HIGH LAYER PROTOCOL STANDARDISATION FOR DISTRIBUTED PROCESSING

V. Decreuse

Rapporteurs: Mr. B.C. Hamshere
Miss M. West

91

oL T

paiiel

A.

— - -a

Introduction

The present lecture is aimed at formulating some thoughts related to
the upper layer protocols in the following two respects:

- A good knowledge of the applications, or end user requirements, is
key in achieving an efficient system architecture.

- To which extent one can hope to define standardized upper layer
protocols taking into account that they would have to cope with existing
applications.

A netuwork i1s a part of a broader entity which could be referred to as

a "System" encompassing both the connectivity and interworking capabilities.
It seems that the education in computing and data processing science has
emphasized for the last years the study of what 1s related to the
connectivity functional set (routing algorithms, queuing theory applied

to the transmission, data flow mechanisms... etc) putting aside what 1is
likely becoming the most important part of the system i.e. the

interworking capabilities.

As a matter of fact, the connectivity facilities are to be

designed to work on behalf of the end users (terminals end programs)
which are the source and the sink of the conveyed information. As

a consequence, 1t is of a tremendous interest to understand in depth
what the end user requirements are in terms of communication facilities
as they lead to make some critical design choices at the underlying
networking functional level.

The relationships between end users evolved during the last years

in such a way that the usual operator—-terminal-program dialogue, even
if remaining the main part of the network traffic, has been replaced

in part by more sophisticated exchanges supporting program to program
communications. What is important to point out here i1s that a terminal
operator, as a human being, is capable of handling from his own complex
operations whereas a program does not have the same flexibility.

- As a first consequence, the advent of program to program
communication needs enforces the system designers to invent more
and more sophisticated upper layer protocols permitting two coupled
processes to speak with each other in a consistent way.

- As a second consequence, the advent of the so called "Distributed
Processing” permitting several processes to cooperate in order to
achieve an atomic unit of work, involving complex Data Base
structures and other resources, has introduced the requiremént of
powerful and efficient synchronization/resynchronization protocols
which are likely today the keystone of the system software design
and development.

92

e I

A a1

TTYEIININY

ey

- Furthermore, the recent requirements addressing the world of "Open
System Interconnection" have emphasized the need of additicnal
protocols so as to allow the coupling 1n a more flexible way of
processes belonging to different systems from a manufacturer point
of view. Such cooperating processes have to dynamically understand
common semantic sets conveyed by a common agreed upon transfer
syntax.

An 1mpo~tant questieon arises now. Is an open system architecture (1.e.
applying to heterogcneous systems) quite achievable with ressect to the
various application reguirements, theilr various system implementat:ions
unless defining itself all the processing environment (1.e. net only
what i1s related to the communication part of it) what is obwviously
beyond 1ts scope ? To answer such a question is certainly a matter

of debate 1n so far as existing applications (i1mplementations),
involving system and user coding, are to be changed so as to cemply

Wwith them.

According to their own objectives, on the one hand the 0SI architecture
has been defined in a down-top approach while the SHA (System Network
Architecture) on the other hand has been mainly designed by relying
on the application needs. The ECMA's DIPE (Distributed Interactive
Processing Envirenment), though claiming for its compliance wWith the
0SI architecture, steadily states that the purpose of processing

is processing itself not communication. The communication protocols
are included because the processing 1s distributed but they are not
fundamental to processing i1tself. In this respect the DIPE structure,
which 15 user oriented should be designed by starting from the
corresponding top-down viewpoin: specifically that of the designers
of distributed applications net that of the communication engineer.

It would not be very advisable to cenclude as far what is the right
approach.

Some additional thoughts about system architecture.

In many respects, any system architecture can be thought of as an
axiomatic (for 1nstance the Euclidean geometry) which 15 in essence
more concerned with the relationships between the objects 1t
defines than with the properties of the objects themselves.

But unlike an axiomatic, a system architecture has to cope With

the real world what means in the data processing environment that
the structural concepts have to take 1nto account the end user
requirements.

In this critical examination of the KANT's "Critique of the pure
Reason" BERTRAND RUSSEL denies the fact that "synthetic judgments
a priori" are possible. On the contrary, according to him, any
empirical propoesition relies on some experience and depends

on observational data. In other words, any '"synthetic judgment™ is
necessarily "a posteriori.

B. An overview of distributed processing envireonment

93

B.l : Some preliminary definitions

Distributed Processing is the cooperative execution of computer
programs which are dispersed into separate computers. The prime concern
of distributed processing is processing not communication.

Distributed Data Processing 15 a Data Processing 1n which some or

all of the processing, storage and controcl functiens, 1n addition to
input/output functions are situated 1n different places and connected
by transmission facilities.

Interaction Processing is, in its broadest sense, a processing

which depends on the transfer 1nformation between two or more
participants by means of "synchronous' conversations.

B.2 : Some structural concepts

Distributed Processing involves coordinated relationships between
two or more processes aimed at achieving a given piece of work.

B.2.1 : The basic entity 1s the relationship between tuwo

cooperating transaction programs which is referred to as a
"ceonversation” in the SNA werld or an "association" 1n the 0SI world.
The "association'" and '"conversation'" main attributes are:

- The common agreed upon dialogue rules between the two cooperating
entities

- The commonly understood application semantic
and the underlying transfer syntax.

- The commeon agreed upon synchronization rules in order to maintain
the invelved processing resources 1n a coherent state.

All those attributes are to some extent negotiated between the two
partners at conversation/association set up time.

A set of related conversations/associatiens aimed at achieving, in a
consistent way a given piece of work constitutes a "Processing Tree".
B.2.2 : The underlying entities

The associations/conversations rely on underlying entities providing
them with the required services (see figure 1).

