STANDARDISATION FOR OPEN SYSTEMS

B. Wood

Rapporteurs: Dr. C. Phillips

Mr. L. Hughes

Telecommunication Standards

- The Role Today

Standards for Open Systems

Why Are OSStandards Needed?

- Computer engineering needs
- Computing application needs
- Social needs
- Industry needs

What Is 'A Standard'?

■ De Facto

2780...

Proprietary

SNA, DEC net...

■ Company

British Steel...

Industry

SITA...

■ Government

Privately developed and maintained

What Is Needed From OS Standards?

- Widely accepted
- Technically sound and minimum constraints
- Stable and well defined
- Timely evolution
- Interconnection and inter-working
- An enabling technology

What Are 'Public Standards'?

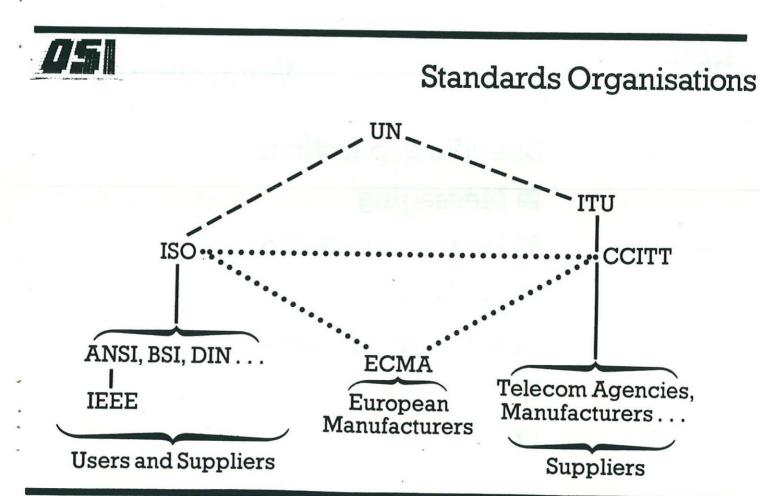
Public standards = Standards from accredited standards organisation

Organisations provide:

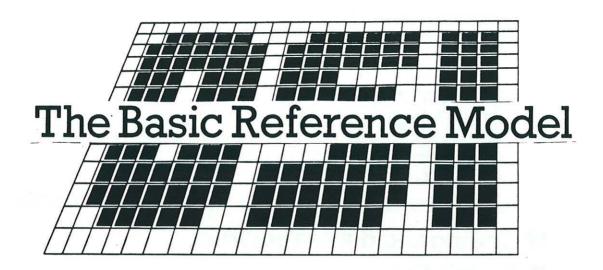
- Accepted mechanisms
 - -Legally
 - -Interested parties
- Clear source of information
- Safeguards
 - -Representation
 - -Procedures

What Is 'A Standard'?

- OS standards
 - -International public standards

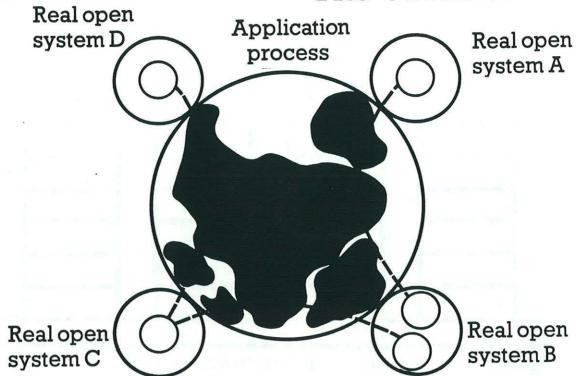

Publicly developed and maintained

What Standards?


Core standards

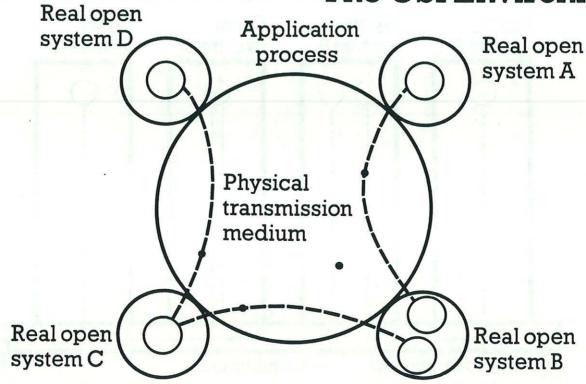
- Open system standards Basic services
 - Open systems interconnection
 Basic inter-working
 - Operations on information
 Graphics
 Database
 OSCRL
 - Interworking about operations on information
- Coding and data structures
- Encryption
- Languages

Open Systems Interconnection

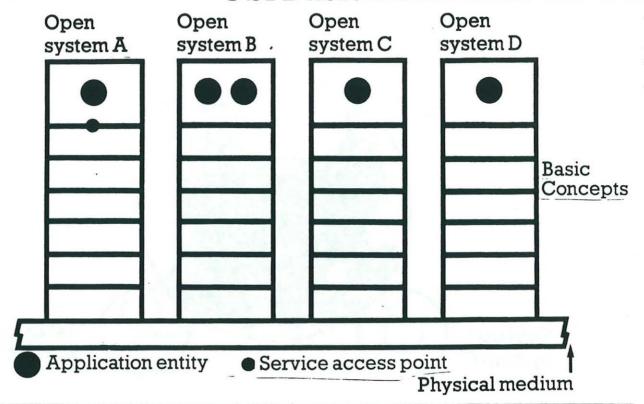

What Standards?

