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It is generally accepted that the advantages of using a formal protocol description 
are commanding. Once such a description is available, particularly in executable 
form, 1) the protocol specification can be examined for certain kinds of errors; 2) its 
performance can be estimated; and 3) the implementation can be tested for 
architectural conformance -- all in partially automated fashion. After a look at 
formal protocol specification, topics 1) and 2) will be discussed. Topic 3 will be 
briefly mentioned here; it is covered in another talk in this seminar. 
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I. INTRODUCTION 

With the passing of time, information-handling systems now handle increasing 
function and have become increasingly coupled with one another. This coupling 
among the various, often distributed parts is achieved via "protocols". The 
complexity of even a stand-alone information system is now so great that it must be 
partitioned into modules of comprehensible size, creating the necessity for 
synchronization and communication between these modules: more protocols. 

These information-handling systems or networks are often put together from 
subsystems from many different sources. The component systems -- be they from a 
single supplier or from different suppliers -- must function well together. It is hardly 
necessary to say that the suppliers must have identical interpretations of the 
protocols they are to implement. Prose definitions have been found to be far too 
imprecise; thus, there is a growing reliance on formal specifications. 

Protocols should be free from errors. The use of formal specifications opens the 
door to validation -- showing that a protocol is free from certain kinds of syntactic 
errors -- and to verification -- showing that a protocol provides some specific 
function. 

Once implemented, a protocol should perform reasonably well. It is important to 
have an indication of performance early in the protocol design process. 

Finally, the implemented protocol must be a faithful instantiation of the specified 
protocol. This could conceivably be guaranteed by a proven compilation procedure, 
driven direct from the formal protocol specification. Failing such an (unlikely) 
procedure, the protocol implementation should be tested or certified relative to the 
formal specification. 

These requirements lead to the topics covered in this paper: I) formal protocol 
specification; 2) trying to ensure that these specifications are error-free; 3) showing 
that the architected protocol will perform reasonably well when implemented; 4) 
producing an implementation of the protocol which corresponds to the formal 
specification from which it is derived; and 5) testing the implementation for 
conformance. 

These same topics also form the basis of a system approach to "protocol 
engineering", a term coined by Tom Piatkowski in 1981. (Piatkowski81) This 
author's view of such a system is shown in Figure 1. We shall now discuss, in 
sequence, the aspects of protocol specification and analysis just enumerated. 
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II. FORMAL DESCRIPTION TECHNIQUES 

There is a number of formal description techniques in use for formally specifying 
protocols and still more have been proposed. The author's experience has been 
mainly with finite-state-machine (FSM) based descriptions which results in an FSM 
bias here of which the reader has now been warned! 

II.! A simple finite-state-machine model 

The CCITT (Consultative Committee for International Telephone and Telegraph) 
has long been active in the formal specification of protocols. The X.21 and X.25 
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interface recommendations used a combination of finite-state-machine diagrams and 
natural language in the versions approved in 1976 (CCITT76) and revised in 1981 
(CCITT81). 

What does such a formal description look like? Figure 2 is an FSM (Finite-State 
Machine) model of a simple call-setup protocol between two processes , the terminal 
on the left and the network on the right. Each of these processes may be in one of 
two states: READY or CONNECTED. In the former state the process is waiting 
for a connection to be initiated; when both processes are in the latter state the 
connection exists and data can be sent back and forth . The terminal can initiate the 
call-connection procedure by sending a CALL_REQUEST message when it is in the 
READY state. The (-) sign indicates the generation of this message. This is an 
asynchronous transition, i.e. , at any time when the terminal is in the READY state, 
it may send this message to the network. When the network is in the READY state 
and receives this CALL_REQUEST message , indicated by the (+) sign, the 
network makes the transition from the READY to the CONNECTED state. 