What is of interest here to point out is as follows:

94

E—-

=s——

T T —

TEEE

Association/conversation is aimed at allowing two coupled
transaction program i1nstances pertaining to the same or d:fferent nodel(s)
to speak with each other.

Sessions/Session connecticons are aimed at allowing two different
ccupled nodes to communicate with each other.

The SNA session is serially reusable whereas the 0SI session
connection 1s not what 15 a strong drawback from a performance and
usabi1li1ty standpoint.

The 0SI architecture, as an heterogenceeous system oriented
architecture has to comply with flexibility requirements 1n the
program to program communication area. It therefore emphasizes at
associration and presentation connection level the role of protocols
permitting two transaction programs to handshake at application
semantic level as well as at transfer syntax level.

SNA, as a private system architecture, has not to face such
needs. The transaction programs are designed to work together
even if some common functional capabilities are negotiable at
conversation and session set up time.

The 0SI transport connection provides the session wWwith an end-to-end
nede reliable transmission pipe (What i1s termed here "Non disruptive
route switching”) relieving the upper layers from any concern wWith
failures occurring at transport and network level. On the contrary, the
SNA virtual route failures are, 1n the state of the art, propagated to
the upper layers which are responsible for managirg the recovery.

It appears here that the 0SI down-top design approach led to split

up the communication system facilities 1nto two parts which are one

the one hand all what is related to pure transport functional set, on the
other hand what is close to the application functional set.

The Top-Down SNA design approach led to emphasize the role of what 1s
related to the application functional set while i1nteresting, from an
histerical perspective, step by step to what is related to pure
networking functional set.

B.32 Distributed Processing 1in the perspective of the 0SI refrrence
model

As got from figures 2, 3, 4, 5 the 0SI architecture clearly states which
part of a process belongs to i1ts sphere of interest (0SI environment)

and which part it is not concerned with (Local System Environment).

Such a cut is quite understandable in the perspective of an heterogeneous
system architecture whose main objective is to permit end-to-end system
reliable communication (theoretical point of view).

In fact, one can ask whether the pure information processing (L.S.E)

could not have any impact on the underlying layers. Performance and
usability requirements, claiming for such capabilities as serially

95

reusable session cennections, transmission priority, symmetric
responsibility for setting up a new session connection on an available
transpert connection undoubtedly advocate 1t would be desirable to go a
little beyond the border.

Moreover we can guess from our knowledge of some 1mplemented applications
that the local system environment resocurce protection mechanisms could
have a strong impact on the architected synchrenization/resynchronizatioen
mechanisms. But, what i1s meant really by local system environment ?

B.& Aswvrnchrenous and synchronous distributed procer=sing

It is useful so far to distinguish the asynchronous distributed
processing from the synchronous one as their requirements are, from
a system point of view, not the same.

The asynchronous distributed processing 1s required by many applications
and system services including office system, network management, file
transfer and job networking. It i1s characterized by the fact that 1t
relies on a delayed delivery transmission mode permitting 1n most cases
the requestor to retry at will its work in so far as there are no resource
concurrency control requirements. There is an interesting analogy to

the postal system.

The synchronous distributed processing is characterized by the fact that

the communicating partners converse in real time, responses 1f any being
synchronized with requests. The different processes compete 1n sharing

processing resources what implies that complex resource concurrency

control mechanisms are required. An 1nteres.ing analogy here, 1s to 3
the telephone system.

Figure 6, though the comparison is not exhaustive, shows what are the
basic requirements of asynchronous and synchronous distributed processing.
As the most stringent requirements, from a system standpoint, come from
the synchronous distributed precessing we will focus on what is

referred to as the distributed 1nteractive processing environment.

B.5 Distributed Interactive Processing Envirconment: An overview

B.5.1 : Conversation and processing tree

The conversation is a relationship established between two cooperating
transaction programs which can be homed 1n the same or different
system(s) in order to achieve a piece of work. A user TP can schedule
the execution of its partner TP either explicitly or implicitly

by using appropriate protocols. The target system will schedule the
required TP which is identified by a transaction program name (TPN)

or transaction code according to its own, locally defined,

triggering mechanisms. A basic concept is that the establishment of the
dialogue invokes a fresh instance of the destination TP, that is to
say whatever the properties of the destination program are (either
reentrant or serbally reusable or not reusable at all), it will

96

EESTome me

run under control of a devoted task what 1nsures the uniqueness
of the couple driving task -running pregram. It 1s obvious that
many tasks can, at any given point 1n time, run the same program
each instance of 1t owning a unigque running environment.

According to the processing requirements, the location of the
involved resources, the destination TP can 1n turn schedule one
or many destination TP(s) what leads, step by step, to build the
so called "processing tree". The processing tree consists of a
root (he i1nitiator TP) coupled to 1ts direct subordinate(s) by
conversations which are the "branches" or "arcs" of ‘he tree.

Each first level subordinate can 1n turn have 1ts own suborcdinates...

etc. (see figure 7). The "fresh i1nstance" concept precludes a tree
masked structure.

B.5.2 : Intercommunication types of facility

Function request shipping: this facility enables a TP to access
a processing resource (Data Base, queue, file... etc) owned by an

other system 1n an implicit way. By implicit way 15 meant here that

the TPs that access the remote resources are designed and coded as
if the resources were owned by the system in which the transaction
15 to run. During execution, system functions are responsible for

shipping the request to the appropriate target system (see figure 3).

Asynchronous processing: this facility enables a TP to i1nitiate a

TP 1n a remote system and to pass data to 1t. The data can include
name of a local TP that i1s to be i1ni1tiated by the remote system to
receive the reply if any. The requesting TP and the destination TP
are running i1ndependent from each other and no direct correlation

between requests and replies is possible (see figure 9).

