
•

.,

•

•

II. 9

EVOLUTION OF A SOFTWARE ENG INEE RI NG
LABORATORY COURSE

F P Brooks

Rapporteur: Jonathan Halliday

11.10

•

•

•

II .1 1

EVOLUTION OF A SOFTWARE ENGINEERING LABORATORY COURSE
Frederick P. Brooks, Jr.

University of North Carolina a t Chapel Hill 27599-3175 USA

Evolution of a Software-En ginee ring
La boratory Course

• Real

over 20 Y cars

Fred Brooks

Unive rsi ty or :-:o rth Carolin3
3t Cha~J Hill

Projects

• Must be useful if they succeed

• Must be allowed to fail-Le., not essential

• Must have a willing cli en t-owner
• Willing to take risk

• Willing to spe nd time with team

• Solicit from university or civic community

Team Organization

• Organize as they see fit

• I urge them to choose a Producer
• Responsible for res ources, schedule, and team

fusion

• I strongly urge them to choose a
Technical Director
• Responsible for conceptua l integrity of product

• See The Mythical Man-Month, Chapte rs 4, 7 for
the detailed argumen t

Evolution over 20 years

• One-semester, senio r-graduate level
laboratory course in software engineering

• Objectives: SE projec t ski lls, team skills

• 1965·87, 20 times

• usuall y a lone, once e~ch with David Pumas, AI
Pi etrnsanta, sometimes othe r faculty.

• Now taught by other faculty members .

• Evolut ion based on lessons lea rned;
a small-sample, opinionated set.

Teams

• Four people is ideal team size

• No t three!

• Five and more is really diferent

• Self·formed vs . random vs. instructo r-placed

In teractions

• Instructor(s) acts as coach

• Meets with team each week

• Refers as many problems as possible back to
team leaders

• Client acts as a real-world client

• Meets with team, without instructor,
upon request , very often at first

• Use r-tests and approves use r interface

II . 12

EVOLUTION OF A SOFTWARE ENGINEERING LABORATORY COURSE
Frederick P. Brooks, Jr.

Univers ity of 1'\orth Caroli na at Chapel Hil l 27599-3175 USA

Lectures

• One hourh .. ·eek

• The ll'!ythical /v!all -rHOllth (1975), grew ou t of
the o riginal lectures

• Late r, more ca refu ll y synchronized with their
project ex perience

• T oday I wo uld incl ude different materia l,
especially from DeMarco & Lister , Peopleware

• Present instructo r emphasizes formal methods

Design Reviews

• Mid-term, just before (o r after) des ign
document

• Done by industry· experienced students who
were taking lectures, waiving project

• Could be done by teams for each other
• I haven't tried tha t

• Really hclped the designs,
and the teaChing of methodology

Sample T ime Log

"-I ... ,
"'"" 1: " 1.0 ,._ c-.. sr-e-... ., T __ ... CooIi .. U _ T .. T .. _ 0._ T~

"' ~
",
" ".

,."
" ...
1,"

I."

" .
-~ ,u, ..

T....J. :',,, 1).11:' " U.I loU "..,

'''';'..:..:::,:0--- -.-... ,--.-----........ p"o""

Schedul e

• Week 2-Project descript ion and schedu le

• Week -'-Produce a drart use r manual and
requirements document

• Week 6-Protolype graphical user interface
• Must be tes ted with users

• Magic for tcam fus io n and mOr::lle

• Accel erates progress

• Week 8-Dcsign document

• Week l~-Demo and final product

Final Product

• Program

• User documentation

• Maintenance documentation

• Demonstration for cli ent , classmates, friends
and department public

• Demo documentation, foils, ctc.

• Time logs by week and 9 kinds of activity,
to help them calibrate themse lves

• "Objectives, achievements, team se lf·
evaluation, lessons·learned" docu~~!!~ ~_

Show and Tell

• Public demo at end of course, week before
final product is turned in

• Presentation of need, design, product working,
lessons learned

• Every team member must present something

• An important skill we too rare ly teach

(

•

•

•

II . 13

EVOLUTION OF A SOFTWARE ENGINEERING LABORATORY COURSE
Frederick P. Brooks, Jr.

University of North Carolina at Chapel Hill 27599-3175 USA

Grading

• Mus t include a team componen t

• " Th e re :l rc no lose rs on winn ing tca ms;
th e re a rc no winners on los in g tcams."

• " The hole isn ' t in my cnd of the boat! "

• Must include an indi vidual component

• Instructor grade

• Teammates ' grades
• Eac h team me mhcr gelS a grade bud ge t to ass ign

• Teammate gradin g reall y wor ks!

Individual Grading

• Code
a. QU:lIltity 10 b. Qu ality 10

• Documentation
c. Quantit y 10 d. Quality 10

• Other
d. Technical maste ry 10 c. Effort, tcamwork 10

• t. Teammates' average evaluation =t11.0

• Individual grade 1= (a+b+c+d+e+O/6 '" t

• Total grade = 1+ T j perfect grade = 20

What Worked Really Well?

• Self·selected teams
• Quick rusion, high morale, es prit de corps

• Teams that formed around own project idea
• High est yield of great projects

• Drove themselves unmercirully

• Projects using body of tools already in place
• Randy Pausch repo rts same result for his 1991·98

graphics project course at C'\IU

• Teams with eager clients

m Sample Team Grading T= 110

• Achievement 3 .0

• Am b ition 1.0 • Accomplish men t 2.0

• Usability 3.0
• User 1\13nu:ll - l 0.5 • Use r ,\ 13 I1ua l-2 1.5

• Ergonomics 1.0

• Sys tem Quality 3.0

• Code qual 0.6 • Tcch~l anual ·l 0..4

• System Designffec h Manuai ·2 1.0

• Testing 0.6 • Client sat isfa ction 0..4

• Presentation and demonstration l.0

What Didn't Work?

