [layers] and
defining the relations among them. However , it
does not specify the deta iled functioning and
protocols of each layer, and this remaining task
is far from being trivial .

indeed, despite the experience gained so far in
networking. the design and implementation of
protocols for each individual layer remains
difficult and r ela tively risky. This difficulty
results from the inherent complexity of
distributed activities , from the evolu tionary
nature o f dist ributed systems [new-ap plications,
new technologies, new ideas, etc •..) and from
the lack of adequate tools.

One should realize that protocol tools are
almost twenty five years late compared with
programming tools, while the market for
distributed systems is growing very rapidly and
will soon equal today's data-processing market.

tn this perspective and in order to make su re
that today's investments will not be lost
tomorrow, it is essential that pro tocols be
designed and implemented in an open-ended
fashion , so that future needs can be
accommodated by extending exist ing distributed
systems rather than by replacing them.

Such an open-ended approach to distributed
systems and protocols implies a permanent effort
for structu r ing bo t h design and implementation
of pro tocols, in order to retain con trol on
their evolution. This should be facilitated by
the provision of standard structuring tools fo r
protocol designers to guide them towards well
structured protocols.

A complementa ry effort will be needed to keep
protocols simple and general while eve ryone
will be tempted to adapt and optimize pro t ocols
to one ' s particular envi r onmen t .

It took more than twenty yea rs for the
data- processing community to discover [or admit]
that structu ring , generality and simplicity of
constructs provided by high level pr ogramming
languages were essential fo r softwa re
development . The networking community will
hopefully learn much faster by building on past
experience.

In the following subsections, we will discuss
various aspects of the structuri ng of
distributed activities and protocols , namely
structu ri ng in s pace (3.2) and in time (3.3],
data structuring [3.4), error recovery [3.5J.
parameter setting [3.6) and assembly of
dis tri buted activities [3.7]. We will try to
identify the basis upon which protocols can
already be deve loped safely , and the areas in
which further studies are still required.

3 . 2 Structuri ng in space

The structuring of an activity wit~ regard to
space, i.e. the configuration of the activity is
the first aspect to be looked at , since the
complexity of a protoco l will be very much
influenced by the configuration of the
activity it drives, Le. how many entities
constitute it, and which entities communicate
with which.

A first rule for pro t ocol designers should be to
always make explicit the configuration upon
which a protocol ope r ates. [Pointt-o point,
point to multipoint , n- party conference, etc].
This particularly . important when the
configuration varies in time [see section 3 . 3).

A second rule should be to always stick to the
Simplest possible configuratTon ~- lll£.king use, if
necessary of additional subs tructur ing.

The decomposition of an activity ir,to several
sub-activities [see section 3.7] should allow
consider action of complex configura tions as an
assembly of simple configurations. or to
restrict usage of complex configuration to
simple functions such as, for instance,
data-transmission (see section 2.2.4].

Point to point configurations are the simp lest
possible configurations and will be the basis
for most protocols.

~ configurations can eas ily be reduced to
point to point by considering that the central
entity shares its time (mu lti-proce ssing] among
several pOint-to-po int activit i es.

Cascades and loops are much more difficult to
control, primarily in case of errors, and should
therefore be used only for simp le functions.

Meshed network configurations are even more
difficult to control and should be carefully
avoided, excep t for data-transmission, or for
research type of experiments.

Of course, further research will permit
identification of functions and modes of
operation adequate for configurations o t her than
poin t to point, but, fo r the time being , and for
operational systems, it seems wise to keep
within the limits indicated above .

3.3. Time st ructuring

T~e struc turi ng of an activity with regard to
tlme , i.e. the synchroniza tion among entities is
almost as important as its structuring in space .
Indeed, as noted in section 2.1, distributed
processing means multiprocessing and thus is
naturally para llel. Synchronizing parallel
processes has always been tr i cky a nd the tools
for doing it are still very elementary. Despite
all of the work done on pr otoco ls, the situation
has . no t progressed much during the last few
years. It turns out that many of the
difficulties in designing correct protocols come
from synchroniza tion problems, i.e. making sure
that a ll possible occurrences of events have
been cons i~ered and properly handled. There is
no reason to expect the situation to change
suddenly. So. how should one organize
sync hronization within distributed activities

