
THE STATE OF THE ART IN TESTING PROTOCOL IMPLEMENTATIONS

D. Rayner

Rapporteur: Mr. P. Ezhilchelvan

175

The State of the Art in Testing Protocol Implementations

by D. Rayner
Leader of the Protocol Standards Group

Division of Informat ion Technology and Computing
National Physical Laboratory
Tedington, Middx. TWll OLW

ABSTRACT

International standards for Open Systems Interconnection (OSI) services
and protocols are well advanced. Complementary standardization work has
begun for testing conformance of products to OSI protocol standards .
This is drawing upon about 6 years research and development work on
techniques and tools for testing protocol implementations . This
presentation reviews the areas of general agreement : the meaning of
conformance; abstract test methods; and test suite design principles. It
also reviews the diversity of approaches used for designing systems to
implement those agreed abstract test methods. These more mature areas
a re given emphasis, but further study areas are also identified .

O. Introduction

Open Systems Interconnection (OSI) will not be completely achieved until
systems can be tested in order to determine whether they conform to the
relevant OSI protocol standards .

Research groups have been developing techniques and systems for testing
protocol implementations for the past 6 years . Much of this work has
been conducted with either f ormal or informal international
collaboration . These techniques and systems are now being used by
suppliers, carriers , third party test centres and a few users. This has
improved the compatibility between different systems using and providing
common services , such as Teletex, and enabled multi - vendor
demonstrations of Open Systems Interconnection (OSI) protocols to take
place . It has also led to recent rapid progress towards a standard for
"OSI conformance testing methodology and framework " and the development
of proposed standard test suites for X. 25 and Teletex protocols.
Standard test suites for OS1 protocols will follow. This will
fac ilitate the comparison of results of testing conducted by different
or ganisations.

The subject is now mature enough for the aspects of general agreement to
be included in a university course on network protocols. This paper
covers the areas which are most suitable for inclusion in such a course
and presents them using the terminology used in the current working
draft of the conformance testing standard . This common terminology is
recommended in preference to the wide variety of terminology used by
various research groups.

The main problem in presenting this subject in a university course is
finding a suitable text book. All that can be suggested is that the
North Holland series of books called "Protocol Specification , Testing
and Verification" are used. They give the proceedings of the IFIP
international workshop series on this subject and a r e a very good source
of papers on both protocol testing and on the use of formal description
techniques . The 5th workshop proceedings wil l incl ude a paper similar to
this one, by the same author, also based on the Feb r uary 1985 working
draft (1) of the conformance testing standard .

1. Conformance Requirements

A prerequisite of ISO's work on OSI conformance testing was an understanding of
the meaning of conformance in the context of OSI. Firstly it was decided that
the term should be res tricted to the conformance of an implementation or system
to one or more protocol standards. It is incorrect to claim either conformance
to the reference model or to service standards. Thus any conformance
requirements related to the service must be stated in the relevant protocol
standard(s) .

The study of conformance revealed that there was much misunderstanding of the
matter by protocol definers. In particular, it is important to distinguish two
different types of conformance requirement: static and dynamic conformance
r equirements. Dynamic ones define the allowed behaviour in instances of
communication, i.e. what a protocol implementation does; they constitute the
bulk of a protocol specifica tion. Static ones , on the other hand, define the
allowed minimum capabilities of an implementation, i.e. what a protocol
implementation contains; they are often only found in special conformance
clauses.

Another important distinction is between mandatory requirements, conditional
requirements, options and prohibitions . Each of these can apply to either static
or dynamic conformance so it is important that protocol standards should state
which is whic h. For example, it is possible to have a protocol procedure whose
use in a particular instance of communication is optional but whose support by
an implementation is mandatory, or indeed vice versa.

There may also be requirements on what a supplier or implementor should state
about an implementation. In any case, for the purposes of conformance testing, a
statement is needed of the capabilities and options which have been implemented .
Such a statement is called a protocol implementation conformance statement
(PICS). It should be consistent with the static conformance requirements in that
it should include all mandatory capabilities plus all additional capabilities
required as a result of the options which are supported.

All these concepts are covered in a draft answer to the question of conformance
[2] which is being voted on as an approved interpretation of the OSI reference
model. In addition, a checklist has been produced [3] to assist protocol
definers to get a clear unambiguous statement of the desired conformance
requirements. This was based largely on the UK input of a published conference
paper [4]. It is expected to be progressed as an annex to the conformance
testing methodology and framewo~'k standard [1].

2 . Types of Testing

In principle, the objective of conformance testing is to establish whether the
implementation being tested conforms to the specification in the relevant
standard. Pract ical limitations make it impossible to be exhaustive, and
economic considerations may restrict testing still further.

Four types of conformance testing have been identified, according to the extent
to which they provide an indicati on of conformance:

- basic interconnection tests, which provide prima facie evidence
that an implementation under test (IUT) conforms;

- functional range tests, which determine the capabilities of an IUT,
i.e. which features and options are supported;

- conformance tests, which endeavour to provide as comprehensive testing

177

f

as possible over the full range of requirements specified by the standard;

- conformance resolution tests, which provide a definite yes/no answer
in the context of specific conformance issues.

2.1 Basic Interconnection Tests

These provide limited testing of the main features in a standard, to establish
that there is sufficient conformance for interconnection to be possible, without
trying to perform thorough testing.

Basic interconnection tests are appropriate:

- for potentially detecting severe cases of non-conformance;

- as a first filter before undertaking more costly tests;

- to give a prima facie indication that an implementation which has passed
full conformance tests in one environment still conforms in a new
environment (e.g. in a multi-layer implementation, to check that a tested
(N-1)-implementation has not undergone any severe change when linked to
the (N)-implementation);

- for use by users of implementations, to determine whether the
implementations are usable for communication at all with other conforming
implementations, e . g. as a preliminary to data interchange.