Specific applications

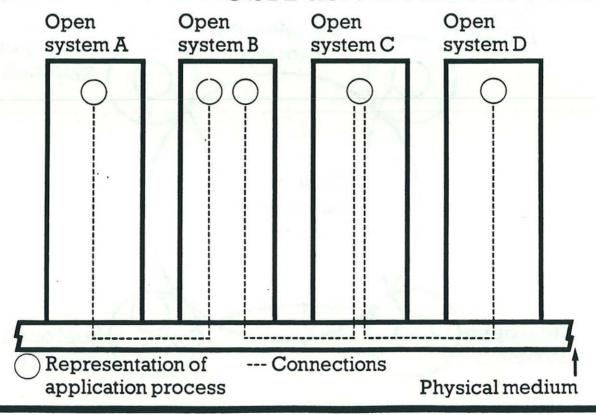
- Messaging
- Factory automation
- Banking
- Office automation



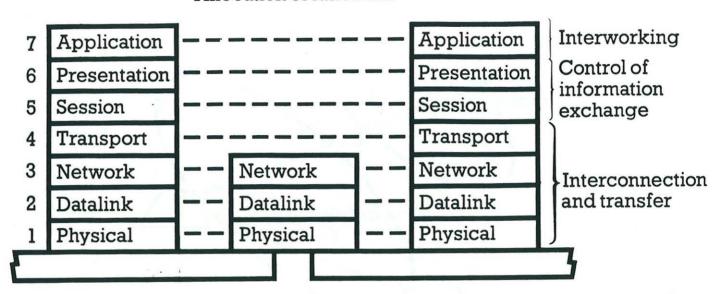
The OSI Environment



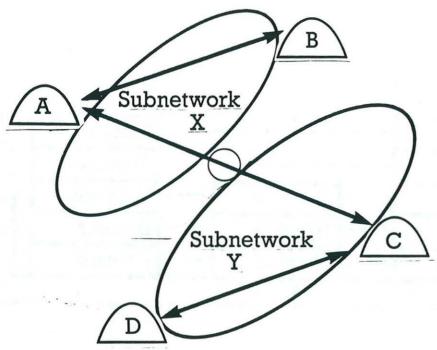
The OSI Environment



OSI Basic Reference Model


OSI Basic Reference Model

OSI Basic Reference Model


Allocation of functions

OSI Basic Reference Model Open Open Open Open System B System C System D Application entity — Connections Connection Physical medium

05

The Network Service – The Internetworking Problem

Characteristics of the OSI Reference Models

- A model for standardisation
- A partial model
- Descriptive of area/ prescriptive of standards

Why a standard?

- Formalise agreement on
 - -Description
 - Frame of reference
 - Vocabulary

The Function of the Transport Layer

Service requirements:

- Throughput
- Transit delay
- Error rate
- Set up delay
- Resilience
- Security
- Priority
- Cost

The Function of the Transport Layer Responsibility –

Application

Presentation

Session

Transport

Network Link Physical 'Ignorance is bliss'

'We ask and it

shall be given'

'I am in charge of providing the service asked for – The Buck Stops Here'

'We do the

best we can'

05

Interconnection Standards Status

Transport

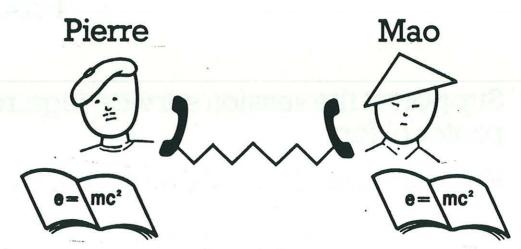
- CX-Mode service and protocol IS 8072/3
- CX-Mode service and protocol IS 8072/DAD 1
- Conversion protocols: CX-NS to CX-TS IS 8073/PAD 2
- Network connect management IS 8073/PAD 1

Interconnection Standards Status

Network

- Service: CX-Mode CX-Mode IS 8348
 Addressing IS 8348/DAD 1
 - Provision of CX-Mode NS: Over X.25 IS 8208 Over LANs DP 8880/1 DP 8878
- Provision of CX-Mode NS DIS 8473
- Access to packet switched networks (X.25) IS 8208

LAN standards (from IEEE) DIS 8802/2-3 DP 8802/4-6


Information Exchange – Common Procedures

The session service provides for

- Establishment of connections with negotiation of facilities
- Control of turn
- Control of synchronization and resynchronization
- Management of activities
- Orderly closedown

Control of Information Exchange

- Common meaning (abstract syntax)
- Common language(s) (encoding, transfer syntax)
- Common procedures (message protocol)

Information Exchange

Common meaning and common languages

Support of the presentation service requires

- The definition and registration of abstract syntaxes and encodings
- Presentation protocol using registered definitions