Transaction routing: this facility enables a terminal that is
owned by one system to run a TP in another system (see figure 10)

Distributed Transaction Processing: this facility enables

a TP to communicate wWwith a TP running 1n ancther system. The TPs
are designed and coded explicitly to communicate with each other
and thereby to utilize the intersystem link wWwith maximum
efficiency. The communication 1s 1n this case synchroncus in that
requests and replies can be directly correlated (see figure 11).

Unique requirements from distributed interactive processing

The distributed interactive processing emphasizes in a tremendous
way the needs related to response time and consistency of the
resources i1nvolved in a processing tree.

Response time @

91

the

Respense time, as previously seen, depends 1n a part on the capabilities

of the lower layers. It depends too on the efficiency of dialogue

management and the related features aimed at optimizing the transfer

of 1nformations. An 1mportant contributor to the efficiency of the dialogue man
agement, in a two way alternate (THA) transmission mode which 1s usually

the best suited to the DIPE, 15 the design of information transmission

features permitting the partners to work 1n "deferred output mode™.

The inveolved systems have to implement deferred output processing of
SEND ccmmands so as to optimize the use of intersystem coupling
conversation/session what means that, in general, a message 15 not
sent tc the rcmote system until the next TP command that refers to tne
conversation 15 executed. Deferred output enables the system to acd
dialegue control i1ndicators to waiting data before it 15 transmitted
thereby decreasing the number of useless transmissions on the session.
The addition of dialogue contreol 1ndicators to deferred output

1s referred to as

"piggy~-backing". Further optimization can be achieved by accumulating
as much data as possible 1n an internal SEND buffer before actually
then across the link. Then the data from a series of SEND commands
are transmitted only when the buffer becomes full or when the
transmission must be forced according to a TP command.

The strong efficiency of the dialogue protocols based on the

utilization of deferred output mechanisms relies on the fact that

most services are to be not confirmed as any TP requesting a confirmed
service 1s put in WAIT state ti1ll the corresponding response (as opposed

to reply) has been received. The TP is unable to send other recuests and
therefore to take advantage of the "piggy backing" optimizatio.. In this
context the availability of dialogue management providing a synchronization
facility using exception response mode 15 very useful as the requesting
program can send requests in a continuous way while being aware of any
abnormal condition when receiving an exception response.

Deferred output mechanisms impact the TP logic to the extent that exceptional
conditions are reported in an asynchronous wWway. In other words, an event
resulting form some request is not directly corrclated to th1s request

as 1t will not be taken into account prior other requests, permitting

to schedule the transmission to the partner ,have been issued.

C.2 : Resource consistency

The consistency of resources invelved in a processing tree 15 the main
concern of the system design 'n the state of the art. Prior looking at the
complex mechanisms designed to meet those requirements, it 1s useful

to introduce the basic concepts on which they rely, namely the

concurrency control of recoverable resources, the logical or atomic

unit of wWork (atomic action in the 0SI world) and the unit of work,

€C.2.1. Concurrency control

98

i? - Problem statement (see figure 12)

il Concurrency control mechanisms are required 1n an 1nteractive processing
environment to the extent that many TPs, even 1n a single system, compete
With each other in order to utilize shared processing resources. Looking
at figure 12, we can infer that concurrency control mechanisms provided
by basic system facilities (like exclusive control at access method
level) are not capable of warranting the consistency of changed resources.
As of this figure, it appears that the backout process resulting from
the Tl transaction abnormal end wi1ll put record n of file A 1n 1ts

| state prior Tl was started thereby discarding the change made by the

4 T2 transaction.

l‘ As a result, there are:

= A lost of information

| = An inconsistency exposure at TZ level as T2 could
‘ have changed other resources during its processing

i = A pollution exposure to the extent that record n
b information, as resulting from the Tl change, could be propagated by

Il T2 in changing other resources.

‘ - Proposed solutions:

, Systems have to design more sophisticated (powerful) mechanisms,
‘ invelving resource protection managers so as to face the above
' stated problem.

= First level: any changed resource by a TP 1s made available to
other TPs in GET mode only. It will not be available 1n UPDATE
r! mode till the owning TP ends a 'Logical Unit of MWork'" either
| explicitly (synchronization point scheduled by the TP i1tself) or

implicitly (point of synchronization scheculed by some resource
fl protection manager in some circumstances or by the overall
i resource protection manager at the end of the TP which 15 also
Il the end of a Logical Unit of Work). The Logical Unit of Work
' (LUW) or Atomic Unit of Work can be viewed as a logical sequence

ﬁ of operations which cannot be broken from a logical point of
f J view end of which being either normal (changes are COMMITTED and
the relevant resources are unlocked) or abnormal (the

|
I consistency requirement implies that a BACKOUT process 15 to be
-J scheduled leading to put the changed resources in their initial
state and to free the relevant locks). Such a mechanism 1n fact
in not quite reliable for 1t permits a TP other than the
"owning" one to access, before the end of the LUW, 1nformation
H which has been changed, then to propagate this i1nformation by
I making some changes based on it thereby not removing the
pellution exposure 1in case of an abnormal end of the ouwning
transaction.

1 = Second level: any changed resource by a TP 1is not made
available to other TPs in either (GET or UPDATE mode), till the
owning TP ends its 1logical unit of work. The owning TP has the
exclusivity of the changed recoverable resources as 1long as it

99

has not reached the end of the current logical umit of work.
("Program Isolation” in the IBM IMs DB/ DC subsystem
terminology™).

The efficiency of such a mechanism can be viewed 1n different
aspects :

= From a resource integrity point of view it
looks like an "iron" mechanism.

: = From a perfcrmance point of view 1t 1s obvious
that the "program isoclation” feature tends to increase the logical
contention level wWhich depends on the 1nstantaneous transaction rate,

It

the granularity of shared resources and the LUW lifetime.