Basic interconnection tests are inappropriate:

- as a basis for claims of conformance by the supplier of an implementation;

- as a means of arbitration to determine causes for communications failure.

Basic interconnection tests should be standardized as a very small subset of a
full conformance test suite .

2.2 Functional Range Tests

Functional range tests determine which options and features are supported by an
IUT at various levels of detail, from which major subsets or classes are
s upported to the range of va l ues supported for a particul ar parameter . They can
include not only tests to determine which protocol data units (PDUs) are
s upported, but also ones to determine which service primitives are supported.

Functional range tests can be used to:

- check the validity of the protocol implementation conformance statement
made for an IUT;

- check that the static conformance requirements are met;

- enable an efficient selection of other conformance tests to be made for a
particular IUT.

Functional range tests should be standardized as a subset of a full conformance
test suite.

178

2.3 Confo rmance Tests

Conformance tests are intended to provide as thorough testing of an
implementation as is practical, over the full range of requirements specified in
a standard . Since the number of possible combinations of events and timing of
events is infinite, such testing cannot be exhaustive. There is a further
limitation, namely that these tests are designed to be run collectively in a
single test environment , so that any faults which are difficult or impossible to
detect in that environment can be missed. Therefore, it is possible that a
non- conforming implementation passes the conformance test suite; one aim of the
test suite design is to minimise the number of times that this occurs .

It is reasonable to regard an implementation as confo rming if it satisfies the
confo rmance test suite, so long as there is no evidence to the contrary.

Conformance tests are appropriate :

- as a basis for claims of conformance , so long as other tests or live usage
have not revealed contrary evidence;

- as a basis for procurement .

Conformance tests are inappropriate:

- for resolution of problems experienced during live usage or where other
tests indicate possible non- conformance even though the conformance test
suite has been satisfied.

Conformance tests should be standardized.

2.4 Conformance Resolution Tests

These provide diagnostic answers, as near to definitive as possible, to the
resolution of whether an implementation satisfies particular requirements.
Because of the problems of exhaustiveness noted above , the definitive answers
are gained at the expense of confining tests to a narrow field.

Tne test architecture and test method will normally be chosen specifically for
the requirements to be tested, and need not be ones that are generally useful
for other requirements; they may even be ones that are regarded as being
unacceptable for generally specified conformance tests, e.g. involving
implementation-specific methods using , say, the diagnostic and debugging
facili ti es of the specific operating system.

The distinction between conformance tests and conformance resolution tests may
be illustrated by the case of an event such as a Reset . The conformance tests
may include only a representative selection of conditions under which a Reset
might occur, and may fail to detect incorrect behaviour in other circumstances.
The conformance resolution tests would be confined to conditions under which
incorrect behaviour was already suspected to occur, and would confirm whether or
not the suspicions were correct.

Conformance resolution tests are appropriate:

- for providing a yes/no answer in a strictly confined and previously
identified situation (e.g . during implementation development, to check
whether a particular feature has been correctly implemented, or during
operational use, to investigate the cause of problems);

- as a means for identifying and offering resolutions for deficiencies in a

179

current conformance test suite.

Conformance resolution tests are inappropriate:

- as a basis for judging whether or not an implementation conforms ove rall;

- as a condition for procurement.

Conformance resolution tests need not be standardized.

2.5 Other Types of Testi~

In addition to conformance testing, other types of testing have been proposed
[5] including:

- performance tests to measure the performance characteristics of an
lOT, such as its throughput and responsiveness under various conditions;

- robustness tests to determine how well an lOT recovers from various
error conditions.

There may be some overlap between these types of test and conformance tests and
where there is then such tests could be extracted as a subset of ~ full
conformance test suite. However, where the test purpose is not concerned with
conformance, then such tests fall outside the current scope of standardization.

3. Test Suite Design

The ISO ·framework for conformance testing includes guidance on the design of
conformance test suites. A test suite will be structured into test groups,
possibly substructured into subgroups. These will consist of a set of related
abstract · test specifications, each with its own test purpose, which should be
precise and detailed so that it is clear what failure would mean. There will
also be appropriate instructions for determining how to perform test selection
and decide on the order in which the tests should be run.

Each abstract test specification will consist of a tree of test events (e.g. the
sending or receipt of a service primitive or PDOl structured into test steps. A
test step may be shared by many abstract test specifications. In order to run a
test, the abstract test specification has first to be conve~ted into an
executable test definition appropriate for some specific testing system; for the
tests are standardized at an abstract level, independent of any particular way
of executing them.

A full conformance test suite, for a particular protocol, should be capable of
testing all mandatory and optional features over the maximum range of parameters
and variations.

The design of a test suite must take a number of factors into conSideration, and
sho uld result in the optimum combination of them. The factors relevant for
single-layer conformance test suites are itemized below.

180

3.1 Features

A full test suite should be capable of testing all the mandatory and optional
features of the protocol, selected in all the feasible combinations allowed by
the static conformance requirements of the protocol specification. If the
specification allows for selecting a partial set of features, such as 'receive
only', the test suite must be adaptable to this situation.

3.2 Protocol Phases

A full test suite will allow the selection, for each function of the protocol,
of specific tests of the major protocol phases, in various combinations:

- connection establishment, when a connection is being set up;

- data transfer phase, while a connection is current (or at all times for a
connectionless protocol);

- connection release, when a connection is being broken.