252

Here again , one should draw from experience in
t raditional data-processing vhe re roost
activities are organized in a seq uent ial
fashion, and vhere usage of paral l elism is
restricted to the cases vhere it is easy to
handle [e . g. independent activities in
multiprogramming sys tems) o r unavoidable . The
same orientation should be valid for protocols.
One should as much as possible organize
distributed activities in a sequential fashion
: alternate dialogue for point - to- point
activities, token- controlled dialogue for
multi-pa r ty activit ies . In the cases where
pa rall elism is necessa ry, e.g. fo r pe rformance
reasons, one should stick to well known schemes
such as pr oducer/consumer communicating through
a queue, or mutual exclusion by means of tokens
used as semaphores or schemes directly derived
from those used in da ta- link control
procedures.

In cases where parallelism cannot be avoided , it
viII still be wise to structure the activity
into sequentia l phases with well identified
boundaries . Examples of such synchronization
tools pe rmitting the organization of s equential
activities can be found in the ost sess ion
protocol (IS), under the name of "::oajor
synchronization points".

Further research is clea rly necessa ry to develop
::Do re powerful synchroniza ti on schemes. In the
meantime one 'coule only recommend to stick to
the simple proven schemes mentioned above .

3.4 Data-structuring

Sophisticated and powerful data structuring
techniques have been developed in traditional
data- processing systems and in particular within
high level pr ogramming languages and data base
systems. Remo te access to such data-structures
should, of cou rse, be no problem in distributed
systems . Howeve r, this is not going to be
sufficient since one expects more from
distributed processing than just remote access.
For instance, distribution should pe r mit better
protection by localizing each piece of data
where it can best be cont r olled, o r improved
reliability by duplicat ing data in different
systems.

Despite (and because ofJ their sophistication,
data structu r es developed for traditional
centralized systems turn out to be difficult if
not impossible to distribute (because of ove rall
synchronization prob l ems in oulti-accessl and /o r
to duplicate (because of consistency and error
recovery problems] . This area still needs
research in orde r to get practical solutions,
and it is likely that the constraints on
distribution will lead to different data
o rganization schemes than those currently used
in centralized data-base systems.

J . S ~~ecovery

Distribution means better availability since
failu r es only have local impact. Howevar it is
necessary to recover from such failures by "
reconfiguring and continuing the activity on the
rest of the distributed sys tem.

253

..

Traditional operating system check-point/res tart
procedures have only a limited applicability in
distributed systems since they imply
transmission of all data corresponding to the
conte xt to be saved at each checkpoint. It is
only if the co rresponding amount of data is
small o r if the transmission bandwidth is high
and cheap (e.g. on local area networks] that
these check-poi nting techniques may be usable,
otherwise, new schemes are necessary.

The other sou rce of inspiration for error
control is datatransmission where much
experience has been gained in on-line error
control procedures. Basically , these procedures
rely on the fact that redundancy of
data-transmission is easy to obt ain [a copy of
the data is strictly equivalent to the o riginal]
and that duplicates are easy to eliminate. It
turns out that this type of error recovery
scheme is not generally applicable in the
traditional o rganization of data - processing
because the execution of a program usually
results in a change in its environment and
therefore a program cannot be executed twice.
There are however domains such as process
control where this type of error control applies
(e .g. ordering the opening of a gate three times
is mo re reliable but equivalent to ordering it
just once]. It is no t unlikely that this simple
scheme could also apply to other domains,
provided this constrai n i s taken into account in
the early design of the co rresponding
ac tivities.

It is clea r that much research still needs to be
done to design erro r con t rol schemes adequa te
for distributed systems . Before such new schemes
are available, it would be wise to stick to one
of the two traditional schemes inherited from
data - processing on one hand and from
data-t ransmission on the other hand.

3.6 . Parameter set t ing

It is often necessary to automatically set o r
adjust pa rameters in a distributed activity , and
check that they are supported by the par ties
participating in the activity .

Since this problem does not arise in traditional
data-proc~ssing ~ r in data-transmission , one is
teopted to get inspiration from another source,
namely human activities. Itt is interesting to
note for instance that the term "negotiation" is
often used to refer to parameter adjustment) .
~ith this bias , a number of "negotiation
schemes"' inspi red f rom diplomacy have been
proposed. vith "offe rs", "counterproposals" ,
etc . ••• permitting in theo ry ve r y refined mutual
adaptation a nd global optimization. The drawback
of these schemes is that they a r e often complex
and difficult if not impossible to use in
practice ; for instance optimization c riteria
a re obscure as soon as there is more than a
single pa rameter. What happens very often with
such "negotiation" protocols is that
implementers ag r ee on parameters values to use
for each type of applica tion and simply do not
use the negotiation capabilities of the
pr otocol.

