
REALISATION OF OPEN SYSTEMS 

H. J . Burkhardt 

Rapporteurs: G. D. Parr i ng ton 
S. Pfle"e~ 

47 



Realisation of Open System 

H. J. Burkhardt 

Gesellschaft fUr Mathematik und Datenverarbeitung 

Rheinstrasse 75, D 6100 Darmstadt , FRG 

This paper reports about work done within the GMD project PROS IT 

during the past years. The objective of PROSIT is to develop a 

consistent set of methods and tools for the realisation of open 

systems. This work was undertaken by Dr. B. Baurrgarten , H. J . Burkhardt , 

Dr . H. Eckert , E. Faul-Luers, A. Giessler, Dr. P. Ochsenschlager, 

W. Orth , Dr. R. Prinoth, U. Faltin, Ch. Paule. It has benefitted from 

the ideas of many people and has been stimulated and inspired, especi

ally by ideas born in the OSI-standarization committees . 

1. Introduction 

The objective of Open Systems Interconnection (OSI ) is to enable heterogenous 

systems - i. e. are systems differing in origin and technology - to cooperate. 

More specific , OSI aims at the establishment of an interworking technology 

which provides the means for the transfer of data between heterogenous systems 

and the elementary building blocks for the construction of a wide variety of 

distributed applications. 

Following the OSI-approach , heterogenous systems get the capability to 

cooperate by observing a behaviour as defined in international communication 

service and protocol standards. Systems having this capability are called 

real open systems. 

To create real open systems , three major steps must be done: 

communicati on services and protocols have to be specified by 

international standardization bodies, 

to accomodate their systems with interesting cooperation capabilities 

manufacturers have to implement functional groupings of standardi zed 



communication protocols, 

Protocol implementations have to be tested by authorized test centers 

to assure that a real system provides for the claimed openess and that 

it can therefore cooperate with each other real system having passed 

the same tests. 

Each of these steps as well as the transitions among them involve problems. 

To standardize communication services and protocols means to model distributed 

systems and describe them formally and in a strictly implementation indepen

dent manner. The problem of standardization is that no approved methodology 

exists for that purpose. Therefore, resulting standards are not necessarily 

complete, error free, consistent and unambigously understandable. 

Because of this deficiencies, current communication standards form an unsatis

factory basis for implementations. But even perfect standards would face 

implementors with the problem how to interpret the standards with respect to 

the reality constituted by their real systems. In other words, the problem of 

implementation is that no approved method exists to derive implementations 

from implementation independent protocol specifications, but that each difference 

in interpretation of a protocol standard may and usually will lead to incompa

tible implementations. 

Because of this problems related with standardization and implementation of 

communication standards and because of the absence of a single authority which 

can take over the respcnsibility for the functioning of the cooperation among 

heterogenous systems, tests are regarded as necessary. But tests must not 

improve restrictions on protocol implementations, neither with respect to the 

ccmmunicational behaviour allowed by the related protocol specification, nor 

with respect to the choices of implementations. Therefore, test should be 

derived formally from protocol specifications and based purely on the outside 

visible implementation structure following from the claimed openess.The 

problem of test is that no approved method exists which fulfills these require

ments. 

49 



This "state of the art" and the belief that the OSI-objective is worth 

being supported has motivated work within GMD on a systematic approach , called 

PROSIT, for realizing open systems. Its aim is to provide for al l the 

steps (see Fig. 1) - leading from service specifications to compatible 

systems - improved rrethods and tools. 

This papers outlines the basic ideas of PROSIT for modelling communication 

services and protocols and for specifying them formally, for constructing 

protocols from services and verifying them against the bordering services 

and for deriving implementation specifications and test sequences from 

protocol specifications. 

2. Refinement of the OSI-Reference Model towards models for communication 

services and protocols 

The backbone of the PROSIT approach is forrred by a refinement of the 

OSI-Reference Model to modelS for communication services and protocols. 

In these models, the essential ingredients of the Reference Model are put 

into the appropriate perspective, thus providing an overall structure for 

object oriented specifications of OS I-communication services and protocols. 

Both, services and protocols are specified with the sarre formal description 

tool, a dedicated form of Predicate/Transition Nets which we call Product 

Nets. 

A specification of a communication service defines all interactions 

between the users of this service and its provider as sequences of service 

primitives at discrete interaction points. Our specification conforms to 

this procedure but is not restricted to sequences related to a single 

connection. It regards all connections, thus describing the interdependencies 

which are caused by the usage of common resources among logically independent 

connections. Semantic aspects of a service are expressed by modelling the 

change of "consciousness" of interacting entities. 

The formal specification of a communication service is a prerequisite 

for the development of a supporting protocol specification. Therefore, the 

modelling of a service which forms the basis of its specifiction, is adjusted 

50 



to support the construction of protocol specifications from service 

specifications. As a consequence , one logical approach for the development of 

a protocol model would be to superimpose two service models and to interrelate 

provider-behaviour of service N with user-behaviour of service (N-l). 