The concepts of LUW and program isolatien have been summarized
on figure 12.

Cu2:2 : Resource consistency n DIPE - Overwview of
synchronization and resynchronization processes (syncpoint
level).

From the knowledge of the basic principles on which rely the
data i1ntegrity mechanisms we can infer that, even in a single
system environment, the actions of the different resource
protection managers are to be coordinated by an overall local
syncpoint management entity which 15 respensible for ruling the
whole process and has been referred to as a "Syncpoint Manager".

The functions of the leocal Syncpoint Manager are to be extended
in a distributed environment so as to i1nsure the consistency of
all resources invelved in a processing tree. According to figure
14 we <can see that, besides the relationships between a
syncpeint manager and its subordinate local resource protection
manager, there are relationships between all the syncpoint
managers belonging to nodes participating to the execution of a
"Unit of Work™ (U.0.W) in order to cocrdinate the so called
"Conversation Resources",.

The relationships between syncpoint managers belonging to a
processing tree are ruled by architected protocols conveyed by
particular message entities flowing across the so called
"Synchronization Tree".

Like the processing tree, the synchronization tree i1s made up of
a root, which 1is responsible for the overall management of the
synchronization tree, subordinates, branches and leaves
organized in a pure hierarchical way.

The root is homed by the node in which a TP issues a primitive
triggering the synchronization process. Usually the root of the
synchronization tree is the same as the root of the processing
tree and the structure of the trees are therefore identical.

100

Nevertheless, it can sometimes happen that the root of the
synchronization tree 1s a subordinate 1n the processing tree. It
is of interest here to note that the ocpportunity to build
synchronization tree structures different from the underlying
processing tree structure 15 to be carefully assessed by the
application designers to the extent that the synchrenization
involved mechanisms do not warrant, 1n the state of the art, 1%
will properly work 1n all the cases (collision exposures..
etc). (See figure 15).

Synchreonization protocols: overview (Syncpoint level). The
synchronization process relies on the basic concept of "two
phase ccmmitment'. The Unit of Work consists at any given point
in time of a vecter of 1nflight Local Unit of Hork (LUWAN,
LUWBn, LUWCn...) each of them running 1n a system participating
to the overall process.

At a given point 1n time, a TP which is wusually the root of
processing tree i1ssues a primitive aimed at scheduling the
synchrenization process. The invelved syncpoint managers are
responsible for generating the appropriate protocols,
propagating the reguests to their adjacent partners and
providing the TP(s) they are coping wWith the relevant
indications.

= The PREPARE protocol element, is forwarded by the syncpoint
manager of the 1nitiater TP, which has 1ssued the SYHNCPT
request, to all 1ts direct subordinates (cascading). This
command asks the subordinate to place 1ts protected resources in
a state that allows them to be fully committed to the change
that have been accumulated during this LUW but that also allows
the changes to be backed out. The choice to commit or backout
the 1nflight LUWs is made by the initiator after interaction
with all agents. The syncpoint managers upon receipt of the
PREPARE command have to propagate 1t to their suberdinates, if
any and to pass the indication "syncpoint requested" to the TP
they are coping with. The TP can either 1ssue a SYHCPT request
or a BACKOUT request 1if it has to face any unrecoverable
processing error.

= The SYNCPT request will be translated by the syncpoint manager
in a REQUEST-COMMIT protocol element which says that the issuer
has succeeded in preparing all its protected rescources.

= The BACKOUT request will be translated by the syncpoint
manager in a protocol element BACKED-OUT which says that the
issuer has backed out i1ts current LUW and Wwill be propagated to
the overall syncpoint manager which in turn will ask all the
participants to the U.0.W to backout their current LUW.

= The COMMITTED protocel element is propagated to all the
participants after the syncpoint manager linked to the initiator

101

SRS T FIESEE IavE SR o3

TP has received a REQUEST-COMMIT protocol element frem all the
participants. 1t asks them to really commit.

= The FORGET protocol element informs the syncpoint manager that
sent COMMITTED that its log records for this LUK can be erased.
It tells also the 1initiator's syncpoint manager that the
syncpoint is complete and that control can be returned to the
1n1tiator TP (see figure 16).

Resynchronization protocols (see figure 17)

The consequences of the "in doubt period"” phenomenon are as
follows:

= In case of failure during the "in doubt period" each
conversation partner does not know the actual status of the
other one. As the TP cannot indefinitely hold 1locks for
protected resources, it has to take a decision and must either
commit or backout.

= The system 1is required to provide an architected resynch.
process allowing two resynch. system defined TPs to set up a
conversation (by using any available session on the ISC link) in
order to compare the status of the +two partners and send a
report to the i1nvelved operators.

The resynchronization process is based at least on:

= The logging of the appropriate information about the U.O0.H
state changes by each syncpoint manager.

= A mechanism enabling the two system resynch. TPs to compare
the status of the partners in order to identify potential
mismatches leading to an i1nconsistency of the U.O0.HW.

= The participation of the system operators who after receiving
the reports from the system resynch. TPs may have to schedule
some installation designed "reconciliation process'. The
"reconciliation process™ will be likely a run of programs using
some kind of user logging and permitting either to 1nhibit local
changes or, on the contrary, to put the i1nvolved resources in
their state prior backout process was triggered.

Further some systems can provide some more powerful mechanisms

permitting the two partners to take over the broken conversation
(reconnect support).

D. Conclusions

Remembering now our initial objectives, we can answer 1in part
the questions as stated by the introduction to this
presentation.

