AUTOMATED DEDUCTION: TECHNIQUES AND APPLICATIONS

Z. Manna

Rapporteur: Dr. |l.LA. Stewart

145



THE ORIGIN OF A BINARY-SEARCH PARADIGM

ZOHAR MANNA RICHARD WALDINGER
Stanford University SRI International
Weizmaun Institute

ABSTRACT

[n a binary-search algorithm for the computation of a numerical function. the interval in
which the desired output is sought is divided in half at each iteration. The paper considers
how such algorithms might be derived from their specifications by an automatic system
for program synthesis. The derivation of the binary-search concept has been found to
be surprisingly straightforward. The programs obtained. though reasonably simple and
efficient, are quite different from those that would have been constructed by informal
ineans.

Key Words: program synthesis, theorem proving, binary search, real square root. lambo
function.

1. INTRODUCTION

Some of the simplest efficient algorithms for the computation of numerical functions rely
on the notion of binary search; according to this technique. the interval in which the
desired output is sought is divided in half at each iteration until it is smaller than a given
tolerance.

For example, let us consider the following program for finding a real-number approx-
imation to the square root of a nonnegative real number r. The program sets = to be

This research was supported by the National Science Foundation under Grants DCR-
82-14523 and DCR-85-12356, by the Defense Advanced Research Projects Agency under
Contract N00039-84-C-0211, by the United States Air Force Office of Scientific Research
under Contract AFOSR-85-0383, by the Office of Naval Research under Contract NQOOL4-
S4-C-0706, by United States Army Research under Contract DAJA-45-34-C-0040. and by
a contract from the International Business Machines Corporation.

This paper will appear in the journal Science of Computer Programming. A prelim-
inary version of part of the paper appears in the proceedings of the Vinth [nternational
Joint Conference on Artificial Intelligence. Los Angeles, Calif.. August 1935.

146



within a given positive tolerance ¢ less than /7.

:—0
v — max(r. 1)
while e < v do v — v/2:
f [+ 0] < then = — - + v
return(z)

This is a classical square-root program based on that of Wensley [59]. The program
establishes and maintains the loop invariant that : is within v less than /7, i.e.. that
VT belongs to the half-open interval [z. = 4+ v). At each iteration. the program divides
this interval in half and tests whether /7 is in the right or left half. adjusting z and’
v accordingly. until v is smaller than the given tolerance ¢. The program is reasonably
efficient: it terminates after [loga(max(r.1)/¢)] iterations.

Analogous programs provide an efficient means of computing a variety of numerical
functions. It is not immediately obvious how such programs can be developed by au-
tomatic program-synthesis systems. which derive programs to meet given specifications.
Some researchers (e.g.. Dershowitz and Manna (77]. Smith [85]) have suggested that syn-
thesis systems be provided with several general program schemata. which could be spe-
cialized to fit particular applications. Binary search would be one of these schemata. The
system would have to determine which schema. if any, is applicable to a new problem.

It may indeed be valuable to provide a svnthesis svstem with general schemata. but
this approach leaves open the question of how such schemata are discovered in the first
place. To our surprise. we have found that the concept of binary search emerges quite
naturally and easily in the derivations of some numerical programs and therefore does not
need to be built in. The programs we have obtained in this way are simple and efficient,
but bizarre in appearance and quite different from those we would have constructed by
informal means.

We have derived the programs in a deductive framework (Manna and Waldinger
(80]) in which the process of constructing a program is regarded as a task of proving a
mathematical theorem. According to this approach. the program’s specification is phrased
as a theorem, the theorem is proved. and a program guaranteed to meet the specification
is extracted from the proof. If the specification reflects our intentions correctly, no further
verification or testing is required.

In this paper we outline our deductive framework and show the derivation of a novel
real-number square-root program. emphasizing the emergence of the binarv-search con-
cept. We then show several analogous binary-search derivations, for both different prob-
lems and different specifications of the same problem.

147



2. DEDUCTIVE PROGRAM SYNTHESIS

In this section we present our framework brieflv, using the square-root derivation as a
continuing example.

We begin with an outline of the logical concepts we shall need.