These phases are those used in OSI service and protocol descriptions. There may
be subphases (half-open connection, data transfer awaiting acknowledgement,
non-connection requests in the idle state, etc.).

3.3 Variations

The full test suite must include a range of variations in the following domains:

- sequence variations (the order in which PDUs occur);

- timing/timer variations;

- PDU encoding variations;

- parameter variations in PDUs.

Possible choices are suggested below:

- support of all PDU types and all structural variations of each type;

- 'normal' or default values for each parameter on each PDU;

- boundary values plus at least one mid-range value for each integer
parameter;

for bitwise parameters, as many values as is practical, but not less than
all of the 'normal' or common values;

- for interdependent pairs of PDU parameters, 'critical' value pairs
(representing multi-dimensional boundaries) and one 'normal' value pair;

- all sequences of PDUs where one PDU is 'out of sequence' with respect to the
defined protocol;

at least one invalid PDU type;

- at least one invalid value for each PDU parameter, where such invalid values
exist;

181

- all defined timers should be exercised, i.e. allowed to expire at least
once.

3.4 Valid/Invalid Behaviour

A test suite will check that the behaviour of the IUT is valid under all the
above variations. Invalid and unexpected outputs from the IUT must be detected
and given a specific branch in the abstract test specification to end the test
and be identified.

Consistent reaction of the IUT upon receipt of invalid PDUs from the tester must
also be exercised. Single erroneous PDUs should be mapped into correct
(N-l)-service primitives.

Invalid PDUs are obtained by extending the variations (3.3) beyond the valid
ranges.

3.5 Interdependence

The design of a test suite must consider test interdependence. Some tests must
be successfully completed before others are attempted. For example, before
testing detailed functional behaviour related to data transfer, the tests of
connection establishment and transition to the data transfer phase should be
successfully carried out .

Another type of dependency is the inter-functional dependency. Before selection
of tests of data transfer, the capability to negotiate data length must be
tested and established.

4 . Typical Use of a Conformance Test Suite

It is important to understand how conformance testing should relate to static
and dynamic conformance requirements and to the protocol implementation
conformance statement. There are many possible ways of interleaving dynamic
conformance tes ting with reviews of the information obtained about static
conformance which can then affect subsequent test selection. However, ISO has
illustrated the typical use of a conformance test suite in the form of a
flow-chart, to clarify the main interrelationships. This is shown in Figure 1.

The first step, static conformance review, is a paper analysis, in which the
protocol implementation conformance statement accompanying the IUT wi l l be
a nalysed for its own consistency, and its consistency with the static
conformance requirements specified in the protocol standard(s) to which the IUT
is claimed to conform. This paper analysis can be followed by one or two steps
of live tes ting . The first is basic interconnection testing which is optional,
and would be used detect severe cases of non-conformance and to determine
whether more extensive testing is going to be worthwhile. The second is
functional range testing, which will ascertain the validity of the PICS with
respect to the actual, observable capabilities of the IUT.

A second static conformance review will combine the results of the functional
range tests with the results of the first review.

The fourth step, dynamic conformance testing, will concentrate on live testing,
checking the correct behaviour of the protocol implementation. State transition
control, syntactic checking of the protocol elements, and behaviour of the
implementation are in the scope of this phase. The behaviour will be tested in
various instances of communication, both simple and complex, independent and

182

(start

.------------------ .
• ------- --. .------------------------------- . l Standard: Static
: PI CS :--->: 1st Static Conformance Review :<--- : Conformance
: for IUT : Analysis of PICS Requirements
,---------, ,-------------------------------, ,------------------,

.------------------ < >-- (NE) ,
• I. • • • • • • • •

A:
. -------------------------------. .-------- .
: Test Selection : : Full
: Basic Inte rconnection Testing :<-----: Test

Analysis of Re sults Suite
,-------------------------------,

< >- - (NE) ,
• • • • • • • • I. • • • • • • •

A:

Test Selection
Functional Range Testing

Analysis of Results

2nd Static Conformance Review

< >--- (NE)
I

AI

,----- --'

, ,
<-------- ,

,
.-----------------------------. I

: Test Se l ection : <------------,
I Dynamic Conformance Testing :----------.

Analysis of Results :
.---V-----V---. ,-----------------------------, .------V------.

Results of Results of
Dynamic

Conformance
Static

Conformance
Review .-----------------------------. Testing

,-------------, , , , ,
,------->:

Final Static Conformance
Review

Synthesis and Conclusion
Report

,- ------------, , , , ,
l < _________ 1

,-----------------------------,
. -------------.

Con formance
Testing
Report
for IUT

, , , ,
l < _______ I

NOTE: A: Acceptable Results

,
I .---------------------- •

:<---1 (NE) Negotiated Exit:
,----------------------,

End

Figure 1. Typical use of a conformance test suite

183

dependent on the environment, normal and erroneous.

It cannot be proved by testing that an implementation conforms dynamically in
all instances of communication. However, it can be shown by testing t hat an
implementation consistently conforms dynamically in representative instances of
communicati on.

Two phases of 'paper analysis ' will take place, one before and the other after
t he live testing phase. The first will be a phase of preparation/ selection of
the test suite(s) to be used, based on the results of the second static
conformance review. The second will be a phase of analysis of the results of the
live testing fr om the dynamic conformance point of view .

The final static review involves a synthesis of the results of the dynamic
conformance tests with those of the second static conformance review. A
conclusion on the conformance of the IUT t o the requirements of the standard (s)
can then be reached. This conclus ion is recorded in a Conformance Testing Report
detailing the tests run, their results, and the environmental conditions.