102

D.1 : It is obvious that the knowledge of the behaviour and

requirements of applications 1s key 1n designing a System
Architecture. As pointed out by the above presentation, the
application needs 1mpact the functional capabilities provided by
upper layers as well as lower layers. The session or session

connection properties, the i1nformation transfer definmed rules...
etc, are to be designed to meet the application requirements.
Moreover, the most complex part of the system design which 1s
related to the synchronization/resynchronization mechanisms
relies on concepts which 1n fact are defined by the application
themselves rather than by a system network architecture. We can,
for example, say that the concepts on which is based the
architecture of the IBM so called "Leogical Unit type 6.2" have
been got in a large part from the CICS (Customer Information
Control System) implementation which 1s today the most pervasive
teleprocessing control system 1n the IBM world.

Such concepts were in fact defined prior the advent of
networking and are aimed at meeting the pure processing
requirements while putting aside the communication part.

The advent of the distributed interactive processing led later
the designers to define architected protocols permitting the
participants to a processing tree to synchronize with each other
while still wusing the local defined basic mechanisms and
entities like syncpointing, LUW...etc.

It is ther~:ore eof interest to note that the upper layer system
protocols were 1n this case defined according to pure local
implemented mechanism. We pointed out also that, though the SHA
synchronization protocols theoretically permit the
synchronization tree structures tobe di1fferent from the
precessing tree one, there are many restrictiens which enforce
the application designer to be careful and use private protocols
in order to take advantage of such a capability.

As a consequence, it appears that mere powerful protoceols are to
be invented what is obviously a large scope of i1nvestigation and
study.

D.2 : The other basic question is related to the capability to
define standardized upper layer protocols.

Such an achievement is undoubtedly very desirable but one can
ask whether it is workable. We have primarily +to distinguish
asynchronous distributed processing from the synchronous one.

One can think that as asynchronous distributed processing uses
simple facilities from a dialogue and synchronization point of
view, it would be possible to standardize upper layer protocols.

103

But it is still a matter of debate and we have to go more 1n
depth in the knowledge of the i1nvelved application requirements.

Looking now at the synchronous distributed processing, 't seems
that we have to deal with two different si1tuations:

= Should standardized hicgher laynr preotecels defrned, trey would

not corce With the exi1sting _appl!cat!ors (sce the anove
discussion)., As a consequence. any open system archtrtecture
should 1n this case not only define the communication

envircnment at applicatieon leve! but also the pure crccessing
environment, what 1s obviously bevond the scepe of 01 tesday. In

other words, besides defining standaraized communication
protocels, such an architecture would have to define alseo, for
instance, Data Base managers, standard) zed syncpeinting

mechanisms (suitable for local resources) and their underlying
concepts.

= To succeed 1n coping With existing applications seems, in a
first approach, to be a dream or a "lost paradise™ in that it
would be necessary to impact not only the system functions but
also the wuser TPs to take into account the new capabilities.
Once again, in this area, the synchre/resynchro mechanisms are
the corner stone of upper layer protocols design.

104

SNA AND OSI LAYERS

NUMBER OF PHYSICAL
PARALLEL LINKS

SNA MAIN 0sI MAIN
ENTITY PROFERTIES ENTITY PROPERTIES
.DIALOGUE RULES .DIALOGUE RULES
CONVERSATION||.TRANSFER SYNTAX ASSOCIATION ||.COMMON SEMANTZC
.SYNCHRONIZATION -TRANSFER SYNTAXES
MECHANISMS [
\ .
.ONE TO ONE MAPPING AT .ONE TO ONE MAPPING/y
v A GIVEN POINT IN TIME PRESENT .SUPPORTS TRANSFER
.SERIALLY REUSABLE CCNNECTION SYNTAXES HANDLING
.SUPPORTS DIALOGUE
SESSION HANDLING
.FROVIDES END TO END v .ONE TO ONE MAPPING
DATA FLOM CONTROL "NO REUSABLE
MECHAMISMS END SOME SESSION SUPPORTS DIALOGUE
SYNCHRCNIZATION CONNECTION HANDLING
PROTOCOLS . .PROVIDES §YNCHRONIZA-
& TION PROTOCOLS
.END TO END NODE PIPES LONE TO ONE MAPPING AT
¥ AT LOGICAL LEVEL ¥ A GIVEN POINT IN TIME
.FROVIDES GLOBAL DATA .SERIALLY REUSABLE
VIRTUAL FLOW CONTROL PROTOCOLS PROVIDES END TO END
ROUTE .SESSION MULTIPLEXING TRANSPORT DATA FLOM CONTROL AND
(VR) -DISRUPTIVZ ROUTE CONNECTICN RESPONSE MECHANISHMS
SWITCHING .NON DISRUPTIVE ROUTE
SWITCHING
N TO 1 MAPPING CAPA_ .N TO 1 MAPPING
v BILITY 1 (MULTIPLEXING
.END TO END NODE PIPE CAPABILITY)
EXPLICIT AT PHYSICAK LEVEL .GOES ACROSS ANY
ROUTE .IS MADE UP OF A NETHORK NUNCER OF
(za COLLECTION OF ADJACENT || CONNECTION SUENETMORK
NODE3 LINKED EACH
OTHZR BY MEANS OF
TRANSHISSICN GROUPS
.N TO 1 MAPPING
CAPABILITY
' .LOGICAL LINK BETWEEN
TRANSMISSION|| THO ADJACENT NODES SUBNETWORKS
GROURS CONSISTING OF ANY

105

COMMUNICATION FUNCTIONS AND 0SI MODEL

USER VIEW INFORMATION PROCESSING FUNCTION

APPLICATION APPLICATICN
PROCESS PROCESS

APPLICATION

USER SPECIFIC INTERWORKING
PRESENTATION

— | — o e — - o— e o e —

corct INTERCONNECTI SESSICN

- e) o e - e e e — —

TRANSPORT

NETWORK

SYSTEM TRANSPORT
DATA LINK

PHYSICAL

]

— o o o e o | e— — - — o -

COMMUNICATION FUNCTIONS
SYSTEM VIEW

DATA TRANSPORT COMMUNICATION FUNCTIONS NECESSARY TO TRANSPORT
REPRESENTATION OF INFO. (DATA) FROM AN END SYSTEM TO ANOTHER
WITH AN ACCEPTABLE LEVEL OF ERROR FOR THE APPLICATION PROCESS.