• Big teams
• Mixing graduate students and undergrads on

same team

• Two projects in one semes ter

• Vague project definitions

• Weak or inattentive clients

• Too much attention to process,
as opposed to product

• Slow instructor reaction to infighting

A Parnas Experiment

• Divide class into A. and B groups

• Simple task-a reader-writer

• Each person in A builds a read module

• Each person in B builds a write module

• A.B pairs drawn at random and tested for
proper functioning

• Dramatic lesson in information-hiding,
building to a precisely specified interface

• Cost 3-4 weeks of a 14-week term

II . 14

EVOLUTION OF A SOFTWARE ENGINEERING LABORATORY COURSE
Frederick P. Brooks, Jr.

University of North Carolina at Chapel Hill 27599-3175 USA

If a Year-Long Course?

• Could be much better

• l\ t uch mo re ins truction a nd practice in
techni cal. as opposed to p roject managemen t,
methodology

• Es pecia ll y teach good s tyle with in th e object.
oriented para di gm

• ~to re th eory and p ractice on code cont rol and fil e
management

• Ric her prototypi ng cycle

• Would definitely include the Parnas mi ni­
projec t on interchangeable par ts

Results

• Alumni reaction-" the best course I had at
UNC'

• " Dragg ing and complaining"

• Some projects produced finished products
tha t were put into production.

• Out of 5-8 projects/yea r,
one projec t, on ave rage, fail ed.

• Many useful systems have been prototyped by
course projects.

• Many PhD disserta tions have grown from
course projects.

Course vs. On-the-Job-3x?

• Pla nned short project, selected for ri ght scope

.. Enriched by ab le colleagues

• Concentrated- li tt le busywork per lesson

• Broad experience--each one does code, docs

• Guided-" How-to" lectures at ri gh t time

• Coached and commented-as you go

• Critiqued at end-especially documen ts , code

• Shared-learn from other teams

• Reflected upon-by team; " lessons" document

•

•

•

•

•

•

11.15

DISCUSSION

Rapporteur: Jonathan Halliday

Lecture Two

The speaker was asked to elaborate on the method by which student project groups
were allowed to se lf-form. Professor Brooks responded that a menu of projects,
usually around twice the number that would actually run , was posted for students.
Individuals or groups could then indicate their first, second and third choices. If a
group indicated they wished to work together this request would be honoured, although
they would not necessarily get the ir first choice of project. Brooks noted that this
method led to strong teams, but had the disadvantage of not allowing all of the weaker
students to work with more able colleagues.

Professo r Brooks stated that the construction of a prototype user interface part way
through the project caused a great increase in team fusion and morale. A member of the
audience asked him what he felt was the cause of this. Professor Brooks rep li ed that
giving the software tangible form created a kind of magic - the students could see it. feel
it, realised that it was no longer just abstract code, that it would work. The comment
was made that creating a new machine was always daunting and uncerta in . but once
you had succeeded in creating the basic function you had confidence that the rest was
also possible. It was also observed that morale was better if the students used actual
production tools for creating the prototype, rather than spec ial prototyping tools. Thi s
was attributed to a greater confidence being gained in the use of the tool s necessary to
create the final version of the software.

In relation to the project marking scheme outlined by the speaker, it was obse rved that
estimating one of the elements, code quantity , was very difficult. Code reuse, copyi ng,
teamwork and other factors all made estimation complex. Brooks replied that he was
aware of these problems and that the marking of thi s area was frequently based on
highly subjective judgements by the instructor. Another member of the audience
supported the use of team members to grade one another, and additionally noted that in
his experience using teams to grade each other also led to good, consistent marks.
Finally on this topic , Professor Brooks was asked why client sati sfac tion was awarded
such a low rating in the marking scheme. He replied that the client often could not see
many of the key elements of the project, including important teamwork and software
engineering aspects.

In the discussion following the presentation, the following points were made:

It was observed that, in running s imilar courses, members of the audience had
experienced the group project taking up a considerable amount of student time. This
often exceeded the timetabled allowance, to the detriment of other ongoing courses. The
speaker agreed with this observation, noting that in his experience ded icated groups
could often greatly exceed their scheduled time allowance, which was around one third
of the timetabled hours in the semester.

A member of the audience commented that, in his experience, si milarly struc tured
projects worked well in industry training situations as well as in academia.

Some further questions were raised in regard to the marking of projects. First ly, were
any statistics available for average marks, best mark ever, etc? Were any trends
apparent? Professor Brooks replied that he had no such information readily available.
Secondly, the difficu lty of comparative grading of different projects was rai sed.
Professor Brooks responded that, once again, a high degree of subjective judgement
was necessary on the part of the project supervisor. Finally on this topic. the difficulty
of instructors being required to mark code written in unfamiliar languages was

II . 16

discussed. Here again it was felt that subjec ti ve judgement was the only available means
of grading work.

Professor Randell , in ou tlining the structure of group projects employed at Newcas tle
Uni versity, commented that in hi s experience the best teams often had members from a
wide range of backgrounds and experience.

The di scuss ion ended with observations on the problems of students learning
inductively , wh ilst teaching was conducted in a mostly deductive manner. It was
observed that because of this it was unsurprising that (inductive) lab courses, although
expensive in terms of time and money, should benefit the students so great ly. Another
speaker, Professor Crampton Smith, observed that in her field the teaching was almos t
entirely inducti ve. It was felt that computing sc ience could benefit from more teaching
of this nature.