It should also be possible for the terminal to receive an incoming call from the 
network. Such a possibility is also indicated in Figure 2 wherein the network can 
send an INCOMING_CALL message which can in turn be received by the 
terminal. In Figure 2 we have, then, the beginning of a formal specification for a 
call-setup protocol, similar to that used for the specification of X.2l and X.2S but 
simpler. 
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_CALL 

READY 

-CALL 
_REQUEST 

CONNECTED 

Termina l 

- INCOMING 
_CALL 

READY 

+CALL 
_REQUEST 

CONNECTED 

Network 

Figure 2. Finite-state-machine representation of a connection protocol 

Once such a formal description is available, much can be achieved with it. For 
example, the specification can be "validated", i.e., checked for certain kinds of 
syntactical errors. There are in fact several syntactical errors which exist in the 
protocol as defined in Figure 2. We shall revert to these errors later. 

IL2 Extended finite-state-machine models 

The most popular techniques for formal protocol specification are based on 
finite-state machines, as in the example, but with extensions. One reason for the 
incorporation of extensions is that most protocols are so complex that it is 
impractical and certainly unwieldy to record · all the necessary information to 

201 



.. .. 

describe the dynamics of the protocol as different explicit states. Rather, the 
conceptually less important information -- such as addresses and sequence numbers 
-- are stored as auxiliary variables. Decisions can be based and actions can be 
performed on these auxiliary variables. This results in an "extended" FSM 
description. 

CCITT has had an effort for some time to create SDL (Specification and 
Description Language) which is an extended FSM language (Dickson83). 
Experience had shown that while the formal part of the X.21 and X.2S definitions 
was very useful, these formal definitions could only be interpreted with heavy 
reference to the text which accompanied them. SDL improves this situation 
inasmuch as more of the protocol description can be formalized. A refinement of 
SDL in a Pascal-oriented language is being proposed within CCITT as 
Recommendation X.2S0. 

ISO's work on formal description techniques (FDT's) in connection with the Open 
System Interconnection (OS I) Architecture (Zimmermann80) is proceeding in three 
parts. Subgroup A is concerned with architectural concepts, to be used in turn by 
the other two subgroups, concerned with FDT languages, per se. The concept of 
"modules" which contain the description of the function of the protocol, and the 
"channels" which provide communication between the modules have been specified. 

An important concept in any structured design is the notion of consecutive 
refinement. With this concept a high-order module can be defined which simply 
specifies that some function be carried out. As the specification develops, such a 
module may be refined repeatedly, decomposing the function at one level into the 
required subcomponent functions at a lower level, thus increasing detail at every 
refinement step. This process facilitates a high-order overview of the entire system 
at one end and all the details required for compatible implementation at the other. 
This concept is also included in the work of Subgroup A (Vissers83). 

Subgroup B is working on "ESTL", Extended State Transition Language, which is 
an extended FSM approach. ESTL, also called "Estelle", is based on the language 
Pascal. Various features have been added, particularly those which facilitate the 
definition of finite-state machines (Vissers83). 

The language IBM uses for describing SNA is called FAPL (Format and Protocol 
Language). It is derived from PL/I and like ESTL contains additional constructs 
for handling finite-state machines and processes (Pozefsky82). 

An important question in any formal description technique is "To what degree 
should the specification affect the implementation?" Clearly implementations of the 
same architecture must be compatible but how many hints should the architects 
place in the specification to influence the implementers direct? SNA provides many 
such hints via FAPL and even calls its F APL definition a "Meta-Implementation". 
The definition itself comes close to a real implementation. This has the advantage 
that the definition can be executed and many questions about how the architecture 
performs can be answered by exercising the definition itself. Parts of the 
implementation are deliberately left to the implementers and appear in the formal 
specification only as "undefined protocol machines". 
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11.3 Other formal approaches 

Subgroup C of ISO's effort on formal description techniques is working on an 
approach which has its roots in a formally complete theory of the sequence of 
messages exchanged by communicating processes: R. Milner's Calculus of 
Communicating Systems (MilnerSO). The language being developed by Subgroup C 
is LOTOS (Language for Temporal Ordering Specification) (VissersS3) and 
(BrinksmaS4). Since an effort is made only to describe the message sequences, there 
is a minimum impact on the specification of an implementation. This leaves 
implementers the maximum amount of freedom but still provides sufficient guidance 
to ensure compatibility. 