Information Exchange – Common Procedures

Support at the session service requires protocol for

- Exchange of 'signals' and data, with
- Resolution of collisions
- Resynchronization to a known state

Information Exchange

Common meaning and common languages

Presentation layer provides no communications procedures

Information Exchange

Common meaning and common languages

The presentation service provides for

- Agreement on the structure of data to be exchanged
- Exchange of structured data

05

Inter-working – The Application Layer

Basic Concepts Application Entity

User Element

User Element

AE-Invocations

Application Layer

Presentation Layer

Connection Endpoints

Support

Association

Presentation Connections

Service Access Point

Application service element

Conceptual functional module within an AE - Invocation

05

Information Exchange – Standard Status

Session

■ CX-Mode service and protocol

IS 8326/7

Presentation

■ CX-Mode service and protocol

(2nd) DP 8822/3

■ Abstract syntax notation 1 (ANS.1)

- Definition

DIS 8824

-Encoding

DIS 8825

Inter-working – The Application Layer

Scope of services/protocols Not (necessarily) pairwise

- Managing
- **■** Jobs
- Banking

05

Inter-working – The Application Layer

Nature of services/protocols

- Relate to meaning of exchanges
 - At level of information processing
 - At level of application
- Relate to 'service' provided by remote system
- May be combined

Inter-working Standards

Specific application service elements (SASE)

- File transfer access and management (2nd) DP 8571
- Job transfer & manipulation (2nd) DP 8831/2
- Basic class virtual terminals DP 9040/1

Inter-working Standards

Common application service elements (CASE)

Association control

(2nd) DP 8649/50 Part 2

Commitment, concurrency & recovery

DIS 8649/50 Part 3

Progress on OSI Standards – A Summary

	1984	1985	1986	1987
Basic reference model Naming & addressing Addendum		DP	DIS	IS
Security addendum		DP	DIS	IS
File transfer Job transfer Commitment & recovery	DP1 DP			S S
Basic class terminals Directory services		DPl	DIS DP	IS DIS
Presentation	DP	DP2 D	IS I	S
Session D	IS IS			
Transport	IS			
Network service		IS		
Network protocols X.25		IS		
LANS Network addressing	DP	DP DIS	DIS IS	

Inter-working Standards

Management

■ Directory services DP Q3/1986

■ Information services DP Q3/1986

Standards For Open Systems

A Framework for IT evolution

DISCUSSION

Lecture 1:

Mr. Wood's talk provoked a number of questions about the standardisation process.

 $\mbox{\rm Dr.}$ Cohen asked what does 'publicly developed' mean when applied to standards.

Mr. Wood explained that these are voluntary standards.

Professor Randell queried what was meant by 'maintained ... safeguarded and evolved'.

Mr. Wood explained that this meant it is "both safeguarded and evolved". There can be rapid responses to errors found in the field. It also allows a timely evolution. There are problems in finding mechanisms to handle this.

Dr. Cohen stated that he had a problem with the word 'accepted' - should they be 'enforced standards'? Mr Wood replied that the standards are accepted in that people have voted to accept it. The standards have no legal status unless it is specified in a contract. The standards are simply a means of getting acceptance.

Mr. Wood, in responding to a request to explain the differences between the CCITT voting and advice representation, stated that the final voting rights are held by governments. However, this is changing in Great Britain and it is different in the United States. The vote must be unanimous and it can lead to ambiguities.

The discussion then moved to the subject of reference models, with Mr. Wood pointing out that there is only one Reference Model at the moment for Open Systems Interconnection. It is a picture of the current standardisation. It is a level of understanding.

Professor Randell stated that there seems to be much more stress on protocols at a given layer rather than an abstract service at a layer. Mr. Wood denied this, stating that a great deal of effort went into the service definition. The service definition was crucial to the development of the Model.

Questioned about the difference between a Service Access point and an Address Mr. Wood explained that the address is the Address of a Service Access Point and stated that these can be in a one to many relationship.

DISCUSSION

Lecture 2:

Mr. Wood's second talk was followed by a lively debate on the importance of standardisation to education. Professor Milner remarked that too often in the past computer science has been regarded as knowledge of ISO standards. Mr. Wood agreed that in future computer scientists should contribute more to the standardisation process. They should evaluate standards already set and propose further developments. There is also pressure for standards, and input from the academic community is essential. Dr. Cerf said that as a 'consumer' he felt that students should be taught about standards. Dr. Scoins remarked that to do this at undergraduate level is an impossible task and that employers must be responsible for educating their intake about such matters. In response to Dr. Cerf's suggestion that undergraduates be taught X25, Dr. Scoins said that the subject is too complicated. Professor Milner countered Dr. Cerf's remark that X25 is very important by saying that some subjects are too complicated, despite their importance. Professor Tanenbaum suggested that teaching from lengthy standardisation documents is not very easy. Mr. Wood felt, nevertheless, that students should be aware of the underlying principles of standardisation. Dr. Larcombe observed that it is frequently the case that lecturers are unaware of the existence of standards relating to the subjects they teach.