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VERIFYING A PROTOCOL ALGEBRAICALLY USING CCS 

In CCS : 

• Algebraic expressions stand for states of machines 

The composition of expressions ( = machines) is again 

an expression ( = machine) 

• Proofs may be done rigorously by algebraic manipulation 

The aim of this talk: 

To illustrate this by a proof of the ALTERNATING-BIT 

PROTOCOL 

To see the i mplications for using computer assistance 

in the proof. 
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VERIFYING THE ALTERNATING-BIT PROTOCOL, 

USI NG BISIMULATION IN CCS 

The rough p i cture 

ACKLINE 

--------7) SEND~ ~RECEIVE ----}) 
"'----------

TRANSLINE 

A t yp i cal sta te (with the LINES modelled as agents) : 

ack "ck ACK« r,b)P) reply reply 
accep t ,_---y" 

send 
send 

REPLYING(b) 

transmit 
transmit 

• SENDER HAS RECEIVED ack(b), is ready to accept 

deliver 

· RECEIVER has done deliver(m), is performing reply ( r,b) 

• TRANSLINE holds n copies of m paired with bit b 

• ACKLINE holds p copies of r paired with bit b 

Expressing the System in CCS (ignor ing m,r): 

A SYSTEM(b,n,p) = 

ACKED( b) II TRANS( bn ) II ACK( bP) II REPLYING( b) 

- where the four components have yet to be defined . 
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DEFINING THE SENDER AND RECEIVER 

They must cater for the loss or duplication of any 

message by TRANSLINE or ACKLINE 

accept 

ACKED( b) 

SENDING( b) 

ack 

( SENDERC 

send 

I negation 

= (ack(b)+ack(b) .ACKED (b) 
~ 

+accept.SENDING(b) 

.~ 

= (send(b) +ack(b» . SENDING(b) 
+ ack(b).ACKED(b) 

In more convenient notation: 

(ignore all 
ack's) 

( re-send , 
ignore re-ack' s) 

* --./ 
ACKED(b) = (ack(b) +ack (b» .accept.SENDING(b) 

-- .~ * 
SENDING(b) = (send(b) +ack (b» .ack(b).ACKED(b) 

The RECEIVER has a dual deCinition: 

~ )deliver 
RECEIVER 

transmit 

- * TRANSMITTED(b) = (transmit(b)+transmit(b» .deliver.REPLYING(b) 

* .......,. ........... 
REPLYING(b) = (reply(b) +transmit (b» .transmit (b) . TRANSMITTED(b) 
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STATE DIAGRAM FOR THE SENDER 

ack 

accept ( ~ 
SENDER 

sen 

·1 ACKED(b ) I 
ack( b) 
~ 

ack(b) accept 

b: = b 
--r 
~ 

send(b) ack(b) 

ack( b) 

In state ACKED(b) : 

• all acks are ignored 

In sta te SENDING(b): 

ack(b) is ignored 

re-sending occurs arbitrarily often 
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DEFINING THE LINES 

ACKLINE and TRANSLINE can hold an arbitrary finite sequence S of 

messages (bits): 

ack 
-( ACK (S) ) 

reply 

send 
-CTRANS(S~ 

transmit 

Since they can lose or duplicate bits, they can be 

defined as labelled t r ansition systems, as follows : 

ack( b) T 
ACKS(bs) ~ ACK(s) ACK( s1 bS2)~ ACK( s1 bs2) 

reply( b) T 
ACK(s) ~ ACK(s) ACK( s1 bs2 ) ~ ACK( s1 bbs2) 

Note: T is an antonomous transition 

send (b) 
TRANS(S) ~ TRANS(bs) 

transmi t (b) 
TRANS(sb)___. TRANS(s) 

T 
TRANS(s1bs2)~TRANS(s1s2) 

T 
TRANS(s1bs2)~TRANS(s1bbs2) 

These agents can be defined a l so by equa t ions , exactly i n t he 

same way as t he SENDER and RECEIVER. 
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THE ACCESSIBLE SYSTEM-STATES 

accept 

T 

0~ 
acc pt ~ ~~--~ del ver 

;. 

'sENDING( b) rREPLYING ( b)l--I--

. T -'----\.: __ .-==7-\(_~'J ---l _ ~bmbni) . 

T 
de iver acce t 

~ 

SENDING( b) TRANSMITTED ( b)l--t--

deliver 

acc pt de iver 
GENDI NG(b'V REPLYING( b)l--I---

"® 

Note: 

TRANSLINE,ACKLINE only hold sequences S of the form bn or 
'bmbn 

The T transitions represent both internal communications 

and loss or duplication of bits. 
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THE SYSTEM SPECIFI CATION 

We wish to prove that the SYSTEM , in initial state 

SYSTEM(b,n,p) 

is equivalent to a message-buffer of capacity 1. 

Thus, the SP ECIFICATION is 

SPEC = accept.deliver.SPEC 

and we prove 

The bi s i mulation can be established mechanically, using 

mainly the EXPANSION THEOREM of CCS. 

[ During this development, the ACCESSIBLE SPITES of 

SYSTEM(b,n,p) are automatically discovered~ 

The notation of BI SIMULATION is due to David Park. 



WHAT IS INVOLVED IN THE MECHANICAL PROOF? 

Many different formalisms: 

CCS expressions E 

Equations E1 ~ E2 

Transitions E14 E2 
~m n 

Sequence algebra, for sequences b b etc 

Arithmetic, for the indices m,n 

INFERENCE, involving statements about these things . 