LOGICAL PREREQUISITES

The system deals with

o lerms composed (in the usual way) of constants a,b,c, ..., variables
u,v,w, ..., function symbols, and the conditional term constructor
if-then-else.

e atoms composed of relation (predicate) symbols, including the equality
svmbol =, applied to terms, and the truth symbols true and false.

e sentences composed of atoms and logical connectives.

Sentences are quantifier-free. An ezpressionis a term or a sentence. An expression is
said to be ground if it contains no variables. We sometimes use infix notation for function
and relation symbols (for example, z + a or 0 <,, y). Certain of the symbols are declared
to be primitive: these are the computable symbols of our programming language.

We loosely follow the terminology of Robinson (79]. We denote a substitution é by
{rv — ty,z2 — t2, ..., 2y — ta}. For any expression e, the expression €f is the result of
applying @ to e, obtained by simultaneously replacing every occurrence of the variable z,
in e with the corresponding term ¢,. We shall also say that €8 is an instance of e.

Let €, s, and t be expressions, where s and t are either both sentences or both terms.
If we write € as ¢[s], then e[t] denotes the result of replacing everv occurrence of s in e[s]
with t. Let @ be a substitution. Then ef(t] denotes the result of replacing every occurrence
of s8 in €@ with t.

Variables in sentences are given an implicit universal quantification: a sentence is true
under a given interpretation if every instance of the sentence is true, or. equivalently, if
every ground instance of the sentence (i.e., an instance that contains no variables) is true.

We now describe the basic notions of deductive program synthesis.

SPECIFICATIONS AND PROGRAMS

A specification is a statement of the purpose of the desired program, which does
not need to indicate a method of achieving that purpose. In this paper we consider only

148



applicative (or functional) programs, which yield an output but alter no data structures
and produce no other side effects. The specifications for these programs have the form

f(a) <« find z such that Ra, 2]
where Pla].

In other words, the program f that we want to construct is to yield, for a given input a,
an output z satisfying the output condition Ra, z], provided that the input a satisfies the
input condition Pla]. In other words, z is to satisfy the input-output condition

if Pla] then R[a, z].

For example. suppose we want to specify the program sqrt to yield a real number z
that is within a given tolerance ¢ less than /7, the exact square root of a given nonnegative
real number r. Then we might write

sqrt(r, €) <= find = such that
2* < r and not [(z +¢€)? < 7]
where 0 < and 0 < e.
In other words, we want to find an output = satisfying the output condition
:2<r and not [(z+€)* < 1],
provided that the inputs r and ¢ satisfy the input condition

0<rand 0< e

The above square-root specification is not a program and does not indicate a par-
ticular method for computing the square root; it describes the input-output behavior of
many programs, employing different algorithms and perhaps producing different outputs.
Of course, other specifications for a square-root program are possible.

The programs we consider are sets of expressions of the form
ft'(a) <~ tl'!

where t; is a primitive term, i.e., one expressed entirely in the vocabulary of our program-
ming language. We regard the input a as primitive. These programs can be mutually
recursive; i.e., we also regard the function symbols f; as primitive. In the usual way, such
a program indicates a method for computing an output.

In a given theory, a program f is said to satisfy a specification of the above form
if, for any input a satisfving the input condition P[a], the program f(a) terminates and
produces an output ¢ satisfying the output condition R[a, t]. The problem we face is to
construct a program satisfying a given specification.

149



DEDUCTIVE TABLEAUX

The fundamental structure of our svstem, the deductive tableau. is a set of rows. each
of which must contain a sentence, either an assertion or a goal; any of these rows may
also contain a term, the output entry. An example of a tableau follows:

outputs

assertions goals sqri(r, €)

i and

0<r
0<e

2, Ly and
not [(z+¢€)* <)

ta

3. not[et <) 0

Here z is a variable and r and € are constants.

Under a given interpretation for its constant, function, and predicate symbols, a
tableau is true whenever the following condition holds:

If all instances of each of the assertions are true, ,
then some instance of at least one of the goals is true.

Equivalently. the tableau is true if some instance of at least one of the assertions is false
or some instance of at least one of the goals is true. Thus. the above tableau is true if
assertion 1,

0<r and 0 <,
is false or if the instance (obtained by taking z to be 0) of goal 2

0° <r and
not [(0+¢)* < 7]

is true (among other possibilities).