The approach of specifying all interactions as concurrent , which can 

concurrently occur provides the implementation independence of service and 

protocol specifications which is desired for standardization purposes. 

Each implementation of such a specification, therefore, appears as a valid 

restriction of concurrency, i. e. as sequentialization reasoned by the 

mapping onto real storages and processors. 

At present, only logical relationships between interactions are defined 

in our specifications, but no relationships ~lith regard to physical tirre . 

2.1 Derivation and refinement of the OSI-notion entity 

As a basis, let us consider the scenario depicted in fig. 2.1 wherein 

a service provider appears as counterpart of a set of service user instances. 

A general task of the service provider is the establishment of communicational 

relationships arrong service user instances , e. g . with respect to "connec

tionless" interaction or connections maintained over an extended period of 

time. 

A communicational relationship arrong service user instances is always based on 

an interaction between (1) a service user instance acting as originator and the 

service provider and (2) the service provider and the corresponding service 

user instance . All interactions between a specific service user instance and 

the service provider take place at their specific interaction point by means 

of service primitives. 

The service provider , seen from the user ' s point of view as a black 

box, is itself a distributed system. This system is canposed of multiple 

independent service provider instances. To each service user instance, a 

service provider instance is dedicated , in a static and strict one-to-one 

51 



relationship. Service provider instances cooperate following a peer-to-peer 

protocol in order to provide the service requested. 

Adopting a term of the OSI-Reference Model, we call an interaction point 

by which a service user instance can communicate with a service provider 

instance a "Distinct-Service-Access-Point". 

To model connection-oriented communication, it is neccessary to differentiate 

static preassignments, which are prerequisites to the dynamic establishment and 

release of connections from the connections themselves. This leads us to 

refine both the service user and provider instance assigned to a distinct SAP 

into a static instance and dynamic multiple instances respectively (see 

fig . 2.2). 

The dynamic instances associated with one SAP are created and destroyed by a 

static instance which exists permanently for this purpose. Dynamic instances 

are created during the connection establishment phase and destroyed during the 

connection release phase. 

Over each distinct service-access-point, exactly one service-user-static

instance communicates with one service-provider-static-instance. Distinct 

connection-endpoints at a service-access-point represent the resources which 

the static instance of the service provider allocates to its respective 

dynamic instances on both sides of the interface boundary during each 

connection establishment. All instances attached to a distinct-service-access

point reside in the same OSI-system. 

In this way, it may be said, that a service-access-point associates at its 

global address c (locally in each system) two static instances having the 

same name: one service-provider-static-instance c and its corresponding service 

user-static-instance c. Similarly, an allocated distinct-connection-endpoint 

(c , k) in a system associates locally two dynamic instances of the same name 

(c, k), i. e. a service-provider-dynamic-instance (c, k) with its corre

sponding service-user-dynamic-instance (c, k). 

Consequently, there exist in a system the following interaction 

points between service-provider-instances and service user instances: 

52 



for each distinct service-access-point, an interaction point between static 

instances, which is represented architecturally, by the term service-access

point itself, and across which are exchanged the service primites related 

to the establishment and release phase of a connection 

and 

- for each connection, an interaction point between a service-user-dynamic

instance and a service provider-dynamic-instance, which is represented 

architecturally, by the term connection-endpoint, and across which are 

exchanged the service primitives related to the data transfer phase of a 

connection. 

To model connectionless data transmission , there is of course no need to use 

dynamic entities since no connections are involved. Consequently , connection

less data transmission has to be interpreted as interaction among static 

instances. This appears to be quite natural in recognition that a connection

less data transmission request at one distinct service access point, possibly 

followed by a connectionless data transmission indication at another distinct 

service access point is of the same nature as a connect request at one 

distinct service access point, possibly followed by a connect indication at 

another distinct service access point forming the first half of a connection 

establishment. 

Keeping in mind OSI-objective of systems compatibility, we define an equivalence 

relation on the set of service user and provider instances which leads to the 

definition of OSI-service-user-entities and OSI-service-provider-entities as 

equivalence c l asses of service user and provider instances. These equivalence 

classes consist of instances which show identical communicational behaviour. 

In the course of forming equivalence classes we compose (see Fig. 2.3 ) 

- a static-service-user-entity consisting of static service user instances, 

- a static-service-provider entity constisting of static- service-provider-

instances, 

- a dynamic-service-user-entity consisting of dynamic-service user-instances 

and 

- a dynamic-service-provider-entity constisting of dynamic-service-provider 

instances. 

53 



In consequence, the OSI-concept "service-access-point" canprises the collec

tion of distinct-service-access-points and the OS I-concept "connection

endpoint" canprises the collection of distinct-connection-endpoint. In other 

words , both notions define relationships between equivalence classes of 

instances. These equivalence classes of instances are called entities. 