The greatest promise of LOTOS lies in the fact that it allows as many levels of 
refinement as are needed, through the use of two language operators "parallel 
composition" and "restriction H . This is not the case for ESTL. On the other hand, 
LOTOS appears to be more abstract, compared to FSM-based languages. The 
names of the states in an FSM description provide a convenient "crutch" for human 
interpretation. 

There are a number of other approaches to formal specification. Of the ones not 
mentioned here, the Petri net is probably the most popular (DiazS2) and (DiazS3). 
Petri nets have been used for the specification of protocols but their main utility 
seems to be for the analysis of protocols rather than as a means of disseminating 
protocol specification. Petri nets consist of "places" and "transitions" to represent 
conditions and events. A very readable general introduction is given in 
(Peterson 77). 

It will be some time before the pros and cons of all these different formal description 
techniques are known. The only way of evaluating these is to use them on various 
protocols and this is just what is happening at the present time. There is a great 
deal of cooperation, particularly among the CCITT and ISO efforts. 

It is quite clear that a formal protocol specification is mandatory since only in this 
way can one be sure that all the implementers have the same mental picture of the 
protocol they are implementing. In the following we assume that such a formal 
description is available, and further that it is machine readable -- as are all the 
techniques listed above. So given such a formal specification for purposes of 
communicating the protocol specification to its implementers in an unambiguous 
fashion, what else can be achieved? 

III. FUNCTIONS BASED ON A MACHINE-READABLE SPECIFICATION 

In the following it is assumed that the formal protocol specification is also 
machine-readable. Given that assumption some of the functions shown in Figure 1 
can be obtained in semi-automatic fashion. Ideally, a designer should express his 
protocol formally, be able to test this specification for correctness (validation and 
verification), obtain some early indication of how it would perform, compile major 
parts of the implementation direct from the formal specification, and finally test the 
resultant implementation to assure that it conforms to the specification. Let us now 
look at these various functions and the state-of-the-art. 
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III.l Validation 

A test for syntax, usually called validation, can be performed on protocols. The 
kinds .of errors which can be automatically detected are deadlocks, incomplete 
design, and unexecutable code when the specification is of the finite-state machine 
type (Zafiropul080). What are some of these errors? 

Reverting to Figure 2, suppose that both terminal and network try to initiate a call 
at the same time. "At the same time" means for example, that the network sends an 
INCOMING CALL message after the terminal has sent a CALL REQUEST 
message but before the network has received this CALL REQUEST message. (Part 
of the abstraction of this model is that it can take some time for messages to travel 
between the communicating processes; the processes are in effect connected by 
queues. The actual time delay introduced by these queues, per se, and the 
permutation of message interleavings made possible by a random distribution of 
delays are what make protocol analysis difficult.) 

Thus there has been a collision of messages. The network will be offered the 
CALL_REQUEST message in the CONNECTED state and the terminal will be 
offered the INCOMING_CALL message in its CONNECTED state. But the 
protocol designer has not specified what should be done in these circumstances. 
This is an example of incomplete design and is the most common error we have seen 
in protocol designs. The 1976 versions of both X.2l and X.25 had errors of this 
type, long since corrected. 

But suppose there were no collision and consider the case where the terminal has 
successfully initiated a connection ... what happens then? Notice that nothing more 
can happen. Both processes are in the CONNECTED state and neither is free to 
generate a message. This is an obvious deadlock situation. It can be automatically 
identified and flagged via validation. It is conceivable but unlikely that the designer 
wanted interaction to end at this point and that there is no error. Usually deadlocks 
occur in undesired and much more subtle ways. 