In a given theory, a tableau is said to be valid if it is true under any model for the
theory. In the theory of real numbers, the above tableau is valid, since it is true under
any model. For either assertion 1 is false, or r is nonnegative and the instance of goal 2
obtained by taking z to be /7 is true.

Under a given interpretation and for a given specification

f(a) <« find 2z such that Rfa, 2]
where P|a],

150



i

a goal is said to have a suitable output entry if, whenever an instance of the goal is true.
the corresponding instance t' of the output entry will satisfy the input-output condition

if Pla) then Rla, t'].

(If the goal has no explicit output entry, it is said to have a suitable output entry if.
whenever an instance of the goal is true, any term t' satisfies the input-output condition.)
An assertion is said to have a suitable output entry if, whenever an instance of the assertion
is false, the corresponding instance t’ of the output entry will satisfy the input-output
condition.

For example, in the theory of real numbers, consider the square-root specification

sqri(r, €) < find z such that
22 <r and not [(z+¢)? <7
where 0 < r and 0 < e.

Under any model for the theory, the output entries of the above tableau are suitable
for the square-root specification. In particular, if some instance of goal 2, obtained by
replacing z with a term s. is true, then s will satisfy the input-output condition,

if 0<r and 0 < ¢
then s* <r and not((s+€)? < r].

Also. if assertion 1, which has no output entry, is false, then any term s satisfies the above
condition.

Under a given interpretation J and for a given specification, two tableaux 7; and 7;
have the same meaning if

7 is true under J
if and only if
7> is true under J

and

the output entries of 7, are suitable
if and only if
the output entries of 7> are suitable.

In a given theory and for a given specification, two tableaux are equivalent if, under any
model J for the theory, the two tableaux have the same meaning.

We shall use the following properties of a tableau (for a particular theory and a
particular specification):

o Duality Property

Any tableau is equivalent to the one obtained by removing an assertion and adding its
negation as a new goal, with the same output entry. Similarly, any tableau is equivalent

151



.

to the one obtained by removing a goal and adding its negation as a new assertion. Thus,
we could manage with a svstem that has no goals or a svstem that has no assertions. but
the distinction between assertions and goals does make derivations easier to understand.

e Renaming Property

Any tableau is equivalent to the one obtained by systematically renaming the vari-
ables of any row. More precisely, we may replace any of the variables of the row with
new variables, making sure that all occurrences of the same variable in the row (including
those in the output entry) are replaced by the same variable and that distinct variables
in the row are replaced by distinct variables. In other words, the variables of a row are
dummies that may be renamed freely.

e [nstance Property

Any tableau is equivalent to the one obtained by introducing as a new row any
instance of an existing roo  The new row is obtained by replacing all occurrences of
certain variables in the ex. ing row (including those in the output entry) with terms.
Note that the existing row is not replaced; the new one is simply added.

THE DEDUCTIVE PROCESS

Consider a particular theory and the specification

f(a) < find z such that R|a, 3|
where P[a].

We form the initial tableau

_ outputs
assertions goals f(a)

Pla]

R[a, 2]

tr

Here the input condition P[a] is the initial assertion, the output condition R[a, 2] is the
initial goal, and the output z is the goal's output entry. ‘e regard the input a as a
constant and the output z as a variable. We may also include in the initial tableau (as
an assertion) any valid sentence of the theory.

Note that the output entries of this tableau are suitable. Under any model for the
theory, if the initial assertion P[a] is false, then any output satisfies the input-output
condition vacuously: and if some instance R[a, t'] of the initial goal R[a, 2] is true,
the corresponding instance t' of the associated output entry satisfies the input-output
condition. Furthermore, the valid sentences included as initial assertions cannot be false.