2.2 The PROSIT communication service model 

The PROS IT communication service model consists of a refinement of the 

equivalence relation introduced above. This refinement is based on the 

differentiation between active and passive instances and leads to the notions 

of active and passive entities. 

An active entity (service user and provider) is understood to be the collec

tion of all calling instances (service user and provider), whereas a passive 

entity (service user and provider) is understood to be the collection of all 

called instances (service user and provider) • 

This refinement is necessary for making visible the boundary between OSI

Systems in addition to the service boundary. Therefore, it is possible to 

interpret a protocol which binds active and passive entities across the system 

boundary as a correlation of active and passive cammunications behaviour. The 

reSUlting communication service model interrelates eight entities (see Fig. 

2.4) : 

- at one service-access-point, a static-service-user-entity, active with a 

static-service-provider-entity, active and a dynamic-service-user-entity, 

active with a dynamic-service-provider-entity, active , 

and 

- at the corresponding service-access-point a static-service-user-entity, 

passive with a static service provider entity , passive and a dynamic service 

user entity, passive with a dynamic service provider entity , passive. 

The establishrrent of a connection appears within that model as the creation of 

the four appropriate dynamic instances, as mentioned above, and, due to inter

action among four corresponding static instances, one for each static entity 

mentioned above. 

54 



The release of a connection appears correspondingly as deletion of the four 

dynamic instances previously created. 

Connectionless data transmission appears within that model as interaction 

among four corresponding static instances , one for each static entity 

mentioned above . 

N-way data transmission can best be interpreted as connectionl ess data 

transmission where a multicast address is used as To-Address. 

This has the effect that a connectionless data transmission request, issued 

by a static service user instance to its corr esponding static service provider 

instance at one distinct service access point , leads to a connectionless data 

transmission indication at each distinct service access point , which is a 

member of the set of recipients named by the multicast address . 

2.3 The PROSIT communication protocol model 

The PROSIT communication protocol model is based on the interre l ation of two 

communication service models at adjacent l ayer boundaries (see fig. 2.5). 

It is therefore hierarchically structured i nto the following three functional 

levels : 

- the N-service user level comprising the N-service user entities of the model 

for the N- service, 

- the N-protocol level comprising the N-service provider entities of the model 

for the N-service, the (N-l)-service user entities of the model for the 

(N-l) service, the funct ionality of mapping N-service provider behaviour 

onto (N-l) service user behavi our and the functionality of bridging the gap 

between N-Service and (N-l) service ; the OSI term N-Layer corresponds to 

the N-protocol level. 

the (N-l) service provider level comprising the (N-l) service provider 

entities of the model for the (N-l)-service . 

55 



This protocol model implies that an N-Layer is to be understood as two inter

r e lated protocol entities, namely an active N-protocol entity and a passive 

N-protocol entity. 

Each protocol entity is composed of two N-service provider entities and two 

(N-1)-service user entities. 

In this refined model of the protocol entity at the Layer N, it is apparent 

that: 

- an N-connection can be released by destroying the related dynamic 

N-service user and provider instances without releasing the supporting 

(N-1) connection; 

- an (N-1) connection can be released by destroying the related dynamic 

(N-1) service user and provider instances without releasing the supported 

N-connection. 

It should be noted further that this refined model of the protocol entity 

of layer N allows to express any mapping of connection oriented or 

connectionless services at the boundary between layer (N + 1) and layer N 

onto connection-oriented or connectionless services at the boundary between 

layer N and layer (N - 1). 

In (1) is illustrated the use of the PROSIT communication service and protocol 

model for structuring service and protocol specifications. 

3. Product nets - a PROS IT-tool for the specification of communication 

services and protocols 

The PROSIT communication service and protocol model establish .logical relation

ships between roles. Each box in Fig. 2.4 and 2.5 represents a distinct role 

and the arcs between boxes stand for the logical relationships. Each role 

defines communicational behaviour and is the characteristic of a set of 

instances. All instances belonging to such a set behave in communication as 

defined by the role. The behaviour of each instance could be defined by a 

56 



finite automaton , the state transitions of which represent interactions with 

other autanata . 

Therefore, each box in the service and protocol models can be interpreted -

from a specification point of view - as representing a set of finite automata. 

The compl ete models can be seen as collection of sets of finite autanata commu

nicating via channels . 

These models are characterized by containing explicitly: 

- aspects of distribution, 

- concurrency of actions , 

- global features of cooperating systems , 

- moduls , channels, interfaces, interactions, 

- folding and parameterization of interactions. 

Product Nets allow to express all these aspects in a unique manner. Especially 

in its graphi cal representation, they are highly adequate for the design of 

distributed systems . 

Roughly speaking, a product net is a Petri net combined with arc labels and 

transition i nscript i ons , which are as formal l y construct ed as this is done in 

case of terms , predicates, atoms and formulas in the first-order logic . In 

first-order logi c an interpretation of a formula is a well known concept . 

