
VERIFYING A PROTOCOL ALGEBRAICALLY USING CCS

R. Mi lner

Rapport eur: Mr. A.M. Koelmans

(Copies of Transparencies)

1 ~

VERIFYING A PROTOCOL ALGEBRAICALLY USING CCS

In CCS :

• Algebraic expressions stand for states of machines

The composition of expressions (= machines) is again

an expression (= machine)

• Proofs may be done rigorously by algebraic manipulation

The aim of this talk:

To illustrate this by a proof of the ALTERNATING-BIT

PROTOCOL

To see the i mplications for using computer assistance

in the proof.

150

VERIFYING THE ALTERNATING-BIT PROTOCOL,

USI NG BISIMULATION IN CCS

The rough p i cture

ACKLINE

--------7) SEND~ ~RECEIVE ----})
"'----------

TRANSLINE

A t yp i cal sta te (with the LINES modelled as agents) :

ack "ck ACK« r,b)P) reply reply
accep t ,_---y"

send
send

REPLYING(b)

transmit
transmit

• SENDER HAS RECEIVED ack(b), is ready to accept

deliver

· RECEIVER has done deliver(m), is performing reply (r,b)

• TRANSLINE holds n copies of m paired with bit b

• ACKLINE holds p copies of r paired with bit b

Expressing the System in CCS (ignor ing m,r):

A SYSTEM(b,n,p) =

ACKED(b) II TRANS(bn) II ACK(bP) II REPLYING(b)

- where the four components have yet to be defined .

151

DEFINING THE SENDER AND RECEIVER

They must cater for the loss or duplication of any

message by TRANSLINE or ACKLINE

accept

ACKED(b)

SENDING(b)

ack

(SENDERC

send

I negation

= (ack(b)+ack(b) .ACKED (b)
~

+accept.SENDING(b)

.~

= (send(b) +ack(b» . SENDING(b)
+ ack(b).ACKED(b)

In more convenient notation:

(ignore all
ack's)

(re-send ,
ignore re-ack' s)

* --./
ACKED(b) = (ack(b) +ack (b» .accept.SENDING(b)

-- .~ *
SENDING(b) = (send(b) +ack (b» .ack(b).ACKED(b)

The RECEIVER has a dual deCinition:

~)deliver
RECEIVER

transmit

- * TRANSMITTED(b) = (transmit(b)+transmit(b» .deliver.REPLYING(b)

*,.
REPLYING(b) = (reply(b) +transmit (b» .transmit (b) . TRANSMITTED(b)

152

STATE DIAGRAM FOR THE SENDER

ack

accept (~
SENDER

sen

·1 ACKED(b) I
ack(b)
~

ack(b) accept

b: = b
--r
~

send(b) ack(b)

ack(b)

In state ACKED(b) :

• all acks are ignored

In sta te SENDING(b):

ack(b) is ignored

re-sending occurs arbitrarily often

153

DEFINING THE LINES

ACKLINE and TRANSLINE can hold an arbitrary finite sequence S of

messages (bits):

ack
-(ACK (S))

reply

send
-CTRANS(S~

transmit

Since they can lose or duplicate bits, they can be

defined as labelled t r ansition systems, as follows :

ack(b) T
ACKS(bs) ~ ACK(s) ACK(s1 bS2)~ ACK(s1 bs2)

reply(b) T
ACK(s) ~ ACK(s) ACK(s1 bs2) ~ ACK(s1 bbs2)

Note: T is an antonomous transition

send (b)
TRANS(S) ~ TRANS(bs)

transmi t (b)
TRANS(sb)___. TRANS(s)

T
TRANS(s1bs2)~TRANS(s1s2)

T
TRANS(s1bs2)~TRANS(s1bbs2)

These agents can be defined a l so by equa t ions , exactly i n t he

same way as t he SENDER and RECEIVER.

154

/

/

\
\

THE ACCESSIBLE SYSTEM-STATES

accept

T

0~
acc pt ~ ~~--~ del ver

;.

'sENDING(b) rREPLYING (b)l--I--

. T -'----\.: __ .-==7-\(_~'J ---l _ ~bmbni) .

T
de iver acce t

~

SENDING(b) TRANSMITTED (b)l--t--

deliver

acc pt de iver
GENDI NG(b'V REPLYING(b)l--I---

"®

Note:

TRANSLINE,ACKLINE only hold sequences S of the form bn or
'bmbn

The T transitions represent both internal communications

and loss or duplication of bits.

155

THE SYSTEM SPECIFI CATION

We wish to prove that the SYSTEM , in initial state

SYSTEM(b,n,p)

is equivalent to a message-buffer of capacity 1.

Thus, the SP ECIFICATION is

SPEC = accept.deliver.SPEC

and we prove

The bi s i mulation can be established mechanically, using

mainly the EXPANSION THEOREM of CCS.

[During this development, the ACCESSIBLE SPITES of

SYSTEM(b,n,p) are automatically discovered~

The notation of BI SIMULATION is due to David Park.

WHAT IS INVOLVED IN THE MECHANICAL PROOF?