152



Example
For the specification of the real-number square-root program,

sqri(r, €) «< find z such that
2 <r and not [(z+¢€)? < ]
where 0 < r and 0 < ¢,

we form the initial tableau

outputs

assertions goals sqre(r, €)

1. 0<r and 0<c¢

2, =2 g-r and
not [(z + €)% < r]

18]

Here the inputs r and ¢ are constants and the output z is a variable. We may also include
as assertions valid sentences of the theory of real numbers, such as

“w

e
]
&
&

o
<
]
o

where u and v are variables. 3

In the deductive process, we attempt to show that the initial tableau is valid. For
this purpose, we apply deduction rules that add new rows without changing the tableau’s
meaning in any model for the theory. In other words, under a given model, the tableau
is true before application of the rule if and only if it is true afterwards. and the output
entries are suitable beforehand if and only if they are suitable afterwards. We describe
the deduction rules in the next section.

The process continues until we obtain either of the two rows

true t

or

false t

where the output entry t is primitive. i.e., expressed entirely in the vocabulary of our
programming language. At this point, we derive the program

Fla) = &

153



We claim that t satisfies the given specification. For. in applyving the deduction rules.
we have guaranteed that the new output entries will be suitable if the earlier output entries
are suitable. We have seen that the initial output entries are all suitable: therefore. the
final output entrv t is also suitable. This means that. under any model. if the final goal
true is true or the final assertion false is false, the corresponding output entry ¢ will satisfy
the input-output condition

if Pla) then Ra. t].

But, under any model, the truth symbols true and false are true and false. respectively,
and hence f will satisfy the input-output condition. Therefore. the program f(«) <« t does
satisfy the specification.

For example. from the square-root derivation we shall obtain the program

if maz(r, 1) < ¢
then 0 3
sqri(r, €) <« else if [sqrt(r. 2¢) + e]‘ <r
then sqrt(r, 2¢) + ¢
else sqrt(r, 2¢).

(Actually we shall obtain a slightly different program.) Before we describe the deduction
rules of our system, let us say a few words about this program. This will help the
understanding of the ensuing derivation.

DISCUSSION OF THE PROGRAM

The program first checks whether the error tolerance ¢ is reasonably small. If ¢ is
very big, that is, if maz(r, 1) < ¢, then the output can safely be taken to be 0. For,
because 0 < r, we have

0* <r.

And because maz(r, 1) < ¢, we have r < € and 1 < ¢, and hence r < ¢ — that is.
not [(0+ €)? < r.

Thus, in this case, taking z to be 0 satisfies both conjuncts of the output condition
2 <r and not [(z+¢)? <1l

If € is small, that is, if ¢ < maz(r, 1), the program finds a rougher estimate sqri(r, 2¢),
which is within 2¢ less than /7, the exact square root of r. In other words, the root is
within the half-open interval [sqrt(r, 2¢), sqri(r, 2¢)+2¢). The program then asks whether

[sqrt(r. 2€)+€] “ < r,thatis, whether the root is in the right or the left half of this interval.
The situation is illustrated below:

154



? \/;.' 2
: AR \
A /
sqri(r, 2¢) sqri(r,2¢) + ¢ sqrt(r, 2¢) + 2¢

If the root is in the right half, we can increase our rough estimate by ¢, for sqre(r,2¢)+¢
is then within € less than the root. On the other hand. if the root is within the left half,
we can leave the estimate alone, for sqrt(r,2¢) is already within ¢ less than the root.

The termination of the program may seem a bit problematic, because the argument ¢
is doubled with each recursive call. However, the argument r is unchanged and recursive
calls are evaluated only until maz(r,1) < ¢, so there is a uniform upper bound on these
increasing arguments.

If the multiple occurrences of the recursive call sqrt(r, 2¢) are combined by elimi-
nating common subexpressions, the program we obtain is reasonably efficient; it requires
[log:(maz(r, 1)/€)] recursive calls. Furthermore, the resulting program is of “linear”
form and may be transformed into an iterative equivalent (Harrison and Khoshnevisan

(86)).

Our final program is somewhat different from the iterative program we considered in
the introduction. The iterative program divides an interval in half at each iteration; the
recursive program doubles an interval with each recursive call. Division of the interval
occurs implicitly as the recursive program unwinds, i.e., when the recursive calls finally
vield output values. Our program may actually be superior if doubling a real number is
faster than halving one.