Provisions for "negotiated exits" can be seen in Figure 1. They are points where
the concerned parties can decide that the results of the previous step are not
good enough to justify continuing the tests.

5. Abstract Testing Method ology

5.1 Control and Observation and Abstraction

The ISO abstract testing methodology is based upon the OSI reference model.
Abstract te s t methods are described in terms of what outputs from the entity
under test are observed and what inputs to it can be controlled. More
specifically, an abstract test method is described by identifying the points
closest to the entity under test at which control and observation are to be
exercised.

The OSI protocol standards define allowed behaviour of a protocol entity (i.e.
the dynamic conformance requirements) in terms of the PDUs and both the abstract
service primitives (ASPs) above a nd below that entity. Thus the behaviour of an
(N)-entity is defined in terms of the (N)-ASPs and (N-1)-ASPs (the latter
including the (N)-PDUs). Each of these two sets of interactions could be
ob served and controlled from several different pOints, directly or remotely, as
identified i n Figure 2.

Note that the possible points of observation and control are identified by three
factors:-

(a) whether it is the ASPs or PDUs which are observed and controlled;
(b) the laye r identity of the ASPs or PDUs concerned;
(c) whether they are controlled and observed within the system under test or in

a system remote from the system under test - if the latter then the ASPs or
PDUs are distinguished by the addition of a double-quote character (").

Complete control and observation of the (N-1)-ASPs (or (N-1)-ASP "s) will include
control and observation of the (N)-PDUs (or (N)-PDU"s), but not vice versa.

It is possible that the (N)-ASP activity of the entity under test might not be
controllable nor observable, directly or indirectly, in which case this activity
is said to be hidden. It is, however, assumed that the (N-1)-ASP activity will
at least be indirectly observable and controllable, via some real means of
communication (e.g. via (N-1)-ASP"s). Thus when the (N-1)-ASPs are not

184

A
(N+a) -ASP"s

v

A
(N)-ASP"s

v , ,
-----. 1------
t Peer t

: (N)-Entity :
I I -----, 1------
A

v

(N-l)-ASP"s,
(N)-PDU"s

..

(N-l) -Service

A
(N+b) -ASPs

v

A
(N)-ASPs

v
----- r 1------
: (N)-Entity :
I under test r , ,
-----, ,------

A

v

(N-1) -ASPs,
(N)-PDUs

I I I t -----, ,--, ,------
(N-1) -PDUs

:<--->t

Figure 2. Possible points of control and observation

controllable nor observable directly, conformance testing can only be carried
out if the (N-l)-service is provided sufficiently reliably for control and
observation to take place remotely.

It is important to make the distinction between the interactions which are
controlled and observed, and the subset of those observations on which judgement
is passed. Judgement can only be passed on whether or not the conformance
requirements are being met. This will usually apply to the PDUs exchanged rather
than the particular realisations of ASPs. However, the reason for wishing to
control ASPs is to try to determine more precisely which PDUs should be
exchanged in a particular test.

The virtue of expressing control in terms of ASPs is that this is an abstract
form of specification which does not unduly limit the freedom of testers to
implement the tests in different ways using whatever interfaces are accessible
exte rnally, provided that the required degree of control and observation is
available.

Associated with this abstract view of control and observation, there needs to be
a correspondingly abstract view of the testers which perform the control and
observation . They are referred to as the lower and upper testers. The lower
tester is the means for providing control and observation of events which
approximate to what the IUT sees at its lower SAP (i.e. the (N-l)-ASPs,
(N-1)-ASP"s, (N)-PDU"s, etc). The upper tester is the means for providing
control and observation of events which approximate to what the IUT sees at its
upper SAP (Le. the (N)-ASPs, (N+1)-ASPs, etc). In addition, there is the
concept of test coordination procedures which are the rules for cooperation
between upper and lower testers during testing.

185

5.2 Test Method Overview

Conformance test suites for a given OSl protocol or set of protocols should be
defined for each of a limited number of abstract test methods. Testers would
then be expected to select the most appropriate suite for the lUT or system
under test (SUT). The chosen abstract test methods fall into three main
categories:-

(1) Local test methods: which use control and observation of the ASPs
directly above and below the lUTi

(2) Distributed test methods: which use control and observation of the
(N-1)-ASP"s together with control and observation of the ASPs directly above
the lUTi

(3) Remote test methods: which use control and observation of the
(N-1)-ASP"s, with the ASP activity directly above the lUT being hidden.

The abbreviated name for an individual abstract test method begins with an 'L',
'D' or 'R', to denote Local, Distributed or Remote respectively, according to
the main category to which it belongs. These categories can be applied to
testing a single-layer at a time, in which case the second letter of the
abbreviated test method name is an'S', or they can be applied to testing all
layers of a multi-layer lUT, in which case the second letter of the abbreviated
name is an 'M'. Finally, single-layer test methods are qualified by the
adjective 'embedded' when they apply to a single-layer within a multi-layer lUT,
such that the control and observation is less direct than it would be for the
corresponding method of testing a single-layer lUTi for such methods an 'E' is
added as a thi rd letter in the abbreviated name.

With this naming scheme for abstract test methods, the following methods are
proposed: -

LS - Local single-layer test method
LM - Local multi-layer test method
DS - Distributed single-layer test method
DSE - Distributed single-layer embedded test method
DM - Distributed multi-layer test method
RS - Remote single-layer test method
RM - Remote multi-layer test method

5.3 The Loca l Single-layer Test Method

The LS test method is illustrated in Figure 3.

The tests defined for this method would provide the base from which
corresponding tests for any other abstract test method could be derived. They
also provide a basis for deriving multi-layer tests.