By introducing adequate restrictions with respect to the syntax of arc labels 

and transition inscriptions, the formal semantics of nets is derived from 

the interpretati on of arc labels and transition inscriptions, whereby a 

domain of objects is assigned to each place. A formal specification of product

nets can be found in (2), an illustration of its use in (1). 

To illustrate some fundamental concepts of product nets , the flow controlled 

transfer of data from a sending user of a transfer service to a receiving user 

is modeled (see Fig. 3.1). This transfer l eads from the sending user over a 

service boundary to the sending provider. The sending provider communicates 

over a system boundary with the r eceiving servi ce provider. At least, the 

receiving service provider delivers received data to the receiving service user. 

57 



The product net in Fig. 3.1 has the initial marking: 

sl 

s4, s5 

a set of messages 

one < > -token 

The other places are empty. 

s8 W < >-tokens 

s9, slO <0> 

The places s3 and s4 represent the service boundary between the sending 

service user and the sending service provider and s5 and s6 represent the 

service boundary between the receiving service provider and the receiving 

service user. The 'ready signals' on s4 and s5 guarantee that not more 

than one message appear at 53 and 56' The places 57 and 58 represent the 

system boundary. 

Receiving the messages in the order , they are sent, shows up as a consistent 

numbering in the sending and the receiving service provider. The flow 

control is enforced by 'ready signals' on s8. 

4. The basic thoughts behind the construction of protocols from services and 

the verification of protocols against services 

The formal specifications of cammununication services adjacent in the 05I-RM 

form the prerequisites for the development of a protocol specification, since a 

protocol rules the cooperation of layer entities which has to bridge the 

functional difference between adjacent services. 

In PR05IT , the construction of a protocol specification from service speci

fications is supported on one hand by the modelling approach and on the other 

hand by the use of elementary building blocks and rules for their composition. 

The modelling approach support the construction since the PR05IT communication 

protocol model, which forms the basis of a protocol specification, is constituted 

by superimposing two service model, which form the basi s for the service 

specifications. A protocol specification of layer N, therefore, consists of 

58 



provider behaviour of service N and of user behaviour of service (N-l) 

both already specified as part of the specification of service N and 

service (N-l); 

- and a part which must be added to interrelate provider and user behaviour 

and to bridge any functional gap between the two services. 

The seek for elementary building blocks and rules for their composition is 

motivated by the recognition that in different context always the same 

ccrnnunication patterns oc=. Such pattern are in distributed systems e. g . 

typical for the consistent establishment , progression and release of global 

context, which is just another formulation for cooperation. The flCM control 

example shCMn in Fig. 3.1 is another example . 

The usage of building blocks for the design of distributed systems is shCMn 

in (3) on the example of a Product Net specification of the OS I-Transport 

Service and (4) on the example of a Product Net specification of a 

distributed application . 

The use of the ccrnnunication service and protocol models and of building blocks 

and composition rules facilitates the formal specification of services and 

protocols, by providing constructive aids , and increase their readability. 

Beside the design, the validation of ccrnnunication services and protocols and 

the verification of protocols against the bordering services benefit fram 

this approach. 

Validation means to check services and protocols whether they have desired 

properties (e. g. freedan of deadlocks and lifelocks, globally consistent 

binding and releasing of resources) • 

Verification of a protocol against the bordering services means to prove 

that a protocol provides the service aboVe while using correctly the service 

belCM. 

To verify a protocol, one has to compute fran each service specification the 

complete set of sequences of services primitives. These sequences can be 

derived fran the product net specifications of the services as set of 

sequencing of markings at places representing the service boundary. 

59 



The same procedure has to be applied on the places representing upper and 

lower service boundaries in the protocol specification. This results in a set of 

sequences of markings at places on the upper service boundary and a set of 

sequences of markings at places on the lower service boundary. 

Due to the constructive relationship between protocol m::xiel and service m::xiel , 

one can regard a protocol as verified if the sets of sequences of markings 

derived from the service specifications coincide with the respective sets of 

sequences of markings, derived from the protocol specification. In (5) this 

verification rrethod is derronstrated on the example of the alternating bit 

protocol. In (6) a checkpoint-restart-protocol is proved and in (7) the PROSIT 

net simulation system NESSY is described. 

5. The basic thoughts for deriving implementation specifications and 

test sequences from global protocol Specifications 

A protocol specification, structured according the PROS IT communication 

protocol m::xiel and formally specified by means of Product Nets, defines 

cooperation in a distributed system. Roughly spoken , it identifies all 

oommunicating instances and describes how they interact. This view of 

description can be called the "designers view". 

For an implementation, a specification is needed which defines - roughly 

spoken - a single instance and how it acts or reacts at its interaction points 

with the outer world. This view of description can be called the "implemen

tors view" . 

For the test of a protocol implementation on conformance with the protocol 

specification, one needs a record of all events which might occur at 

boundaries accessible in a test. This view of description can be called 

the "observers view". 