DIAGRAMS ! 

The challenge for machine-assisted proof : 

To conduct the verification, with our assistance, using 

OUR BEST NOTATIONS for all these things, NOT one Procrustian 

Notation ! 
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ALTERNATIVE PROOF, USING DECOMPOSITION (with Kim Larsen) 

Consider the decomposi t i on: 

SYSTEM( b,n,p ) = SYS1 ( b,p ) \I SYS2(b ,n ) 

SYS1 
r e pl y rep ly \ 

deliver 
REPLYING ( b) I---

send 

SYS2 

Now we are concerned with the behaviour of SYS1 ( b,p ) only in the 

CONTEXT 

I C2 =C.l / ISYS2( b,n ) I 
We therefore seek 

( 1) A LANGUAGE ( = set of ac tion sequences ) L2 which 

contains all action sequences permitted by C2 to any 

i nha bitant" 

This L2 is called a Sufficient Inner Environment (SIE) 

(2 ) A Specification SPEC1(b) such that 

SYS 1( b,p )?f SPEC1( b) 
2 

This is ca l led bisimulation equivalence re l a t ive to L2 " 

158 



WHAT DOES C2 PERMIT?: 

INHAB I TANT 
reply 

deliver 
REPLYING( b)f-.---

send 
C2 = 

[J \I SYS2(b , n) 

C2 imposes a constraint on its inhabitant , with respect to send 

and reply actions . I ntuitively : 

PHASE 1 : 

PHASE 2: 

PHASE 3 : 

All reply actions must be reply(b ) until send(b) 
occurs; 

Trivially, all reply actions are reply ( b) until 
"'" reply( b) ; 

Thereafter , provided send( b ) has not occurred 
du r ing PHASE 2 , the whole constraint a pplies again 
with b and b interchanged . 

The action seq uences thus described can be de f ined as 

follows , using ACT for all actions and EXT to stand for ACT -

~end , send , rePly , reP 1Y~ : 

* --~ , 
L2 = L2(b) = (EXT+send(b)+r e ply(b)) .send(b). L2 (b) 

, -- ~ * 
L2 (b) = (EXT+send (b) +reply(b)) . 

(send(b) . ACT + reply(t;'l • Lib) ). 
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A GRAPHICAL PRESENTATION OF L2 , the Suffi c ient Inner 
Env ironment fo r C

2 

reply 

send 

~------~deliver 
REPLYING( b) )----

--- * ---= ( EXT+send (b) +reply ( b )) .send(b) . L
2

' (b) 

--- ~ ~ 
= ( EXT+senct( b)+reply( b) ) *. (send( b) .ACT+reply( b ) . L

2
( b)) 

EXT. 
send (b) • 
reply( b) 

_w. 
send ( b ) • 
reply ( b) 

send ( b ) 

send ( b ) 
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THE SPECIFICATION OF SYS1 RELATIVE TO THE LANGUAGE L2 

accept 
ACKED( b) 

SYS1(b,p) 

Intuition: 

send 

ENVIRONMENT 
L2 

The Environment L2 ensures that no reply ( b) can occur 

until ACKED(b) has done accept followed by send (b). 

Thereafter, SYS1 ensures that no send (b) can occur until 

the Environment allows reply (b). 

Together, it is assured that the ACKLINE can only hold 

sequences with at most a single bit - change. 

We can prove 

SYS1 ( b,p)= SPEC1(b) 
L2 

where SPEC1 has the following definition : 

SPEC1 (b) = reply(b)*.accept. 
(send(bi +reply( b» * . replzS"bj • 
(send (iii +reply( b) +reply( b) ) * . 

L .SPEC1(b) 

This, unlike SYS1, is a finite-state agent! 
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CONTINUING THE PROOF 

We have shown 

I SYSTEM(b,n,p) ""'- SPEC1(b) l l SYS2(b,p) 

We now have the context C
1 

= SPEC1(b) )I[ J inhabited by 

SYS2(b,p). 

By similar means, we can find an SIE L1 f or C1i We t hen 

find a finite-state SPEC2 ( b ) such that 

SYS2 ( b,p ) 'L' SPEC2 ( b) 
1 

Thus , we have shown that 

SYSTEM(b,n,p ).= SPEC1(b) il SPEC2(b) I 

The final step is therefo re to prove that 

I SPEC1( b) \ \ SPEC2 ( b)~SPEC I 

- and this is simple, because SPEC1 and SPEC2 are simple. 
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NOTE : Some of the materia l presented by Professor Milner is not 
included in these proceedings. 

DISCUSSION 

Dr. Cerf asked how i mportant are the binar y nature of your 
protocols to make CCS work out? Doesn ' t it ge t very complicated i n 
bigger cases? 

Professor Milner replied, I suspect this i s very much the case. 
We have to try and see what happens. 

Professor Tierna~y asked, does CCS allow you to prove the same 
things as the state trans .ition method? 

Pro f essor Milner stated, I have proved that the system behaves 
as a machine that accepts and delivers. There can be no d eadlocks, 
although infinite internal loops may occur . So perhaps I'm not 
proving as much as I should. 

Question: Doesn ' t one need to add time in order to really 
express protocols pr operly? 

Professor Milner replied, this is one of the tradeoffs to be 
made. CCS would be simpler if time was added to it, but then it would 
be difficult to prove anything . It is an open problem. 
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