They are useful to implementors for "unit testing", that is the testing of an
implementation of a protocol entity in isolation from the rest of the system.

However, since this method involves no communication over an
(N-1)-service-provider, the protocol entity may require further testing using
another method which uses an (N-1)-service-provider. It may, however, be
satisfactory to carry out a conformance test suite using the LS test method and
then follow it up with a confidence check by running a basic interconnection
test suite using the DS, DSE or RS test method.

186

.--------------->: Upper Tester:

Test
Coordination
Procedures

,

A
: (N)-ASPs
V , ,

-----, 1------
: (N)-Entity :
: under test :
-----: r ------

A
: (N-1)-ASPs
V

I ----------------

,--------------->: Lower Tester:

Figure 3. The local single-layer test method

5.4 The Distributed Single-layer Test Method

The DS test method is illustrated in Figure 4.

Test ----------------
Coordination-------------->: Upper Tester:

Procedures ----------------
A ,

---------------- I : (N)-ASPs
V r Lower Tester 1<------------- ,

, -----,

A
: (N-1)-ASP"s
V

, ,
----- 1 1------
: (N)-Entity :
I under test I , -----, J------, ,------l--J

(N-l)-Service Provider

Figure 4. The distributed single-layer test method

When applicable, this method provides the most complete form of single-layer
testing over the (N-l)-service-provider. It permits a large number of (N)-PDU
errors and unusual but valid (N-l)-ASP"s to be included in the tests.

The tests defined for this method could be realised in practice in many
different ways, provided that the system under test can be made to provide some
realisation of the (N)-ASPs. However, they would not constrain the form of
implementation of the upper and lower testers.

The upper tester will not be purely passive since it needs to exercise some
control over which (N)-ASPs are generated, but it will not have the same scope
for introducing errors as the lower tester.

Higher-layer forms of describing the tests (e.g. in terms of (N)-ASP"s) should

187

..

be used where this will reduce the size of the test specification without loss
of required precision. This will enable identification to be made of those tests
which are equivalent to ones for a method involving control and observation of
(N)- ASP"s instead of (N-l)-ASP"s. Those who wish to use this subset of the test
suite should be warned tha t it is no t adequate as a complete conforma nce test
suite ; although it could be used as a set of basic interconnection tests. The
probl em is that not all (N-ll-ASP"s can be invoked merely by control of
(N)- ASP"s; e . g . Network Reset cannot be invoked by control of Transport Service
Primitives .

5 . 5 The Remote Single-layer Test Method

The RS test method is illustrated in Figure 5.

: Lower Tester :

A
: (N-l)-ASP"s .
V

?

----- : : ------
----- : : ------
: (N) -Entity :
: under tes t 1 , ,
----- I 1------

I I I I -----1 1--1 1------
(N-l)- Serv i ce Provider

Figure 5. The remote single-layer test method

Tests for thi s method should be possible to use with all systems under test. It
places no additional requirements for the sake of testing on the implementation
other than those placed on it by the protocol standard. (N-ll-ASP"s are used,
rather than just (N) -POU"s, in order to allow tests to specify when the
underlying connection should be set up or released.

This method is appropriate for those sys tems in which control and observation of
(N) -ASPs is not possible.

5.6 Multi-laye r Test Methods

Multi-layer testing consists of testing all the layers of a multi-layer IUT as a
whole , without accessing the inter-layer interfaces within the IUT. This type of
me thod could be used when these inter-layer interfaces are not accessible, and
also when the combined allowed behaviour of the multi-layer implementation must
be known.

The LM test me thod is similar to the LS test method but the IUT goes from
(N-l)-ASPs up to (N+n)-ASPs and therefore the upper tester controls and observes
(N+n)-ASPs. The same transformation turns the OS test method into the OM test
method. In terms of ccntrol and observation, the RM test method is the same as
the RS test method. However, in all three cases, the lower tester will need to
deal with (N)-POU"s up to (N+n)-POU"s.

188

..

5.7 Increm~ntal Embedded Single-layer Testing

Incremental embedded single-layer testing permits testing of multi-layer
implementations layer by layer, from (N) up to (N+n) , without requiring the
access to interfaces for each layer within the implementation. This is
applicable to both distributed and remote test methods. The distributed approach
is illustrated in Figure 6. For a general layer (N+i) the DSE method uses
control and observation of (N+i-1)-ASP"s and (N+n)-ASPs. Note that for the top
layer in the multi-layer IUT, (N+n) , the ordinary DS test method is used.

In the same way, the RS test method can be used incrementally for each layer of
the IUT.

, ---I

A

Lower Tester

,
I

: (N+n-1)-ASP"s
V , .---

A
, ,

Test Coordination------>: Upper Tester:
Procedures ----------------

<----------,
A
: (N+n)-ASPs
V

-----1 1-----

(N+n)

: (N+i-1)-ASP"s
V IUT < (N+i) , ,

---. 1---

A (N)
: (N-1)-ASP"s
V t__ ----- t

I I I --------------------1 1-----------------------------------1
1-----
1------

(N-1)-Service Provider

Figure 6. Incremental use of the DSE test method

U.se of the DSE method on successive layers of a multi-layer lUT seems to be a
more practical approach than using the DM test method to test the same IUT.
Similarly, use of the RS method on successive layers of a multi-layer IUT would
seem to be better than using the RM method. The main advantage of incremental
embedded single-layer testing is that it requires less complicated test
specifications.