It is quite obvious that the designers view of description contains the 

implementators view as well as the observers view and that it must be there

fore possible to derive an implementation specification and test sequences 

from a protocol specification. 

60 



The global implementation independent protocol specification identifies all 

protocol functions and establishes their logical relationships, only. It is 

therefore characterized oy a high degree of concurrency. In contrast, an 

implementation specification deals with tasks and their interrelationships. 

A task is understood as a functional unit, 

- which can be formally described by a finite automaton 

- which is allocated as a whole to one local processor 

and 

which is the basic unit in an operating system being 

provided with system resources. 

The deriviation of implementation specifications from global protocol specifi

cation , therefore, comprises 

- as first step the assignment of protocol functions to tasks , 

- as a second step the serialization of concurrent protocols 

functions assigned to one task, 

- as a third step the logical coupling of tasks. 

The method for the derivation of implementation specification from product 

nets Specification of Protocols is described in (8). 

For implementation specifications, OCITT's SOL is an accepted and widely used 

language, which is supported by software developrent tools of various organi

zations. 

It seems feasible to bridge the gap between a global protocol specification 

in form of product nets and an SOL- implementation specification and to combine 

the benefits of product nets for formal description of global systems and 

their mathematicl analysis with the SOL support for implementations. 

Conformance testing is based on test sequences or more generally , test suites 

which shoul d al low comparibility and wide (international) acceptance of test 

results. 

61 



In this area the ISO ad-hoc group on conformance and conformance testing has 

defined a set of abstract test methods and has provided a framework for 

specifying conformance test suites. 

The foll=ing three main categories of abstract test methods sh=n in 

Fig. 5.1 were identified with respect to the kind of observable and controll

able interfaces within the implementation under test (IUT) or system under 

test (SUT). The applicability of different abstract test methods to a par

ticular SUT depends on the accessibility of interfaces within the SUT. 

The local test methods use control and observation of the (abstract) service 

primitives defined at the service ooundaries directly alx>ve and be1= the 

implementation under test. 

In this case IUTS are tested in isolation from the rest of the system which 

is simulated by the upper and l=er tester. Test synchronization (test coor

dination procedures) between activities of the upper tester and activities of 

the l=er tester are needed for these methods. 

The distributed test methods use control and observation of the (N-1) -service 

primitives defined at the service ooundary between the l=er tester and the 

(N-1)-service provider and control and observation of the (N)-service primi

ti ves defined at the service ooundary between the IUT and the upper tester. 

These methods also require the use of test coordination procedures between 

the upper tester and the l=er tester. 

The remote test methods use control and observation of the (N-1)-service primi

ti ves defined at the service ooundary between the l=er tester and the (N-1)

service provider. 

These methods provide the weakest tests in terms of control and observation 

since no interface within the SUT is accessible. 

The main difference between the local test methods and the two other catego

ries of test methods is that a (N-1)-service provider is only simulated in the 

case of local testing whereas a real (N-1)-service provider is involved in the 

62 



case of distributed and remote testing. Therefore, the local test rrethods 

require further testing, since the lower tester can only be a more or less 

adequate approximation of a real (N-l)-service provider. 

Finally it should be mentioned that the distributed and remote test methods 

are defined on the assumption that the (N-l)-service provider behaves correct

ly. This assumption must be validated by the execution of basic interconnec

tion tests which are part of the complete conformance test suite . 

Formal protocol specification, structured according to the PROS IT protocol model 

and described by rreans of Product Nets, offer an enriched structuring of 

enti ties, but are in full accordance with the ISO test methods. 

Formal protocol specifications define correct actions and correct reactions 

of instances. The correct reactions comprise correct reactions on receipt of 

correct pdus and invalid pdus which are either syntactically invalid our 

out- of-sequence pdus. Correct actions , however, do only consist of actions 

which describe the generation and sending of valid pdus. Formal protocol 

specifications per se do not include definitions of incorrect actions. There

fore , those further specifications are required for the purpose of testing 

(error generator) and must be added to the global protocol specification in 

order to get a complete test specification. 

The procedure to derive test sequences from formal protocol specifications 

includes the following main steps: 

- superposition of the protocol specification with a test configuration 

and identification of those interfaces within the sur which are obser

vable or controllable during the test (shown in Fig. 5.2 for the local 

test rrethod) ; 

- use of the formal protocol specification (specification language 

plus tools) in order to compute 

the complete state space at the considered interfaces ; 

the complete set of state transitions at the considered interfaces; 

the set of allowable sequences of transitions at the considered 

interfaces; 

- definition and selection of appropriate test strategies. 

63 



The reachability analysis produces the complete reachability graph 

representing the behaviour of an sur at the considered interfaces. 