Figure 3 shows repairs for both of these errors. The colliding messages have been 
discarded and provision has been made for terminating the connection so that other 
connections can be initiated at later times. Is the protocol now error free in the 
syntactical sense? No. The reason is that the network can receive the 
TERMINATE message twice in succession. This is probably not obvious but in any 
case can be repaired as indicated in Figure 4 which represents a syntactically correct 
protocol. Other errors -- such as dead code -- can also be detected by validation. 
The two error types just given are sufficient to demonstrate the results of the 
technique. 
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Figure 3. Improved specification of the protocol shown in Figure 2. 
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Figure 4. Final specification of the protocol shown in Figure 2. 
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One of the advantages of validation is that it is applicable to virtually all protocols. 
Further, because we are dealing with parallel processes which may interact with 
each other in many ways, it is difficult for human designers to anticipate all the 
different interaction sequences and produce an error-free design. The author and 
his colleagues have used or seen validation tools used on twenty-odd protocols and 
only one of these was error free (Rudin82c)! All the rest had errors of varying 
degrees of severity. An effective and proven means of performing validation by 
using state exploration is described in (West78b). 

II 1.2 Verification 

Validation helps to ensure lack of syntactical errors , errors which would prevent the 
protocol from fulfilling its function . But, even in the absence of syntactic errors, will 
the protocol achieve its functional objective? This is a question of protocol 
verification. 
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An example from the author's experience occurred in the analysis of a token-ring 
local-area network. Here a special station on the ring ensured that transmission 
noise would not cause mutilation, corruption, or loss of a token in such a way that 
the system would be unable to recover. An automated verification of the system, 
using state exploration, was performed (Rudin82b) to show that the architected 
system did indeed have this desirable property. 

The verification process just described was tuned to the token-ring protocol at hand. 
In contrast, there are a number of semi-automatic, generally applicable verification 
packages available. These and experiences with these program packages are 
summarized in (Sunshine83). 

Methods of calculus, in the form of partially automated, interactive theorem 
provers, show promise for the verification of protocols which would be difficult to 
handle using state exploration techniques. An example of this is work going on at 
the University of Karlsruhe (Krumm84). 

At this point in our design system we have a formal, machine-readable definition of 
the protocol. By using validation we have removed its syntactic errors and by using 
verification have demonstrated that the protocol does in fact provide at least the 
specific function for which it has been examined. 

II 1.3 Performance Prediction 

How well will the protocol perform in terms of throughput or response time? Until 
recently there were two main means of ascertaining performance. One was to make 
a model of the protocol and its environment and then to use various mathematical 
tools -- such as traffic theory -- to make a performance analysis. The other 
possibility was to simulate the protocol and then to gather statistics on the 
performance of the model simulated. The availability of a machine-readable 
description of the protocol ought to be of some help, and it is. 

The first work to make use of a formal specification is that of Bauerfeld 
(Bauerfeld83) wherein he generates a simulation model from the formal description 
automatically. A next step was explored by the author (Rudin84b) wherein 
performance estimates are obtained direct from analysis of the protocol's overall 
finite-state diagram. This latter analysis is based on an FSM description. Similar 
results have been obtained based on Petri-net descriptions (Molloy82) and 
(Razouk84) . Very recently an effort has been made to combine the techniques of 
queueing network theory in an analysis driven direct by the formal specification 
(Kritzinger84b). This last work is directed specifically at the OSI Reference Model 
and takes into account the interplay among various protocol layers as well as the 
coexistence of several protocol instances at anyone layer. 