INTERCONNECTION COMMUNICATION FUNCTIONS THAT ENABLE APPLICATION
FROCESSES TO INTERCONNCT AND TO ENGAGE A DIALQGUE.

INTERNORKING COMMUNICATION FUNCTIONS THAT ENABLE APPLICATICN
PROCESSES TO CARRY OUT A MEANINGFUL COIMUNICATION AND TO CARRY
CUT PROCEDURES NECESSARY FOR DISTRIBUTED INFO. PRCCESSING.

106

0SI INTERWORWINK:

SOME CONCEPTS

(E.C.

THE UNIVERSE
OF DISCOURSE

APPLICATION)

FILE TRANSFER

’ ->< R
Fd ’," .-'-n.,\ \\
CONCEPTUAL CCHCEPTUAL
APPLICATICN SCHEMA SCHEMA APPLICATION
PROCESS (E.G. FTAM) (E.G. FTAM) PROCESS
A B
< —

T LOCAL MAPPING LOCAL MAPPING T

COUPLED APPLICATION PROCESSES

¢ THE UNIVERSE OF DISCOURSE IS THAT PART OF THE REAL OR HYPOTHETICAL
WORLD WHICH IS UNDERSTOOD IN THE SAME HAY BY THE COMIUNICATING
PARTNERS AND WHICH THEY AGREE TO COMMUNICATE ABOUT.

e THE CONCEPTUAL SCHEMA IS A FORMAL DESCRIPTION OF THE UNIVERSE OF
DISCOURSE (ABSTRACT SYNTAX). IT DEFINES THE DATA ELEMENTS THAT CAN
BE REFERRED TO IN THE COIiTUNICATION AND THE ALLOWABLE OPERATIONS
THAT CAN BE CARRIED OUT ON THESE DATA ELEMENTS

R ——

107

0SI INIERWORKING: SOME CONCEPTS (2)

INFO. EXCHANGE VIA

APPL. APPLICATION LAYER PROTOCOL APPL.
PROCESS |« »| PROCESS
A INVOLVING APPLICATION B
CONTEXT(S) >
A A
LOCAL LOCAL
SYNTAX SYNTA>
A B
v v
PRES. B »| PRES.
ENTITY TRANSFER SYNTAX (CONCRETE REPRESENTATION OF INFO. ENTITY
A 3EIMG EXCHANGED) VIA PRCTOCOLS INVOLVING B
PRESENTATION CONTEXT(S)

¢ THE APPLICATION CONTEXT IS THE PARTICULAR UNIVERSE OF DISCOURSE
(WITH ITS ASSOCIATED CONCEPTUAL SCHEMA, ABSTRACT SYNTAX...) CHOSEN
FOR USE IN COMMUNICATION BETWEEN APPLICATICN PROCESSES.

¢ THE PRESENTATION CONTEXT IS AN ASSOCIATION BETWEEN THE SET OF ABSTRAC
REQUIREMENTS OF AN APPLICATION LAYER STANDARD AND A TRANSFER SYNTAX
CAPABLE OF SATISFYING THESE.

108

APPLICATION PRDCESS

COMMUNICZATION

LOCAL= 4 = = = = 4 = = = = = = —A—
SYSTEM INFORMATION
ERADT PROCESSING
JSED APPL
PROCESS

0sI
ENVRT
(B5IE)

THE APPLICATION ASSCCIATICN
ENTITY INSTANCES.

-
L |
|

LOCAL

MATTER

USER ELEMENT

APPLICATION
ENTITY
INSTANCE

0SI LOWER
LAYERS
0OsI
ASSOCIATION
(MAPPED ONTO
A SINGLE
PRESENTATION
CONNECTION

OSI LOWER
LAYERS

APPLICATION
ENTITY
INSTANCE

USER ELEMENT

LOCAL
MATTER

INVOLVES THE COUPLING OF THO APPLICATION
IT CONSISTS OF THE FOLLOWING FACILITIES

— ASSOCIATION ESTABLISHMENT
— ASSOCIATION RELEASE

— CONTEXT MANIPULATION

= INFORMATION TRANSFER

THE APPLICAITON ENTITY IS A UNIQUE COLLECTICON OF SERVICE ELEMENTS

THAT PROVIDE PARTICULAR TYPES OF APPLICATION PROCESSES WITH THE
COMMUNICATION SERVICES THEY REQUIRE

SERVICE ELEMENTS ARE THE THINGS THAT GENERATE THE INDIVIDUAL
PROTOCOLS EXCHANGES OR REQUEST SERVICES OF LOMWER LAYERS.

THEY CAN

MAKE USE OF OTHER SERVICE ELEMENTS.

109

DISTRIBUTED PROCESSING REQUIREMENTS

D.P

TYPE
MAJOR
REQUIREMENTS

ASYNCHRONOUS
(DELAYED DELIVERY)

SYNCHRONQUS

RESPONSE TIME

NOT A MAJOR CONCERN

VERY SENSITIVE. RESPONS
TIME ALSO IS TO BE
CONSISTENT

THROUGHPUT

VERY SENSITIVE MAINLY FOR BULK
DATA TRANSFER (FILE TRANSFER
JOB NETWORKING...)