It is possible to obtain a version of the iterative program by formal derivation from
the specification within the deductive-tableau system. Although the derivation and the
resulting program are more complex (the program requires two additional inputs), it was
this more complex derivation we discovered first, as we were already familiar with the
iterative program.

We later found the recursive program while examining the consequences of purely
formal derivation steps, not because we expected them to lead to a program, but because
we were looking for strategic considerations that would rule out these branches of the
search space. When we examined the program initially, we suspected an error in the
derivation. We had not seen programs of this form before, and we certainly would not
have constructed this one by informal means.

THE TRANSFORMATION RULES

We now begin to introduce the deduction rules of our system, illustrating them with
fragments from the square-root derivation. Afterwards, we shall review the entire deriva-
tion. We begin with the simplest of the rules.



The transformation rules replace subexpressions of an assertion. goal. or output entry
with equal or equivalent expressions. For instance. with the transformation rule

P and true — P,

we can replace the subsentence ((A or B) and true) with (A or B) in the assertion

((A or B) and true) or D 0
yielding
(A or B) or D 0

With the transformation rule (in the theory of integers or reals)
u+u — 2u,
we can replace a subterm (a + b) + (a + b) with the term 2(a + b).

We use an associative-commutative matching algorithm (Stickel [81]), so that the
associative and commutative properties of operators can be taken into account in applying
the transformation rules. Thus. we can use the above rules to replace a subsentence
(true and B) with the sentence B and the subterm (a + b) + b with the term a + 2b.

We include a complete set of true-false transformation rules. such as
not fulse — true
if P then false — notP.

Repeated application of these rules can eliminate from a tableau row any occurrence of a
truth symbol true or false as a proper subsentence.

The soundness of the transformation rules is evident, since each produces an expres-
sion equivalent or equal (in the theory) to the one to which it is applied.

3. CONDITIONAL FORMATION

In this section we introduce the resolution rule, which can account for the introduction of
the conditional (if-then-else) construct into the derived program.

THE RESOLUTION RULE: GROUND VERSION

The resolution rule corresponds to case analysis in informal reasoning. We first

156



present the ground version of the rule, which applies to ground goals. i.e., goals with
variables. \We express it in the following notation:

no

assertions goals ??;;))uts
F(P] 8
G(P) t
Ftrue] if P
and then s
G(false] else t

In other words, suppose that our tableau contains two ground goals, 7 and G, whose
output entries are s and ¢, respectively. Suppose further that F and ¢ have a common
subsentence 7. Then we may derive and add to our tableau the new goal obtained by
replacing all occurrences of P in F with true, replacing all occurrences of P in G with
false, and forming the conjunction of the results. The output entry associated with the
derived goal is the conditional term whose test is the common subsentence 7 and whose
then-clause and else-clause are the output entries s and ¢t for F and §, respectively.
Because the resolution rule always introduces occurrences of the truth symbols true and
false as proper subsentences, we can immediately apply true-false transformation rules to

the derived goal.

Example

Suppose our tableau contains the rows

assertions

goals

outputs
sqri(r, €)

| maz(r, 1) < e |*

0

not[ maz(r, 1) < ¢ ]‘

if [sqrt(r‘ 2¢) + 6]2 <ip
then sqrt(r,2¢)+ ¢
else sqri(r,2e)

These goals have a common subsentence maz(r, 1) < ¢, indicated by boxes. Therefore we
may derive and add to our tableau the new goal

157



if maz(r. 1) <

/ d then 0 )

nr;tefa??e else if [sqrf(r. 2¢) + c]' <r
then sqrt(r, 2¢) + ¢

else sqri(r. 2¢)

By application of transformation rules, this goal reduces to

if maz(r,1) < ¢

then 0

true else if [sqri(r, 2¢) + 6]2 <F
then sqrt(r. 2¢) + ¢
else sqri(r, 2¢)

Note that, because we have derived the goal true with a primitive output entry, this could
be the final step in a square-root derivation. (In fact, however, this will not be the final
step in our derivation of a square-root program.) 4

If one of the given goals has no output entry, the derived output entry is not a
conditional term; it is simply the output entry of the other given goal. If neither given
goal has an output entry, the derived goal has no output entry either. We do not require
that the two given goals be distinct; we may apply the rule to a goal and itself.