An example of the kind of results which may be had, for the case of a data link 
control protocol, is shown in Figure 5 after (Rudin84b). This figure shows the 
average delay between successful receptions of messages (including retransmissions 
resulting from message loss or message corruption in the communications medium) . 
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Figure S. Delay in a simple data link control protocol 

IIl.4 Automated Implementation 

The fin al objective of any design is incorporation of the protocol in a successful 
implementation. Traditionally, this has been done by hand-coding. Again, the 
availability of a machine-readable specification opens the door to direct compilation 
of parts of the code required for an implementation. In the last few years, direct 
compilation of a protocol has been carried out in several instances. There will 
always be substantial portions of an implementation which must be hand-coded but 
there is the hope of being able to produce the bulk -- say sixty percent -- of the 
necessary code by automated means. 

In the case of SNA, Nash has demonstrated automated generation of an 
implementation in work he did in 1979 (Nash83). Compilation of a protocol -- in 
this case part of SNA's Data Flow Control -- was carried out in two major steps. 
First the FAPL compiler was used to expand the FAPL specification into an 
intermediate language (PL/S). The required manual code was also written in PL/S. 
This PL/S code was then compiled and assembled into the required machine code. 
The two-step process means that only one FAPL compiler is required and takes 
advantage of existing PL/S compilers which produce code for various target 
machines. The particular application was for part of the IBM 8100 Information 
System; the results in terms of required path length (number of instructions to be 
executed) and memory space required were satisfactory and the product was 
shipped (Nash83 and Smith83). The use of an automated technique substantially 
reduced implementation time. Automatic compilation has been used several times in 
the case of SNA (Nash83) and (Smith83). 

The NBS (National Bureau of Standards) has developed its own extended FSM 
language, actually a predecessor and subset of ESTL. The NBS language was used 
to describe a subset of the OS I File Transfer Protocol as part of a test tool to be 
described in the next section (Linn84) and (Mills84). The point here is that for the 
test tool developed at NBS, a reference model, i.e., an executable model of the 
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file-transport protocol was required. The formal specification was compiled into the 
language "C". About 40 percent of the code required in "C" could be automatically 
compiled; the remainder had to be hand-coded. 

III.5 Testing for Conformance 

It is unlikely that the complete protocol specification can ever be compiled direct 
into a software or firmware implementation; there are simply too many 
idiosyncrasies for each particular microprocessor engine. The result is that there will 
always be a need for techniques to test an implementation to demonstrate that it 
does in fact correspond to the formal description from which it was derived. 

An early use of a formal protocol definition for testing occurred in conjunction with 
SNA in the form of a tool called METROPOL (MEthod of Testing Real-Operation 
Protocols Off-Line) (Cork83). In METROPOL dialogs between a prototype 
implementation and its partner are derived from trace recordings made during 
conventional test sessions. The derived message sequence can then be used as input 
to the executable FAPL definition of SNA. SNA is rich in its internal checking 
function and any error detected via these checks -- as well as any other observed 
anomalies -- can be flagged to the operator. METROPOL found a number of 
errors in prototype SNA implementations. 

The National Physical Laboratory in Teddington has long been active in developing 
protocol assessment techniques (Rayner83). As a result of the work done at NPL, a 
pilot assessment center has been set up at the National Computing Center in 
Manchester. In this approach the implementation under test is exercised by a test 
responder and an "encoder-decoder", capable of applying normal 
(protocol-specification conform) sequences as well as abnormal sequences to the 
implementation under test. The abnormal sequences are used to test the response of 
the implementation to error conditions. 

In a similar approach the National Bureau of Standards (NBS) in the US uses the 
formal specification more direct as a reference implementation with which the 
implementation under test communicates; an exception generator is used to generate 
abnormal sequences (Linn84) and (Mills84). NBS has also used the formal protocol 
definition to generate automatically some of the sequences or "scripts" used to drive 
both the reference and test implementations in a manner indicated in Figure 1. 

Automated testing systems -- and the importance of formal protocol definitions as 
well -- were recently given credence in a demonstration at the National Computer 
Conference held in Las Vegas in July 1984. The demonstration was coordinated by 
NBS and based on the ISO Class-4 Transport Protocol. About a dozen 
manufacturers successfully demonstrated communication among their equipment 
using an agreed file transfer protocol as the common application. The formal 
definition and the automated testing of the various implementations played a key 
role in the success of the demonstration (Linn84). 