This graph contains all possible and allowable test sequences which 

can be observed or controlled at the interfaces. Therefore, this set 

of test sequences is considered as being complete from the theore

tical viewpoint. Thus it provides a measure for the quality of a 

ccncrete set of test sequences which is selected for a particular 

test and which might be a subset of the full set. Test strategies 

are based on a superposition of the complete reachability graph) • 

Different test strategies are possible and so far the selection 

mechanism of defining an appropriate test strategy is purely 

intuitive and pragmatic. Test strategies are used for the following 

purposes: 

systematic selection of individual test patters; 

systematic structuring of test (separation into test phases , 

ordering of test, specification of test events, test steps, 

test groups and test suites); 

definition of quality measures for testing; 

The derivation of test sequences from Global protocol specification is 

described in (9). 

6. Conclusion 

The realisation of open system means to realize distributed systems in a 

distributed manner. 

Together with the implied systems heterogeni ty , this leads to a new category 

of problems to which established methods oriented on the design and program

ming of single systems offer no adequate soluti ons. 

Thi s new category of problems is characterized by the need to differentiate 

clearly between various levels of abstractions and to provide for consistent 

transitions between them; of course , such a need was formulated before in 

the context of singl e or homogenous systems design, but was ther e not of 

such a crucial importance. 



At the highest level of abstraction , communication and cooperation in 

organizational structures have to be described. This description has to be 

based on a rroclel deduced in an abstraction pr=ess from the existing or 

projected reality. This model has to express the aspects, only, relevant for 

cooperation; i. e. it has to emphasize upon which function an instance performs 

in their cooperation with other instances and not hCM it is internally condi

tioned to fulfill this function. 

At the lCMest level of abstraction, this 'how' has to be described for a 

distinct real open system. 

The gap between these levels of abstractions Imlst be bridged. A ccmron under

standing , what adequate modelling rreans, Imlst be established and a consistent 

sets of method and tools for the various levels of abstraction and the tran

sitions between them Imlst be developed. 

What has to be done in the end , is to develop the construction of distributed 

systems , especially the construction of distributed appli cations tCMards an 

engineering science. 

Currently, we are far fram this end, but our e~rience in applying PROS IT 

rrethods within industrial cooperations have given us the confidence that this 

end can be reached. 

65 



I 

Reference to papers presenting PROS IT results in more details: 

(1) Burkhardt, H. J.; Eckert, H.; Prinoth, R. 

Modelling of OSI-Cammunication Services and Protocols 

using Predicate/Transition Nets 

Protocol Specification, Testing, and Verification 

Y. Yemini, R. Stran, and S. yp..rnini (ed.) 

Elsevier Science Publishers B. V. (North-Holland) 

C IFIP, 1985 

(2) Eckert, H.; Prinoth, R. 

Produktnetze - Definition eines PROSIT-Beschreibungsmittels 

Arbeitspapiere der GMD Nr. 92 

(3) Baumgarten, B.; Ochsenschlager, P.; Prinoth, R. 

Building Blocks for Distributed System Design 

Proceedings of the IFIP WG 6.1 

Fifth International Workshop on Protocol Specification, 

Testing and Verification , 1985 

North Holland, 1985 

(4) Baumgarten, B.; Burkhardt, H. J.; Ochsensch1ager, P.; Prinoth, R. 

The Signing of a Contract - a Tree Structured Application 

Modelled with Petri Net Building Blocks 

Arbeitspapiere der GMD, Nr. 161, 1985 

(5) Eckert, H.; Prinoth, R. 

A Computation-Systems Based Method for Autcmated 

Proving of Protocols Against Services 

Protocol Specification, Testing, and Verification , III 

H. Ruding and C. H. West (ed.) 

Elsevier Science Publishers B. V. (North-Holland) 

C. IFIP, 1983 

66 



(6) Baumgarten, B.; Ochsenschlager, P. 

Modelling and Verification of a Checkpoint-Restart-Protocol 

2. GI/NTG/GMR-Fachtagung: Fehlertolerierende Rechensysteme 

Bonn 1984 

Informatik-Fachberichte 84, pp 353-363 

Springer Verlag 

(7) Paule, C. 

Das Netzsimulationsystem NESSY 

Arbeitspapiere der GMD Nr. 156, 1985 

(8) Faul-Luers , E.; Prinoth, R. 

Ableitung von Implementationsvorgaben aus 

modularisierten Produktnetzen 

Arbeitspapiere der GMD Nr. 123 , 1984 

(9) Burkhardt, H. J.; Eckert , H.; Giessler , A. 