Keep ing 1n mind that prog r ams are much less
adaptabl~ t han humans I the "negotiation" schl~me

could be limited. as in [t6J to
"Question-Answer" about pa rame ters va lues
suppo r ted and "Sec" pa r ameters to values decided
by one of the parties.

In this area coo, research 1s required, no to
design new "negotiat ion" schemes or protocols,
bu t to get a deepe r understanding of what a re
the meaning a nd the pOSS ibilit ies o f parameters
adjustment and optimiza tion in a distributed
environment.

3.7 Assembly of distr i buted activities

In order to keep prot ocols simple , wnile
perfo r ming complex activities , it 1s necessary
co be able to assemble simple activities lnto
mo re complex ones . Mo rever, 1n order t o keep
con trol of the resulting assembly , it is
essen tial to keep the interface of each activity
to its simplest definition . In other words, the
internal functioning of an activity should not
be visible outside.

This structuring into modules wi th functi onal
interfaces is al r eady a we ll es t ablished
tradition in data- t rans mi ss ion and in
dataprocessing as well. This technique has also
been used in the OSI Re ference Model where the
definition of services pr ovided by a l ayer is
defined independently of the prot ocols used to
provide these $ervices . This decoupling between
the se rvices offe red and the way they are
provided internally shoul d be used
systematical ly in distributed systems .

In addition to this decoupling . there is a need
to estab lish standard assembly schemes so that
each designer need not invent his own. The two
well-known sta ndard schemes currently in use,
namely laye ring and phases are not sufficient to
cover the variety of situations which will soon
be found in distributed applications. Further
s tudies are urgently needed in this area.

4 - FORMAL TECHNIQUES

It should not be possible to conclude this paper
on protocol enginee r ing withou t noting that, in
the disc ussio n of pro tocol architecture [section
2J a nd protocols structu ring [section 3J we have
no t mentioned the ongoing deve l opments of formal
description, and validation techniques for
p rotocols (t7J, nor certifica t ion techniques fo r
protocols implementations (18, 19J. These
studies are also essen tial for the development
of distributed sys t ems , and the initial results
a re al ready very promising. However, these
techniques will have very little impact if they
do not rest on so lid engineering practices
conce rning the o rganization of dist r ibuted
systems . This is the reason why this paper
insists on estab lishing so lid pr otoco l s
enginee ring practices which , while perhaps less
fo rmal, are simply vital for fu ture netwo r ks and
a necessary s te p in the development of 'protocol
sc iences .

..

5 - CONCLUSION

The future of data- pr ocessing and
data-transmission relies in part on the smooth
and rapid development of distributed systems.
The r e 1s very l ittle time to learn, since users
already need prod ucts which do not even existing
in research laboratories.

The only way to progres s safe ly and to minimize
the r i sk is through simplicity, st ructuring and
standardization. SIMPLICITY 1s the only cho i ce
for rapidly putting rea l systems into ope rat ion.
STRUCTURING is the only way to manage the
inherent comp'lexity of distributed systems, and
to maintain control of their necessary
evolu tion. STANDARDIZATION is the only means to
ensure the required he terogeneity of distri~uted
systems , by defining pr ecisely the communication
rules and in terface specificatio ns to be
followed by each sys tem l leaving the rest of
thei r design open the innovation .

Hopefully, the necessity o f standards for
distributed sys tems has been perceived early,
both in ISO and Ce ITT, and the highest prio r ity
has been given to structuring , reSUlting in the
OSI Reference Mode l. As indicated in this pape r,
finer g rain structuri ng is still required.

Although simplicity is not much favoured by the
"agreement by comp romise" pr ocess which is
traditional i n standa r d i zat i on bodies, one must
admit that the results obtained so far are quite
accept able. Moreove r it is very likely that
"na tural selection" will bring the additional
simplifica tion which may stil l be necessa r y in
some cases.