5.8 Test Methods for Network Relay Systems

The abstract test methods discussed above all apply to testing protocol
implementations in end-systems. Different methods are required for testing
Network Relay Systems. Two have been proposed by SC21 and accepted by SC6/WG5.
These are abstractions of the methods which have been used in practice at NPL
[6J. They are as follows:-

(a) The case of testing a relay system from one subnetwork
(loop-back testing).

This test configuration is shown in Figure 7.

189

.. ..

. --------. , , , ,
I Tester I , ,
,--------,

..

. ---------------- .
, , , , , ,
• .- I

,-+----+---------,

Relay
System
under
Test

,__ _ _ > _ _ _ _ _ I

- - < - -
Sunetwork Subnetwork 2

Figure 7. Loop-back Testing Configuration

For this testing configuration, one tester controls the test connections
which are looped within the relay system. Therefore, it does not need two
testing systems on different subnetworks and the problem of synchronization
between the two testers is avoided. This testing configuration involves
control and observation of PDUs on two connections on one side of the relay
system, assuming that proper arrangements can be made for looping them
together on the other side.

(b) The case of testing a relay system from two subnetworks
(transverse testing).

This testing configuration is shown in Figure 8 •

. --------.

Tester
1 , ,

I I

,--------,

Subnetwork

. -------------- .
Relay System
under Test

,--------------,

. -------- .

Tester
2

,--------,

Subnetwork 2

Figure 8. Transverse Testing Configuration

This testing configuration involves control and observation of PDUs on both
sides of the relay system. If this test method is applied to testing the
routing and relaying functions of the relay system, each of the testers may
be required to simulate two or more end-systems.

Since Services below the Network Service are generally either unavailable or not
well-defined, due to the fact that most protocols for real subnetworks were
defined before Physical or Link Services were thought of, it is generally felt
that the control and observation for Network layer . testing needs to be
interpreted in terms of PDUs rather than ASPs.

190

6. Applicability of the Test Methods

These abstract test methods are all applicable to the active testing of
Transport, Session and Presentation layers without further comment. Their
applicability to the Physical, Link, Network and Application layers requires
further comment.

Further development may be needed for connectionless protocols and services.

6.1 Lower Layers

In the lower layers (Physical, Link and Network), the underlying service will
not be end-to-end and so testing using the distributed and remote methods will
need to be carried out over a single link rather than between end-systems.
Furthermore, as with testing Network relay systems, the idea of specifying tests
in terms of underlying service primitives is not likely to be of practical
value; instead the tests will need to be defined in terms of PDUs. This is
partly because the Link and Physical Services are not directly related to the
protocols in those layers; partly because there is no service under the Physical
layer; and partly because the protocols are technology dependent and in some
cases do not correspond to the OSI layers.

The fact that these layers tend to be implemented in hardware or firmware makes
it likely that the emphasis will be on testing multi-layer IUTs for these
layers. The exception is the use of the LS test method to test the design of the
algorithm for a protocol before it is put onto a chip.

6.2 Application Layer

With the application layer, there is no layer service above it which can be
controlled or observed via (N)-ASPs at a SAP. However, for some, perhaps mo~t,
application protocols there is a defined service with service primitives some or
all of which may be controllable or observable. If they are then the test
methods can be applied by using these primitives rather than (N)-ASPs, but if
they are not then only the remote test methods can be used. The extent to which
control and observation of application service primitives will be possible will
vary from one application protocol to another and may be different at the two
sides because of inherent asymmetry in the application. For example, what can be
controlled and observed for an initiator of a file transfer operation will be
rather different from what can be controlled and observed for the file transfer
responder (i.e. the filestore end).

Another issue occurs in the application layer, that of testing conformance
requirements which go beyond the pure protocol exchanges. It is not only
necessary to know that PDUs are exchanged in a valid manner but also that the
exchanges ha ve the desired effects in terms of the service provided to the user.
This may require the definition of special application protocol dependent test
methods to complement those described above. For example, it may be necessary to
inspect the contents of a files tore by local means before and after certain file
transfer tests.

7. Realization of Abstract Test Methods

In order to run the tests that will in due course be standardized it will be
necessary to realize at least one of the abstract test methods. This will
involve making mappings between the abstract concepts and real events and real
systems. This section identifies some of the possible ways of realising lower
testers, upper testers and test coordination procedures by reference to

191

.. ..

approaches proposed and used by various research and development groups.

7 .1 Lower Testers

The usual realisation of a lower tester for remote and distributed methods is
kn own as an Active Tester. There are several different possible designs [7,8)
not all of which give full control and observation of (N-1) -ASP"s. Some early
designs were based on using a reference implementation of an (N)-entity, perhaps
co upled with an exception generator [9) or configuration module [10) to give
some flexibility in generating desired patterns of behaviour, particularly
invalid ones . An alternative is to use an encoder/decoder module [1 0 ,11,12) to
generate a ny desired sequence of PD Us, whether valid or invalid. However, to
overcome the deficiencies of these approaches, a second generation design has
been pr oposed [8,13) which will enable control and observation to be specified
in detailed (N-1) -ASP" terms when necessary, or in higher level terms (e.g.
(N)-ASP"s) when that is more appropriate. In addition, it may be necessary to
use a portable testing unit, such as Cerbere [10,14), as part of the realisation
of the l owe r tester when the underlying service is not end-to-end.

Whatever means is chosen for generating and recognising the (N-1)-ASP"s, an
Active Tester will also need some form of Test Driver to control the operation
of the test according to the executable test definition. Some Test Drivers are
manual, some take commands from a file, and some use finite state based
techniques [15). Future ones may well be based on s t andard formal desc ription
techniques. Whatever approach is used, it is important that the executable test
definition should be able to cover the whole tree of possible behaviours
specified in the abstract test specification, not just a few of the main paths
through that tree.