IIl.6 Change Management 

Change management is not a concept which appears explicitly in the protocol 
engineering system of Figure 2. Consideration of the problem of managing change, 
as additions and improvements to the protocol system architecture are made and 
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new products are introduced, results in an additional factor in favor of formal, 
machine-readable specification. To the extent that the procedures described above 
have been automated, the need for manual work to redo the various functions is 
minimized. 

IV. SOME NOTES ON TECHNIQUES 

In the work on validation, verification , and performance prediction with which the 
author has been associated, state exploration techniques have played a key role. 
The validation technique which we have used most, generates a tree of global states 
(West78b). A global state consists of the state of each of the component processes 
plus the ordered content of the communication media or communications channels 
(modeled as queues of messages or events), which may pairwise interconnect the 
processes. 

This construction of a global-state tree, routed in the global state where each of the 
component processes is in its initial state and all of the communication channels are 
empty, is shown in Figure 6. 

O 
Processes 

0····0 
~\ / 

FSM 
Analyzer 

Global State 
Tree 

o 0 
Figure 6. From the FSM representation to a global state tree 

Starting from the initial states, all admissible successor states are identified. New 
global states are added to the tree; growth stops when no unknown global states can 
be generated. For each of the leaves in the tree, a pointer is kept to the (already 
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generated) global states which could follow. This global-state tree is the basis for 
most of the analyses which we have made. 

Global State 
Tree 

State 
Ana Iyzer 

~ 
Syntactic Errors 
Figure 7. Val idation: detecting syntactic errors 

The process of validation can be achieved incrementally during the generation of the 
global-state tree or can be thought of as being driven from the completed 
global-state tree. The latter is shown schematically in Figure 7. Each one of the 
global states is checked to see whether it is free of reception errors (where one of the 
processes is offered a message from a channel in a state in which no provision has 
been made for its reception), does not result in a deadlock, or is unreachable 
(indicating "dead code"). Again the reader is referred to (West78b). 

Figure 8 shows one means of verifying that a protocol provides some specified 
function. Again the process relies on state exploration and is driven from the 
global-state tree. The technique used in (Rudin82a and Rudin 82b) to demonstrate 
that a token-ring local-area network would quickly recover from several different 
kinds of transmission errors used the method of Figure 8. First, all the global states 
in the global-state tree were found which had the property that an error had just 
been introduced. (Errors were introduced by an artificially added "demon" process.) 
Paths were then generated starting from each one of these global states and 
continuing until a global state was reached which indicated that error recovery had 
successfully taken place. Count is kept of the number of iterations required to 
generate the paths; if this count exceeds a preset limit, the conclusion is that 
recovery has not yet occurred or may never occur. 
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Figure 8. Verification: proving function 

Finally, Figure 9 indicates one means of predicting protocol performance, again 
driven from the global-state tree and using state-exploration techniques. In order to 
be able to determine performance the finite-state-machine description must be 
augmented. Delays (usually average delays representing the time it takes to execute 
a transition) and branching probabilities (when one of several transitions may follow 
a global state) are added to the formal specification. 

To calculate average delay, paths can be explored which emanate from a global 
state with particular properties (the reception of a positive acknowledgement in the 
data-link-control protocol for which performance is shown in Figure 5) and 
terminate in some global state (the identical state in the case of the protocol of 
Figure 5) . The average delay may then be calculated as 

N 
Average delay = . k (PD(Di), ,= 1 

where D j is the delay along a path and P j is the probability of being on that path. 