As noted along this paper , much resea r ch is
still necessary and resea rchers have a large
responsibility in the smoo th development of
future dist =i buted systems .

Moreove r, the research and development cycle for
di s tributed systems is so fast that researchers
often have a direct responsibility in design
choices for commercial products. The research
community should no t miss to apply the
fundamental rules of s impliCity, structu r ing and
s tandardization. In this regard, the active
participatio n of researchers in the
standa r diza t ion effort is worth being noted. To
complement this effort to link resea r ch with
standardization, one should strongly encourage
research for simple d istributed sys tem.

When simple, s tructured, standard, distributed
syst ems have been put into ope ration and are
used, engineers and researche r s will have more
time and more experience to wo r k on optimizing
them, but this is the next step .

254

6 - REfERENCES

(1) L.G. Roberts, 8.0. Wessler, Computer network
development to achive resource sharing,
Proceedings of the SJCC'70, 1970, 543-549

(2) L. Pouzin et al,. The CYCLADES Compu ter
NetlJork, North-Holland, ieee Monograph nO 2,
Amsterdam, 1982

(3) A. Meijer, P. Peeters, Computer Networks
Architectures , Pitman, London, 1982

(4) CCITT, Telegraph and Telematlc Services
Operations and tariffs, Series F
Recommendations, Yellow Book, 1980

(5) D. C1ak , K. Pogran, D. Reed, An introduction
to local area networks, Proceeding of the
IEEE, Vol. 66, n° II, November 78,
l497-l5l7

(6) CelT!, Specificat ions of signalling system
nO 7, Rec. Q 701-741, Yellow Book, 1980

(7) L. Pouzin, H. Zimmermann, A tutorial on
protocols, Proceedings of the IEEE, vol. 66,
n° 11, November 1978, 1346-1370

(8) ISO, Open Systems Interconnection- Basic
Reference Hodel, IS 7498, 1983

(9) H. Zimmermann, Progression of the 051
Reference Hodel and its applications,
Proceedings of the NTC'81, Decembe r 1981,
FB.lol - fB .lo 6

(10) ISO/TC97/SC16, Open Systems,
Interconnection-Transport Service
Definition, OP 8072 , " 1982

255

(11) ISO/TC97/SC16, Working Draft for an
addendum to ISO 7498 covering
connection less mode transmission, Doc N
1194, June 1982

(12) CCITT Special Rapporte ur on Message
Handling, Draft Recommendation X.MHS1 -
Message Handling Sys tems - System Model
Service Elements , September 1982

(13) 150/ Basic co nnection oriented session
service definition, DP xxx , March 1983

(14) IS0/TC97 / SC16, Application Laye r St ruc ture ,
Doc N 904, Janua ry 1982

(1S) 150/ Basic connection oriented session
protocol specification, DP xxx
Harch 1983 .

(16) CCITT, Control Procedure for the Teletex
Se rvice, Recommendation S.62, Yellow Book ,
1980

(17) C.A . Sunshine, Sll rvey of protocol
definition and verification techniques,
Compu ter Network, nO 2, 1978, 346-350

(18) C. Sunshine ed., Proceedings of the Second
International Workshop on Protocol
Specification, Testing and Verification
Idyllwild , Ca lifornia, North-Holland
Ed •• Hay 1982

(19) J. P. Ansart et al., Description simulation
and implementation of communication
protocols using POlL, ACM SIGCOHM '83 on
communica- tion Architecture and
Protocols, Austin, Texas, March 1983 .

..

DISCUSSION

Dr. Zimmermann pOinted out that the~e was a need for the common
reference architecture in order to cope with hetero~eneity as a
result of the rapid evolution of systems.

Dr. Panzieri stated that if systems evolve, then the common
reference a r chitecture would have to evolve likewise. Otherwise how
could the reference model continue to be the best in t~e face of
evolution?

Dr . Zimmermann replied that in order for systems to interact
with ones that evolve in the future, they must have something in
common . The common r eference model would thus provide this minimal
level of commonality that is required.

Professor Randell remarked that a limitation of the reference
model was that it was 'flat' in the sense that the structure could
not be applied recursively.

Dr . Zimmermann replied that the structure did not recognise a
recursive construction of distributed systems but did permit such a
construction.

Dr . Burkhardt pointed out that a recursive functionality was
required at the application rather than the system level .

256