NOT A MAJOR CONCERN

LOCAL RESOURCE
SHARING AND
CONCURRENCY

NOT A MAJOR CONCERN
SIMPLE MECHANISMS

MAJOR CONCERN
COMPLEX MECHANISMS

i LSYNCHRGNIZATION
AMD PE-—
S SHACMIZATION)

FICATION (NOT ARCHITECTED
RETRY CAPABILITY)

CCHNTROL

COORDINATION SIMPLE MECHANISMS VERY COMPLEX AND
OF DISTRIBUTED BASED ON RESPONSES AND COMPREHENSIVE
RT.EJURCES PRIVATE PROTOCOLS LIKE NOTI- MECHANISMS BASED

ON ARCHITECTED
PROTQOCOLS

GVERALL
FRELIABILITY

NOT A MAJOR CONCERN
TO THE EXTENT THERE ARE
SIMPLE RETRY CAPABILITIES

MAJOR CONCERN TO THE
EXTENT THERE ARE NO
SIMPLE RETRY CAPABILI™

110

STRUCTURE OF TH

E PROCESSING TREE

ROOT—INITIATOR

EXECUTION —»
SITE 1 a

-

F§

<4—— CCNVERSATION

-

BRANCH (OR ARC:

TPB

"
<+—— EXECUTIOM
SITE 2

P

EXECUTION —»
SITE 3
/

EXECUT.
SITE 4

S ——

FUNCTION REQUEST SHIPPING

SIMPLE INQUIRY

. TRANSACTICN PROGRAM
READ FILE A
.SYSTEM ACTION MODULES

TRANSLATE THE REQUEST
IDENTIFY THE OLMING SYSTEM
ACQUIRE AN APPROPRIATE SESSION

TERMINAL
CONTROL BLOCK
TASK SOURCE TASK
CONTROL BLOCK {—»| TP CONTROL BLOCK
READ
FILE A
MIRROR
LOGICAL LINK TP
READ
TRANSLATION FILE X
T/BLE v SEND
.LOCAL NAME SESSION
FILE A SYSTEM REPLY
.REMOTE MAME END
FILE X PRO- CONVERSATION
.OUNING GRAMS
SYSTEM ¥
sYsTEM 2 | | | |mmemmm e e - - -
SESSION
SYSTEM 1 TRANSMITTED INFORMATION SYSTEM 2|

= TERMINATE THE CONVERSATION AND
FREE THE UNDERLYING SESSION

— PASS BACK THE REPLY TO REQUESTING
TP WHICH CONTINUES PROCESSING

SET UP A CONVERSATION
SEND THE REQUEST

READ FILE X

ATTACH TP NAME (MIRROR TPN)

.

READ REPLY, LAST

Lol

-

FIGURE 8

.

SYSTEM ACTION MODULES
= ATTACH MIRROR TP
MIRROR TRANS. FROG.
PERFORMS READ REGQUEST
SEMDS REPLY TERMIMAT:

112

ASYNCHRONOUS PROCESSING

SYSTEM 1

. TRANSACTION PROGRAM
(INITIATED BY TERHINAL T1)

=START (REMOTE TPN TRX)
LOCAL RETURN TPN TRZ
LOCAL RETURN TERM Tl

.SYSTEM ACTION MODULES

=Z2ENTIFY THE CANING SYST.

=ACCUIRE AN APFROFRIATE
SESSICN

=SET UP A CONVERSATION

=SEND THE REQUEST

=TERMINATE THE CONVERS.
AND FREE THE UNDERLYING
SESSION

.TRANSACTICN PROGRAM

=CONTINUES PROCESSING

~TERMINATES AND FREES
TERMINAL T1

LSYSTEM SCTION MODULES

=ATTACH MIZROR TP

.MIRRCR TP

—PERFCRii5 START REQUEST
FOR TP TRZ (TERMINAL T1)

=TERHINATES

.SYSTEM ACTION MCDULES
=SEKD THE SCHEDULE REPLY

.TP TRZ
-=COMMENCES PROCESSING

TRANSMISTTED INFORMATION

ATTACH MIRROR TP
SCHEDULE TP PRX

v

DATA
SCHEDULE REPLY LAST

F N

ATTACH MIRROR TP
SCHEDULE TP TRZ

F 3

DATA

SCHEDULE REPLY LAST

v

SYSTEM 2

. SYSTEM ACTION MODULES

=ATTACMIRROR TP

«» MIRRCRTP

=FERFORMS START REQUEST
FOR TP TRX

. SYSTEM ACTION MODULES

=SEND THE SCHEDULE REPLY

. TRX TP
—COMMENCES PROCESSING

=START (REHOTE TPN TRZ)
(REMOTE TERM T1)

. SYSTEM ACTION MODULES
—=ACQUIRE AN APPROPRIATE
SESSICON

—=SET UP A CONVERSATION
—SEND THE REQUEST

. SYSTEM ACTION MODULES

_TERMINATE THE CONV. AND
FREE THE UNDERLYING
SESSION

. TRXTP
=TERMINATES

113

COMMUNICATION: TRANSACTION ROUTING

SYSTEM1 (OWNING TERM.T1) SYSTEM2 (CWNING TP TRA)
L X s]
SOURCE TERMINAL SOURCE TERMINAL
CONTROL BLOCK CONTROL BLOCK
TASK RELAY TASK TRA.TP
CONTROL BLOCK —»PROGRAM CCNTROL BLOCK[—»
EXECUTING PROCESSING
O BEHALF
CF TPN SEND
TRA ISC LINKS REPLY
TRANSACTION
TABLE SYSTEM
REQUEST
TPN TRA > | ACTICON
CIINING SYSTEM REPLY TRANSLATION
SYSTEM <+—> < MODULES +=4TABLE
SYSTEM2 ACTION SURRCGATE
TERMINAL
MODULES iD T2 |
REAL T.ID Tl
OlMING SYST
SYST1
TPN TRA
REPLY DATA

TERM
T1

114

DISTRIBUTED TRANSACTION PROCESSING

TP TRA
(FRCNT END)

ACQUIRE AN APPROPRIATE
SESSICN TO SYSTEM 2

SEND REQUEST TO
INITIATE TP TRB (CON-
VERSATICN SET UP)

CONVERSE HITH TRB
USING SEND/RECEIVE

SYNCPOINT IF IT IS
NECESSARY

FREE SESSICN

ISC LINK

TP TRB
(BACK END)

. CONVERSE WITH TRA USING

RECEIVE/SEND

« SYNCPOINT IF REQUIRED

FREE SESSION

115

CONCURRENCY CONTROL

TIME AXIS

Tl T2

PROBLEM STATEMENT

UPDATE RECIRD.