The calculation is terminated when the sum of the probabilities of unterminated 
paths drops below a specified threshold. 
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Figure 9. Predicting protocol performance 

None of the techniques mentioned here -- at least in rudimentary form -- represents 
an enormous programming task. All could be used as software design exercises. 
The inclusion of such tasks in a curriculum would not only provide meaningful 
exercises but could teach much about computer communication protocols as well. 

V. FUTURE DEVELOPMENTS 

In our tour of the protocol engineering system of Figure I, the reader may have 
been misled into thinking that all the problems have been solved. This is not the 
case; there is need for continuing research in all of the areas mentioned. It should 
also be stated that several of the examples given are taken from work which was 
close at hand to the author; there are alternative approaches, some of them with 
advantages over the methods presented here, depending on the circumstances. 
Pointers to the literature covering some of these alternatives are given in Section VI. 

Let us now review the areas discussed to see some of the further research needed. 

V.I) Validation 

We are unable to validate "complex" protocols. The most prevalent technique is 
exhaustive exploration of a multidimensional state space. A "complex" protocol 
leads to an impractically large number of states when validation is attempted. 
Many protocols are complex and the need for an appropriate approach is urgent. 
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A related question deals with partitioning: "Under what conditions is it satisfactory 
to validate the component parts of a protocol, having a guarantee that a validation 
of the complete protocol is unnecessary?" Further exploration of the calculus 
underlying LOTOS will likely shed some light here. 

Often it is necessary to include the specification of one or more time-outs in a 
protocol. A difficult problem is validation of a protocol to determine whether or not 
these values are consistent with each other and with the overall protocol 
specification. The problem is further complicated when delays are specified for the 
time it takes for messages to flow between processes. Some progress has just been 
made here (Bolognesi84) but more is needed. 

V.2) Verification 

When exhaustive exploration is used as a basis for verification, the problem of 
handling complex protocols again arises. Alternatively there are algebraic 
techniques but these tend to require heavy human intervention. There is a need 
both to refine these techniques and to automate them to a greater extent. 

V.3) Performance prediction 

Work here, in the sense that performance analysis programs are driven direct from 
the protocol's formal specification, has just begun. One interface which promises to 
be fruitful is that between traditional queueing theory with its ability to take waiting 
customers into account and the contention-free analysis discussed above. 

VA) Automatic implementation 

While there have been a few experimental efforts here, experience is relatively 
limited, despite the obvious large return. Using the latest techniques in compiler 
design, a number of test cases could be made comparing the memory and 
execution-time efficiencies of automatically and manually produced 
implementations. 

V.S) Automated testing 

How long should a test be run? How much test coverage is obtained at the cost of 
what execution time? Is it possible to design particularly effective test sequences? 
What is the point of diminishing returns in testing? There are many open issues 
here. Experience with the first automated test systems is just becoming available. 
This experience will help to determine future directions. 

VI. POINTERS FOR FURTHER READING 

The December 1983 issue of the Proceedings of the IEEE (Folts83) is devoted to the 
OSI Model and related topics. A special issue of the IEEE Transactions on 
Communication in April 1980, since published with additions in book form, is a 
collection of papers on computer-networking architecture and protocols (Green80). 
Carl Sunshine also edited a collection of papers, including some of the early classics 
in protocol definition and analysis (Sunshine81). 
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A number of the topics emphasized in this paper was covered in a session at the 
ICC83 in Boston (Bauerfeld83, Diaz83, Nash83, Piatkowski83, Rayner83, 
Rudin83c, Sunshine83, and Tenney83). Finally, IFIP Working Group 6.1 has 
sponsored a series of annual workshops devoted to the specification, verification, 
and testing of protocols which contain state-of-the-art contributions (Rayner81, 
Sunshine82, Rudin83a, Yemini84, Diaz85). The next of these workshops is 
scheduled for Montreal in June, 1986. 