7 . 2 Upper Testers

Local and distributed test methods require the use of an upper tester. This
observes and controls service primitives within the system under test. There
must therefore be a mapping between abstract service primitives and real events
in the system under test , but these need only be known to the implementor or
supplier of that system.

The detail s of the realization of the upper tester can be entirely system
s pecific, but it has been found advantageous to have a portable system
i ndependent approach to implementing upper tester functionality. The usual'
a pproach i s called a Test Responder, but there are many possible designs [7)
which vary in the demands they make on the system under test and in the amount
of control and observation that they can perform. Another approach which has
been recently proposed [16) is to implement a portable module called a Ferry in
the system under test, the purpose of which is to relay all the (N)-ASP events
over the network to a Test Driver in the same system as the Active Tester. This
avoids having to design a special Test Responder with its inevitable compromise
between por t ability and flexibility, but does require the system under test to
s upport a module (the Ferry) which uses two connections simultaneously.

It has been proposed that there should be standardization of a single design of
Test Responder but this has not yet been accepted. Instead the current focus of
attention is on the possibility of standardizing the general functionality
required by an upper tester.

192

7.3 Test Coordination Procedures

The major problem to be solved by the test coordination procedures is the
synchronization of activities by the upper and lower testers. Research work has
shown that this is a serious problem with the distributed test method. Loose
synchronization by means of remote terminal access, use of the telephone and the
setting to appropriate timer values has been shown to be inadequate, as might
have been expected.

A better approach is to use a Test Driver-Responder Protocol (or Test Control
Protocol) designed in conjunction with a Test Responder. There are two main
design choices to be made for such a protocol. The first is whether to operate
it on the same connection as the test traffic, or on a separate parallel
connection going through the IUT, or on a separate parallel connection which
interfaces to the Test Responder without going through the IUT. The second
choice is whether to make each PDU of this protocol relate directly to one test
event or to have PDUs which set up a test step invol ving several events up to
the next synchronization pOint. All these approaches have some technical
inadequacies and some add considerably to the complexity of the Test Responder.

An alternative approach is available if the Ferry idea is used. Since the
control of the upper tester is then realised by a Test Driver in the same system
as the Active Tester, synchronization between upper and lower tester becomes
merely a matter of inter-process communication within a single system. The
weakness is that there is a delay between activity by the Test Driver and
corresponding activity by the Ferry.

Synchronization is , of course, much easier to solve with the local test method,
since the test coordination procedures only need to operate within a single
system. It may also be thought that the remote test method avoids the problem
entirely. This is not so because, although there is no defined upper tester
activity to be coordinated with the lower tester activity, experience shows that
some undefined, system specific control of the system under test will be needed;
and this will have to be synchronized with the lower tester activity, but the
option of using a protocol to do it is almost certainly not available. So it is
back to remote terminal access and use of the telephone.

8. Topics Requiring Further Work

The main topics which require further work for the standardization of OSI
conformance testing are:-

(a) test notation;
(b) relationship between testing and FDTs;
(c) timing considerations;
(d) analysis and comparability of results;
(e) principles for use and design of multi-layer test suites;
(f) production of test suites.

It is desirable to have a single preferred test notation in which abstract test
specifications can be written. Currently four candida t es are under study in SC21
and a fifth has been used for the X.25 test suite by sc6. The sc6 notation is an
informal one which is only applicable to simple tests using the RS test method.
The ones being studied by SC21 are supposed to be able to handle complex tests
for any test method. However, the tabular method (which is also proposed for
Teletex tests by CCITT) is better at concentrating on the main paths rather than
speci fying the whole tree of behaviour for a complex test. The other three are
an informal tree notation and the two ISO FDTs, Estelle and LOTOS. A comparison
of the four is being made by using them to define some complex example tests
[17] for the Session and Transport protocol s ;

193

..

Other aspects of the relationship between FDTs and testing are seen as having
lower priority. They concern the suitability of each of the ISO FDTs for
derivation of tests from formal descriptions of protocols and services. Current
evidence [18] suggests that LOTOS is better suited for this than Estelle.

There are two main aspects of timing considerations: conformance requirements
concerning timing and timers and how these should be tested; and the use of
timers in testing for such things as the detection of inactivity. There are
currently a great many questions on these aspects and very few answers [19].

Very little has been contributed so far on analysis and comparability of
results. Yet a major reason for standardizing tests is to ensure comparability
of results between different organisations which carry out the testing.

There is general agreement that the testing of multi-layer implementations is of
major practical importance, but most of the work to date has gone into
developing the single-layer testing ideas. It is currently unclear to what
extend multi-laye r test methods will be used in practice or how multi-layer test
suites might be defined. It may well be that incremental embedded single-layer
testing will be the dominant technique.

As part of the work of evaluating the confo rmance testing methodology and
framework, it is proposed that trial test suites should be developed , probably
for Transport, Session and an application protocol. These could then form the
basis of the full test suites for these protocols. However, much effort is
required to produce such test suites and it remains to be seen how quickly this
will be forthcoming. At present ' the only test suite which is being developed by
ISO is the one for X.25. CCITT is also working on a test suite for Teletex.

9. Conclusion

The ISO work on OSI conformance testing is now well advanced and has
successfully generalised the work done by various research groups. A lot still
remains to be done, but the energy and enthusiasm of the experts engaged in this
work enables one to be optimistic about the outcome.