UFDATE RECORD

N OF FILZ A H JF FILZ 3
START aF < ABNORMAL
~AKSAC 2 IN RZ3IURSE EXCLUSLVIT END OF T1
71 PRCVIDED 707 THE
DURATICN OF THE
UFTATEZ OZERATION BY
RALIC JYSTEM LEVEL
78 ILITIES
UPDATE RECORD
N OF FILE A
-— e s e we e we EE s wm e = u———-—x
START OF NORMAL
TRANSACTION T2 END OF T2

BACKOUT OF CHANGES

DONE BY T1

A

116

PROGRAM ISOLATION AND LUW

TRANSACTION T1

A 4

F S

LUNL | LUW N—-1 LUH N
< > < >4 >
S P S P s P S
UPDATE RECORD N OF FILE A T
START OF ENF OF
TRANSACTION TRANSACTION
RESOURCE PROTECTION RESOQURCE PROTECTION
MANAGER LOCKS RECORD N MANAGER CONMITS THE
CHANGE AND UNLOCKS
THE RECORD N
I |
START OF WAIT STATE | RESUMES FROCESSING END OF
TRANSACTION GET RECORD N OF FILE A AFTER GETTING RECORD N TRANSACTION
< » SPp SP
LUNL LUKNM

v

TRANSACTION T2
.A TRANSACTION CONSISTS OF ANY NUMBER OF LOGICAL UNIT OF WORK

.A LOGICAL UNIT OF WORK IS AN ATOMIC SEQUENCE OF OPERATIONS DELIMITED
BY THO SYNCHRONIZATICON POINTS

.A SYNCHRONIZATION POINT IS SCHEDULED EITHER EXPLICITELY BY THE
TRANSACTION FROGRAM OR IMPLICITLY BY THE SYSTEM. AT SP TIME CHANGES

OF RESOURCES ARE CCMHITTED AND LOCKS ARE FREED.

.THE LOGICAL CONTENTION LEVEL IN A PROGRAM ISOLATION CONTEXT DEPENDS CN
=THE INSTANTANEOUS TRANSACTION RATE (PARALLELISM LEVEL:

—=THE GRANULARITY OF THE INVOLVED RESOURCES

=THE LIFETIME OF THE LOGICAL UNIT OF WORK

117

SYNCPOINT MANAGEMENT

SINGLE SYSTEM ENVIRONMENT

SYNCPOINT
MANAGER

- e o o o w—

LOGGING
MAMNAGER

LOCAL RESOURCE
PROTECTICN
MANAGER . o

DISTRIBUTED PROCESSING ENVIRONMENT

INTERNAL

— = = NOT ARCHITECTED

PROTCCOL BOUNDARY
(LOCAL MATTER)

SYNCPOINT
MANAGER
4 INTERNAL
——————————————————————————— NOT ARCHITECTED
PROTGCOL BOUNDARY

— e e e o

LOGGING
MANAGER

LOCAL RESOURCE
PROTECTION
MANAGER -

(LOCAL MATTER)

CCNV . RESCURCE
PROTECTICN
MANAGERS -

ARCHITECTED
PROTOCOL BOUNDARY
TO ADJACENT SYNCP
MANAGER(S)

118

PROCESSING AND SYNCHRONIZATION TREES

PROCESSING TREE . TPA

TPB
yTPC
i ! ! v
| TPD TPE TPF
CCSRESPONDING SYNCHRONIZATION TREES
USUAL STRUCTURE A POTENTIAL STRUCTURE (EXAMPLE)
(SNA)
(SNA DR 0SI C.C.R)
. TPA . TPF
. TPC
TPB
. .TPC . TPA
. " “ TPB
TPD TPE TPF
TPD . TPE .

119

SYNCPOINT PROTOCOLS

SYNCHRONIZATION TREE STRUCTURE

c
DATA FLOWS
|SYNCPT |SYNCPT |SYNCPT |SYNCPT
TPA MGR TPB I MGR TPC : MGR TPD : MGR
SYNCPT
- | | |
| PREPAR : |
| SYNCPT , l
| INCICATION
I SYNCPT | | |
————— >
: | PREPARE - |
|)) i e |
! 1T |
| PREPARE R
| s o i il
| |) RQ=COMMIT |
RQ=COMMIT |
| < | i B T = e
| ‘ | RQ=COMMIT
| I
: COMMITTED _ | |
- - == «-=-=-- | |
RESUMES | | COMMITTED
PROCESS P |
| W o o i
: COMMITTED | I
| e e
| | RESUMES |
| PROCESS
I | FORGET
| | |
FORGET |
| < I I |
I | FORGET |
| | | |
| | |

120

RESYNCHRONIZATION

L]

i

TPA

TPB

PROBLEM STATEHENT

IF ANY FAILURE LEADING

ATTACH REQUEST TO BREAK THE COMMUNICATION

TPB

l

BACKOUT

.
«+

SP REQUEST

IF ANY FAILURE LEADING
TO EREAK THE COMMUNICATION

SP CONFIRH

TIME

v

BACKOUT

A

=

I

1 SP RESPONSE

SP INDICATION

v

IN DOUBT PERIOD

121