Testing of Protocol Implementations 

- A Systematic Approach to Derivation of Test Sequences 

from Global Protocol Specifications -

Proceeding of the IFIP WG 6. 1 

Fifth International Workshop on Protocol Specification, 

Testing and Verification , 1985 

North Holland, 1985 

67 



I 

I 

SERVIC~ 

S?~Cr:!o.nON 

PRotOCOL 
S?::C:;'IC.;TION 

I 

~-J-----, 
VL~If!~ PROTOCOL 

S?~CIF!caTION 

,.--_!I_ -----, 
O!PL~.AT!ON 

SPECIFIc.:.UON 

,----l 
PROTO::--i 

IMPU2<'.ENTA'l'ION' I 

,.---.1.--
I 

TESTED PROTOCOL 

ll'J'tD'.Brr_AT_"O"_ ; I 

COXP.'!IBLE~ I 
SYSTEMS 

Fig. 1.1: The inter med i ate s teps necessary fo r the r ealizatio n 
of compatible systems fr om stand a rd s 

68 



". " 

U Service U 
User 
Instances 

uuu 

Service Provider 

Fig. 2.1: The general Scenario for a Communication 
Service in the Sense of the OSI-Reference 
Model 

• 



L 

, 
L 

/ 
/ 

/ 
Static - -- - -
service 
use r 
instance 

C 

, 

2..t~t~ _ 
service 
provide 
instance 

C 

/ ----
-- - )1 

, 

/\ 
c , Z C , 3 

, 

) / 
/ / 

- --- E.Y.::a:n i... - - -/ 
/ service 

user 
instance / C,l 

- -- - ---- y 

---- - :;1 
- ' 

C , 2 C , 3 

/ Oyna_mJ.... __ -- _I 
service 
provide , 
instance 

C, I I 
' / _____ _ __ J-

/ ) 
, 

) / 

/ 
/ 

F i g. 2 . 2: The Refinement of both Serv i ce Use r a nd Pr ovider 
Instances at a distinct SAP with Address C into Static 
I nstances C and Dynamic Instanc es C,K; K = 1 to 3 

70 



" 
~ 

C) 

'" u 

t t 
0 ) ~ 

u 
~ Q ) u u 

• • • '0 • C 
• ~ 

c c 
• .~ .;;. 

~ 
E 0 

• " 
• c • ,. • • " " c c " • • c 
u • • 
~ 

, 
'" u ;; c 

"-
~ ~ 

(~ 
• "-

~ 
c c u 

"'.... ·0 ·0 " U 
0. 0. 

-~ Z e g ..: • ;;u 
° 

0 • <;:c:::: 
. :::!;u Q 

C ~~ < :; ;: u u E 
Zc::~ z"O • • ·0 .• 
>- o:..J (/) 

u_ 
" " 0. 

C"''' "'0 >-'=..jC::: ! ~ · z::. a",o. c g 

," 
Z" " Oz .. .. u u", E E rl 

" • • • u 
0 0 e ~ z z -"' 

elf " ...., 
u .; • '" '" w'" uu uu" >-,.a: 0 f:;:> <::::::: :.J <:::::::0 !- (.;J 'l) • rW:::::: "'''''' VI:.nQ. 

Fig. 2.3: The refined model of a Service Access Point introducing 
the notions of static and dynamic entities . 

71 



--.J 
I\) 

ACTIVE INSInNeES PASSIVE INSTANCES 

STATIC OYNAnIC OYNAH!C STATIC 
INSTANCES IIlSTANCES S INSTANCES INSTANCES 

y 
S 

(N)- I I (N)- I ! (")- I I (11)-
SERVICE ~ SERVICE E SERVICE ~ SERV ICE 
USER USER 

" 
USER USER 

r I (H)-SERVICE 
- - - (Il)-S,;p - - - - IN) - CE? - - - - - - - -

i 
(H)-CEP - - - -

r 
(N)'SAP - - -1 1 80jARY 1 1 

! (It)-
8 

(N)- 0 ( N)- (N)-
U 

SoVICE ~I S<'<VICE N SERVICE ~ SERVICE 
PROVIDER PROV IDER 

0 
PROVIDER PROVIDER 

A 

I I R T Y 

FIG. 2.1: T i lE PROSIT Cm\MU~ I CATION SERV I CE >!DDEI. 

ACTIVE INSTANCES 

STATIC 
INSTANCES 

(N)j 
SERVICE _ 
USER 

r 
(N) -SAP 

1 
(N)-
SE:\VICE 1_ 
PROVIDER 

DYlIAHIC 
INSTANCES 

(N)-
SERVICE 
USER 

r 
, , 

(H)-SERVICE 
(N)-CEP - - - - - -

1 
(H)
SERVICE 
PROVIDER 

BOUNDARY 
I 

S 
Y 
S 
r 
E 

PASSIVE INSTAlleES 

DYNAMIC STATIC 
INSTA1KES IN STANCES 

I ""_ I I ('''_ I SERVICE I~I SERVICE 
USER USER 

i r 
(N~-CEP (N)':'SAP 

1 I 
1 

0"- I I (N:- l 
,m.,,, -i 

--- -1- J r -1- -- --:--- --1- 1 + -- -
I I i I I [ iii I a i ] I I I I [ I I I 

(N-l)-
SERVICE 1_ 
USER 

(N - l )
SERV ICE 
USER 

o 
N 
o 
A 
R 
Y 

(N-l )
SERV I CE 
USER 

1 r (N-l)-SERVICE I 
- - (N-i}-SAP - - - ( N-I)-CEP - - - -1- - - (N-l)-CEP 

1 1 80mi
ARY 1 

--, ,-
(N-l )-
SERVICE 1_ 
PROVIDER 

---' 