VII. CONCLUSION 

Formal protocol specification is a concept which has firmly taken root and is here to 
stay. There is likely no "best" formal specification technique. Further work is 
required to understand where each of the existing techniques has its greatest 
advantage. There is scope for much more work on the tools which may be driven 
from a machine-readable formal specification. The success of the tools which 
already exist promises handsome rewards for this future work. 
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DISCUSSION 

Lecture 1: 

Professor Randell commented that there appears tc be a 
disadvantage in the complete mechanisation of the process. Either the 
specification or the implementation might contain errors. If both the 
specification and the implementation were provided by the designer, 
an element of redundancy can be included for error checking . Clearly 
this is not possible with a machine generated implementation . 

Professor Milner asked what time delay is there between the 
emission of a value and its subsequent reception using the 
asynchronous finite state machines? 

Dr . Rudin replied that they have moved away from asynchronous 
finite state machines and now consider a queue. 

Professor Pyle stated that surely there is more to protocols 
than can be modelled using FSM ' s? For example , how would the 
presentation layer be modelled? There is a need for an analysis of 
protocols to identify these areas which cannot be modelled using 
FSM ' s. 

Dr. Rudin's response was that clearly one cannot detect those 
areas which are not susceptible to FSM modelling. They are not sure 
what sort of errors to look for . 

Dr. Rayner stated that in attempting to describe non-FSM 
entities one comes across the data typing problem. As yet he is not 
aware of anyone who has done work on that sort of validation of data 
typing. 

Dr. Vissers remarked that in real protocols there are 
probabalistic expressions, time and performance . Any modelling 
technique needs to permit these expressions. 

Mr . Llewellyn pointed out that this gives rise to a state 
explosion and concurrency problems . The temptation is to use a new 
extended FSM but this loses all the beauty of FSM's. 

Dr. Rudin claimed that despite this, the technique may still be 
used effectively. However, algebraic techniques may prove sufficient 
in those areas where FSM's cannot be used . 
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DISCUSSION 

Lecture 2: 

Professor Randell asked what percentage of errors are caught by 
this technique, to which Dr. Rudin replied that no data is available. 

Dr. Rayner asked whether the protocol development system that 
had been described is a proposal for implementation or a working 
system. 

Dr. Rudin stated that it is possible to buy a development system 
and to perform the work described. 

Dr. Cerf remarked that an important aspect of any protocol for 
the user is its cost - how much does it cost to send a message. In 
addition to analysing the layers it would be a good idea to examine 
the cost. The metric is the amount of data sent per packet. 

Dr . Rudin replied that they are currently looking at the cost in 
terms of instructions executed per layer. 

Dr. Rudin was asked whether they had tried the scheme of 
determining how good their technique is at finding errors by 
inserting deliberate errors into a protocol. 

Dr. Rudin replied that that is a technique which they had not 
considered . In fact there are always enough errors in the protocols 
they have u sed so far! 

Dr. Larcombe pointed out that the technique assumes that one can 
distinguish the actual errors from those introduced. 

Mr. Cowlishaw sta ted that they have tried the technique on data 
links and are satisfied that it works. 

Professor Randell mentioned one could use a recoverable Petri 
net which is extended by error links and nodes . 

Dr. Rudin stated that they have not yet specified a protocol 
using a Petri net. 

Dr. Burkhardt claimed a Petri net specification for the 
transport service works completely satisfactorily. 

Professor Tiernari asked Dr. Rudin what use has been made of his 
technique. 

Dr. Rudin replied it is to be used on SNA, and that they are 
also taking existing 'error free' protocols and using them. I n this 
way they hope to find errors and thereby convince product managers of 
the usefulness of this technique. 
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Dr. Vissers pointed out that the SNA specification was initially 
informal. It was implemented before it was valida ted . He asked 
whether Dr . Rudin had any evidence that protocol designers are 
willing to adopt these specification technj.ques? 

Dr. Rudin replied that there Hill always be an intuitive stage 
that leads onto a formal specification. When disputes arise over the 
p,.-ose , existing products need to be modified. There is always a 
hostility to the discovery of errors . 
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