Acknowledgements

The author grateful ly acknowledges the efforts of the ISO rapporteur group on
OSI conformance testing, which he leads, without which this paper would not have
been possible. He also wishes to acknowledge the support given to him by many
members of the NPL Protocol Standards Group and the National Computing Centre
COMMS-AID team. His own work at NPL has been supported by the Electronics and
Avionics Requirements Board of the Department of Trade and I ndustry.

Re ferences

[1] ISO/TC97/SC21/WG16-1, Working draft for OSI conformance testing methodology
and framework, ISO/TC97/SC21 N 410, Paris, February 1985.

[2] ISO/TC97/SC21/WG16-1, Draft anSwer to the question on conformance to OSI
standards (W.G1 Q 16 A), ISO/TC97/SC21 N407, Paris, February 1985.

[3] ISO/TC97/SC16/WG1, Checklist for protocol standards to permit conformance
testing (revised), ISO /TC97 /SC2 1 N 88, Copenhagen, June 1984.

[4] D. Rayner, Towards an objective understanding of conformance, in: Protocol
Specification, Testing and Verification III, proc. 3rd international

194

workshop on this subject, held in Zurich on 31 May - 2 June 1983, edited by
H. Rudin and C.H. West, North Holland, 1983, 477-492.

[5] R.F.L. Henley and D. Rayner, Implementation assessment of Transport and
Network Services: an informal description of tests, NPL Technical
Memorandum DNACS TM 5/ 81, July 1981.

[6] H.X. Zeng and D. Rayner, Gateway testing techniques, in: Protocol
Specification, Testing and Verification IV, proc. 4th international
workshop on this subject, held at Skytop, Pennsylvania, on 12-14 June 1984,
edited by Y. Yemini, R. Strom and S. Yemini, North Holland, 1985, 637-655.

[7] G.W. Cowin, R.W.S. Hale and D. Rayner, Protocol product testing - some
comparisons and lessons, in: Protocol Specification, Testing and
Verification III, edited by H. Rudin and C.H. West, North Holland, 477-492.

[8] J.R. Pavel and D.J. Dwyer, Some experiences of testing protocol
implementations, in: Protocol Specification, Testing and Verification IV,
edited by Y. Yemini, R. Strom and S. Yemini, North Holland, 657-677.

[9] R.J. Linn and J.S. Nightingale, Some experience with testing tools for OSI
protocol implementations, in: Protocol, Specification, Testing and
Verification III, edited by H. Rudin and C.H. West, North Holland, 521-531.

[10] J-P Ansart, CERBERE, GENEPI, STQ: Three tools for protocol implementation
testtng, proc. 1st international workshop on Introduction to High Level
Protocol Standards for Open Systems Interconnection, held in Paris, on
27-29 June 1983.

[11] D. Rayner, A system for testing protocol implementations, Computer
Networks, ~, December 1982, 383-395.

[12] J-P. Ansart, GENEPI/A - a protocol independent system for testing protocol
implementation, in: Protocol Specification, Testing and Verification II,
proc. 2nd international workshop on this subject, held in Idyllwild,
California, on 17-20 May 1982, edited by C. Sunshine, North Holland, 1982,
539-554.

[13] J.R. Pavel, A new approach to the design and construction of protocol
testers, NPL Report DITC 54 / 85, April 1985.

[14] J-P. Ansart and J. Damidau, CERBERE, a tool to keep an eye on high level
protocols, in Protocol Specification, Testing and Verification II, edited
by C. Sunshine, North Holland, 529-538.

[15] P.W. Hobson (ed.), Implementation assessment of the OSI Network Service:
the test definition language, NPL Report DITC 52/84, December 1984.

[16] H.X. Zeng and D. Rayner, The impact of the ferry concept on protocol
testing, to be published in proc. 5th international workshop on Protocol
Specification, Testing and Verification, held in Moissac, Toulouse, France,
on 10-13 June 1985.

[17] ISO/TC97/SC21/WG16-1, Test examples, ISO/TC97/SC21 N 412, Paris, February
1985.

[18] ISO/TC97/SC21/WG16-1, Conformance testing and FDTs, ISO/TC97/SC21 N 411,
Paris, February 1985.

[19] ISO/TC97/SC21/WG16-1, Time dependencies and timers, ISO/TC97/SC21 N 413,
Paris, February 1985.

195

.. ..

DISCUSSI ON

While mentioning the static and dynamic aspects of conformance
tests, the speaker, in response to Professor Randell's question on
the static aspects, explained that those aspects stand for the
capabilities of a protocol being tested . As he went on to explain the
requirements for conformance tests, Professor Whitfield asked what
the speaker meant by conditional requirements . The speaker answered
that when certain (boolean) conditions become true, those
requirements will become mandatory; otherwise they are unspecified.
As he explained the optional requirements as the ones that can be set
at will, Professor Randell pOinted out that if all the requirements
were mandatory , PICS (Protocol Implementation Conformance Statement)
would not be necessary.

During the post-talk discussions, Professor Randell questioned
how the test protocols can be standardised when the protocol
specifications themselves are inadequate and asked about the merits
of public demonstrations of system linking . The speaker stated that a
great deal of work has to be done in linking demonstrations; he
remembered one such demonstration in Computer Conference at Las Vegas
participated by about fourteen vendors. However, the results of the
demonstration were not very fruitful, in his opinion. He suggested
that standard test procedures be conducted at various test centres to
achieve a level of commonality instead.

Finally, Dr . Cerf raised a question whether it is possible to
have a transportable test protocol, especially for X25 systems that
are getting increasingly popular . The speaker replied that one has
been developed in France. He also pointed out that those
transportable test-protocols tend to have a poor performance due to
its flexibility.

196