We have presented the resolution rule as it applies to two goals. According to the
duality property of tableaux, however, we may transform an assertion into a goal simply
by negating it. Therefore, we can apply the rule to an assertion and a goal, or to two
assertions.

The resolution rule may be restricted by a polarity strategy, according to which we
need not apply the rule unless some occurrence of P in F is “positive” and some occurrence
of Pin G is “negative”. (Here a subsentence of a tableau is regarded as positive or negative
if it is within the scope of an even or odd number, respectively, of negation connectives not.
Each assertion is considered to be within the scope of an implicit negation; thus. while
goals are positive, assertions are negative. The if-clause P of a subsentence (if P then Q)
is considered to be within the scope of an additional implicit negation.) This strategy
allows us to disregard many useless applications of the rule. The application in the
previous example is in accordance with the polarity strategy; the boxed subsentence is
positive in the first goal and negative in the second, as indicated by the annotation.

Let us show that the resolution rule is sound; that is, in a given model of the theory
and for a given specification, the meaning of the tableau is the same before and after
application of the rule. It actually suffices to show that, if the derived goal is true, then

15K



at least one of the given goals is true and, if the given output entries are suitable. so is
the derived output entry.

Suppose the derived goal (F[true] and G(false]) is true. Then both its conjuncts
F(true] and G[false] are true. Ve distinguish between two cases, depending on whether
or not the common subsentence P is true or false. In the case in which P is true. the
(ground) goal F(P] has the same truth-value as the conjunct F|[true]; that is, F[P]is true.
In the case in which P is false, the goal §[P] has the same truth-value as the conjunct
Glfalse]; that is, G[P] is true. In either case, one of the two given goals, F[P] and G[P), is
true.

Now assume that the given output entries are suitable. To show that the derived
output entry is suitable. we suppose that the derived goal is true and establish that the
derived output entry satisfies the input-output condition. We have seen that, in the case
in which P is true, the given goal F[P] is true; because its output entry s is suitable, it
satisfies the input-output condition. Similarly, in the case in which P is false, the output
entry t satisfies the input-output condition. In either case, therefore, the conditional term
(if P then s else t) satisfies the input-output condition; but this is the derived output
entry.

THE RESOLUTION RULE: GENERAL VERSION

We have described the ground version of the resolution rule, which applies to goals
with no variables. We now present the generul version, which applies to goals with
variables. In this case, we can apply a substitution to the goals, as necessary, to create a
common subsentence.

assertions goals ?1(1;;)>uts
F[P] 3
G[P) t
— —
F(true] if PO
and then s6
GO|false] else t

More precisely, suppose our tableau contains goals 7 and G, which have no variables
in common. (This can be ensured by renaming the variables of the rows as necessary,
according to the renaming property.) Suppose further that some of the subsentences of F
and some of the subsentences of G are unifiable, with a most-general unifier 8; let P8 = P
be the unified subsentence. Then we may derive and add to our tableau the new goal

159



obtained by replacing all occurrences of P# in F8 with true, replacing all occurrences of
P8 in GA with false, and forming the conjunction of the results. The associated output
entry is a conditional term whose test is the unified subsentence P#, and whose then-
clause and else-clause are the corresponding instances sf and t#, respectively, of the given

output entries.

In other words, to apply the general version of the rule to F and G. we apply the

ground version of the rule to 76 and Gf. The soundness of the general version

can be

deduced from the soundness of the ground version and the instance property. The polarity
strategy applies as before. If we wish to apply the rule to an assertion and a goal or to
two assertions, we can regard the assertions as goals by negating them, as in the ground

case.

Example

Suppose our tableau contains the rows

g outputs
assertions goals sqri(r, €)
2<r and L if (5-t-£)zsr
not (% +2¢)? < ] e Sy
else z

if (2. ©) =y {r, €
then if 0<z and 0 < v

(sqrt(z, v))’ < z and

then 2
not [(sqrt(z, v) +v)" < z|

The boxed subsentences are unifiable; a most-general unifier is

f: {ze—r, ve2¢ 2+~ sqri(r, 2¢)}.