Many different formalisms:

CCS expressions E

Equations E1 ~ E2

Transitions E14 E2
~m n

Sequence algebra, for sequences b b etc

Arithmetic, for the indices m,n

INFERENCE, involving statements about these things .

DIAGRAMS !

The challenge for machine-assisted proof :

To conduct the verification, with our assistance, using

OUR BEST NOTATIONS for all these things, NOT one Procrustian

Notation !

157

ALTERNATIVE PROOF, USING DECOMPOSITION (with Kim Larsen)

Consider the decomposi t i on:

SYSTEM(b,n,p) = SYS1 (b,p) \I SYS2(b ,n)

SYS1
r e pl y rep ly \

deliver
REPLYING (b) I---

send

SYS2

Now we are concerned with the behaviour of SYS1 (b,p) only in the

CONTEXT

I C2 =C.l / ISYS2(b,n) I
We therefore seek

(1) A LANGUAGE (= set of ac tion sequences) L2 which

contains all action sequences permitted by C2 to any

i nha bitant"

This L2 is called a Sufficient Inner Environment (SIE)

(2) A Specification SPEC1(b) such that

SYS 1(b,p)?f SPEC1(b)
2

This is ca l led bisimulation equivalence re l a t ive to L2 "

158

WHAT DOES C2 PERMIT?:

INHAB I TANT
reply

deliver
REPLYING(b)f-.---

send
C2 =

[J \I SYS2(b , n)

C2 imposes a constraint on its inhabitant , with respect to send

and reply actions . I ntuitively :

PHASE 1 :

PHASE 2:

PHASE 3 :

All reply actions must be reply(b) until send(b)
occurs;

Trivially, all reply actions are reply (b) until
"'" reply(b) ;

Thereafter , provided send(b) has not occurred
du r ing PHASE 2 , the whole constraint a pplies again
with b and b interchanged .

The action seq uences thus described can be de f ined as

follows , using ACT for all actions and EXT to stand for ACT -

~end , send , rePly , reP 1Y~ :

* --~ ,
L2 = L2(b) = (EXT+send(b)+r e ply(b)) .send(b). L2 (b)

, -- ~ *
L2 (b) = (EXT+send (b) +reply(b)) .

(send(b) . ACT + reply(t;'l • Lib)).

159

A GRAPHICAL PRESENTATION OF L2 , the Suffi c ient Inner
Env ironment fo r C

2

reply

send

~------~deliver
REPLYING(b))----

--- * ---= (EXT+send (b) +reply (b)) .send(b) . L
2

' (b)

--- ~ ~
= (EXT+senct(b)+reply(b)) *. (send(b) .ACT+reply(b) . L

2
(b))

EXT.
send (b) •
reply(b)

_w.
send (b) •
reply (b)

send (b)

send (b)

160

~

reply (b)

DON ' T CARE

THE SPECIFICATION OF SYS1 RELATIVE TO THE LANGUAGE L2

accept
ACKED(b)

SYS1(b,p)

Intuition:

send

ENVIRONMENT
L2

The Environment L2 ensures that no reply (b) can occur

until ACKED(b) has done accept followed by send (b).

Thereafter, SYS1 ensures that no send (b) can occur until

the Environment allows reply (b).

Together, it is assured that the ACKLINE can only hold

sequences with at most a single bit - change.

We can prove

SYS1 (b,p)= SPEC1(b)
L2

where SPEC1 has the following definition :

SPEC1 (b) = reply(b)*.accept.
(send(bi +reply(b» * . replzS"bj •
(send (iii +reply(b) +reply(b)) * .

L .SPEC1(b)

This, unlike SYS1, is a finite-state agent!

161

CONTINUING THE PROOF

We have shown

I SYSTEM(b,n,p) ""'- SPEC1(b) l l SYS2(b,p)

We now have the context C
1

= SPEC1(b))I[J inhabited by

SYS2(b,p).

By similar means, we can find an SIE L1 f or C1i We t hen

find a finite-state SPEC2 (b) such that

SYS2 (b,p) 'L' SPEC2 (b)
1

Thus , we have shown that

SYSTEM(b,n,p).= SPEC1(b) il SPEC2(b) I

The final step is therefo re to prove that

I SPEC1(b) \ \ SPEC2 (b)~SPEC I

- and this is simple, because SPEC1 and SPEC2 are simple.

162

NOTE : Some of the materia l presented by Professor Milner is not
included in these proceedings.

DISCUSSION

Dr. Cerf asked how i mportant are the binar y nature of your
protocols to make CCS work out? Doesn ' t it ge t very complicated i n
bigger cases?

Professor Milner replied, I suspect this i s very much the case.
We have to try and see what happens.

Professor Tierna~y asked, does CCS allow you to prove the same
things as the state trans .ition method?

Pro f essor Milner stated, I have proved that the system behaves
as a machine that accepts and delivers. There can be no d eadlocks,
although infinite internal loops may occur . So perhaps I'm not
proving as much as I should.

Question: Doesn ' t one need to add time in order to really
express protocols pr operly?

Professor Milner replied, this is one of the tradeoffs to be
made. CCS would be simpler if time was added to it, but then it would
be difficult to prove anything . It is an open problem.

163

• .> •