(N- l)
SERVI CE 
PROVIDER 

(N-l )-
SERVICE 1_ 
PROVIDER 

(N-l ) 
SERVIC E 
USER 

r 
(H-l)-SAP 

1 
(N-l )
SERVICE 
PROVIDER 

1 t r 1 

FIG. 2 .5: TilE I'IWSIT CO '''"IUNICATI O~ 1' llOT()CDL ' :UIJEL 



-J 
VJ 

8(x) 
t I 

( x) 

.3 

t 3 

() 

.4 
-,-

o 

() 

() 

1 (x , i) 1 ' 10 I (y. ki I 

(1) (1(j)1) (k) 

~~ 
( y) 

t .! 

(k(j)l) 

() ~)-+--- ----~ 
() 

~denotes addi tion modulo W. W is the capacity of the queue ('window s ize'). 

F IG . 3.1: PRODGCT ~ET SrlCIFYI~G A FLO~ CO~rRUlL[U 

DA TA TRR ~S I : E II SERV ICE 



--.J 
.p. 

I 
I UPPER TESTER I 

I (N) -SERVI CE PRIMITIVES 

TEST 
COORDINATION I II1PLEHENTATION I 

PROCEDURES UNDER TEST 

I I (N -l)-SERVICE PRIMItIVES 

I I LOWER TESTER I 
figure 2.a, The local test methods 

TEST • 
~ COORDINATION -------+ I UPPER TESTER I LOWER PROCEDURES 

TESTER I (H)-SERVICE PRIHIITIVES 

I IJ1PLEHEJITAT!ON l 
[ (N-l)-SERVICE UNDER TEST 

PRIMITIVES 

IT 
(N-1) - SERVICE PROVIDER I 

figure 2.b: The dist.ibuted test methods 

I ? l LOWER 
TESTER 

I I 
I IHPLEHOfTATION 1 I (N-l)-SERVICE UNDER TEST 

PRIMITIVES n 
(N-1) - SERVICE PROVIDER I 

Fiqure 2.e: The remote test methods 

F I G. 5. I: TilE OSI TEST YtETHODS 

, 

I 

LOWER TESTER UPPER TESTER 

· 0--0 O-Qj 
- - - - -1- - - - - - - -1- - - - - - - - - -(N)-ISERVICE PRIM ITI1VES - - -

II1PLE HEJITATION IDmER TEST 

0-0 -0 
DJIDOJlIJ DJID _ _ _ + t r-l--- - - - - --+ -[ r -[- ___ 

[[ill 
~ -0 

1 1 ImTBITATlOrl mlDERl TEST 
____________________ _ -(N-1)- SERVICE PRIMI!! YES - - -

LOWER TESTER 

0-0 0-0 
I t ) I 
FIG. S.?: B[I.ATIO~SHII' IlETWFE\ Till PlillSIT C())~.\'U\I

CATIO\ I'IWTOCOI. "OIlEI. A\1l TilE OSI 1.0CI\1. 

TEST VETIl Oil 



DISCUSS I ON 

Professor Randell remarked that even in heterogeneous 
distributed systems, an "esperanto" communication language is not an 
efficient solution if simi lar comouters communicate. 

Dr. Burkhardt suggested that even in this case the "esperanto" 
langua~e should be used. 

Dr. Cohen drew a parallel between a possible measure of 
open - ness of a distributed system (e . g. ti')is system is 93.4% open) 
and quality measures for programs (e . g. this program has 21 GO TO 
statements) and wondered if it is intended to define such an 
Ilapen-ness " measure . 

Dr. Burkhardt answered that no system is "open" or "closed " and 
the large spectrum of other possibilities (e .g . open for one type of 
system ~nd closed for ~nother type of system) should make very 
difficult the task of the definition criteria for such an open-ness 
measure very difficult . 

Several questions about the interpretation of the presented USER 
COMMUNICATION MODEL and the active/passive role of the service 
initiator/service provider turned the discussion to other similar 
models : 

- the client-server model, 
- sender - receiver in the file transfer transfer model 
(Professor Tanenbaum), and to the definition of the terms 
active/passive (Professor Wells) . 

Dr. Zimmerman suggested that the terms "active/passive " should 
not be used and Professor Randell pointed out tha t the model 
presented is an interaction model only . 

Dr. Cohen mentioned that the processing layers (layers 5,6.7) 
contain parameters for expressing the communication quality and only 
the communication layers (layers 1,2,3 , 4) are applicati~n 
independent . 

Professo r Ra ndell su~gested that one could see the r elationship 
bet ween p rocessing and communication layers as independent i n 
"one-way ". 

Dr . Burkhardt agreed with the term "one way " - independency. 

75 