The subsentences have respectively positive and negative polarity, as indicated by the
annotation. We may regard the assertion as a goal by negating it. By application of the

general version of the resolution rule, we may derive the new row

true d [ ]2
and if |sqri(r,2¢)+¢| <r
cd ‘{; (r, ?‘Z) :W (r, ‘3 - then sqrt(r, 2¢) + ¢
then 1 <r an < 2Z¢
dhiny Talae else sqrt(r, 2¢)

By the application of transformation rules, this goal reduces to

1TAN




(r, 2€) <y (r, €) if [sqri(r, 2¢) + ‘]2 g7
and then sqri(r, 2¢) +¢
0<r and 0 < 2¢ else sqri(r, 2¢)

Note that the unifier § has been applied to all variables in the given rows, including those
in the output entry. Because the given assertion has no output entry, no new conditional
term is formed in deriving the output entry. This application of the rule is in accordance
with the polarity strategy. a

Our resolution rule differs from the familiar resolution rule of Robinson [65] in that
it is nonclausal; it applies to quantifier-free sentences with a full set of logical connectives
that need not be in clausal form or any other normal form. Nonclausal resolution reduces
to classical resolution in the clausal case. The nonclausal rule was developed independently
by Manna and Waldinger [80] and Murray [82]. The resolution rule and the true-false
transformation rules have been shown by Murray to constitute a complete system for
first-order logic. The polarity strategy maintains this completeness.

We use an associative-commutative unification algorithin (as in Stickel [81]) so that
the associative and commutative properties of such operators as addition and conjunction
can be taken into account in finding a unifier; thus, p(f(z) + (b + g(a))) can be unified

with p((g(y) + f(b)) + z).

The resolution rule accounts for the introduction of the notion of binary search into
our derivation.

THE DISCOVERY OF BINARY SEARCH

Recall that our initial goal is

2. "' and not [(z+¢€)* < 7] z

We are about to apply the resolution rule to this goal and itself. To make this step
easier to understand, let us write another copy of the goal.

. £ <r and nol[GR 7]

We have renamed the variable of the second copy of the goal so that, as required, the two
copies have no variables in common.

o

161



The boxed subsentences of tlie two copies of the goal are unifiable; a most-general
unifier is

f: {z—3:+c¢€}.

Therefore, we can apply the resolution rule between the two copies of the goal to obtain

true and not [((.f«i-f)+e)2 <7 if (4¢P <r
and then z+¢€
3?2 < r and not false else :

By application of transformation rules, including the rule
U+ u— 2u,

this goal can be reduced to

3. #<r if (2+€2<r
andu , then z+4¢
not [(: + 2¢)- < r] else 3

(We have reordered the conjuncts for pedagogical reasons only; because we use associative-
commutative unification, their actual order is irrelevant.)

According to this goal, it suffices to find a rougher estimate %, which is within a
tolerance 2¢ less than /7. For then either 7 + ¢ or Z itself will be within € less than /7,
depending on whether or not  + ¢ is less than or equal to /7, that is, ( + €)? < r. The
two possibilities are illustrated below:

JF | Jr
[ Y \ [ Y \
| A ¥ ( N3 N
z Z+e€ Z 4+ 2 z zZ+¢€ 4+ 2¢
Case: 2+ €< T Case: not [ + € < /T ]

Goal 3 contains the essential idea of binary search as applied to the square-root
problem. Although the idea seems subtle to us, it appears almost immediately in the
derivation. The step is nearly inevitable: any brute-force search procedure would discover
it.

The derivation of the new goal is logically straightforward, but the intuition behind it
may be a bit mysterious. Let us paraphrase the reasoning in a more geometric way. Our
initial goal expresses the fact that it suffices to find a real number z such that /7 belongs
to the half-open interval [z, z+ ¢). Our rewritten copy of this goal expresses the fact that
it is equally acceptable to find a real number 3 such that /7 belongs to the half-open
interval [Z, Z + €). We shall be content to achieve either of these goals; i.e., we shall be

162



happy if /7 belongs to either of the two half-open intervals. In taking z to be Z + ¢, we
are concatenating the two intervals, obtaining a new half-open interval [, 3 + 2¢) twice
the length of the original. It suffices to find a real number 2 such that /7 belongs to this
new, longer interval. because then v/7 must belong to one or the other of the two shorter
ones.

THE THEORY RESOLUTION RULE

It is difficult to prevent a system from deriving numerous irrelevant consequences
from the rows in a tableau. We can apply the resolution rule to virtually every goal in
our derivation if our tableau contains an assertion such as (u < v or v < u). Stickel [85]
has introduced an extension to the resolution rule, which enables it to behave as if certain
properties of the theory were “built in.” This theory resolution rule does not add to the
logical power of the system, but it does give us a heuristic advantage over a system in
which all properties must be represented as assertions. When a property is built into the
theory resolution rule, it is brought to bear only when it is appropriate.

The instance of Stickel's rule that we shall need is as follows. (Stickel's actual rule
is more general.) Let us suppose that H(P, Q] is a valid sentence we wish to build in.
Then the ground version of the theory resolution rule, invoking the property H(F, Q], is
as follows:

assertions goals ?t(l;;))uts
F(P] _ 8
G(Q] ' t
| —————
F(true] and if P
Gtrue] and then s
not M(false, false else t

For strategic purposes, we may assume that P and Q are of positive polarity in the tableau
and in H. (In other words, they are within the scope of an even number of explicit
or implicit negations in M.) There are other versions of the rule that are strategically
preferable if P or Q is negative. The soundness of the rule actually does not depend on
the polarity.

The rule can be justified by adding the property H[P, Q] to the tableau as an assertion

HP,[Q] ]

163



(Note that because Q is positive in the assertion X and because each assertion is within
the scope of an implicit negation, Q is negative in the tableau.) Applying the ordinary
resolution rule to the goal

¢l[2]*] f

and to this assertion, we obtain the new goal

G(true] and

not 'H[‘_. false] ;

Applying the resolution rule again, to the gﬁa.l

FIP]*) s

and to the new goal, we obtain

F(true] and if P
Gltrue] and then s
not H|false. false] else t

But this is precisely the conclusion drawn by the theory resolution rule, invoking the
property H[P, Q].

We have just presented the ground version of the rule. To apply the general version,
we first assume that the rows and the property M have no variables in common. We
then apply a most-general unifier 8 that allows the ground version of the rule to become
applicable to 6 and G#, invoking H#.

Example

Suppose our tableau contains the two goals

outputs

assertions goals sqrt(r, €)

[ maz(r, 1) <il+ 0

if [sqrt(r, 2¢) + G]z <r
e<ylt then sqri(r, 2¢) + ¢
else sqrit(r, 2¢)

164



Suppose we have built into the theory resolution rule the sentence

’H:]T:<v|+ or{v<ult.

The boxed subsentences of the two goals are unifiable with the correspondingly boxed
subsentences of the sentence H; a most-general unifier is

6: {ue~maz(r, 1), ve—¢ y+— maz(r,1)}.

According to the theory resolution rule, we can obtain the new goal

if maz(r,1)<¢

true and then 0 )
true and else if [sqri(r, 2¢)+¢]" <r
not (false or false) then sqrt(r, 2¢) + ¢

else sqri(r, 2¢)

which is transformed into

if maz(r,1) < ¢

then 0

true else if [sqri(r, 2¢) + c]2 £r
then sqri(r, 2¢) + ¢
else sqri(r, 2¢)

(Note that this could be the final step in a square-root derivation.) a4

We have introduced two additional rules to give special treatment to equality, order-
ings, and other important relations (Manna and Waldinger [86]), but these rules play no
part in the portion of the derivation to be discussed in detail.

We shall now need the induction rule; this we describe in the next section.

4. RECURSION FORMATION

The rules presented so far do not allow us to introduce any repetitive construct into the
program being derived. The mathematical-induction rule accounts for the introduction
of recursion into the derived program.

We employ a single well-founded induction rule, which applies to a variety of theories.

165



THE MATHEMATICAL INDUCTION RULE

A well-founded relation <, is one that admits of no infinite decreasing sequences.
i.e., sequences T;,Z», T3, ..., such that

Ty >y Ty and 7 >, 23 and. ...

For instance, the less-than relation < is well-founded in the theory of nonnegative integers.
but not in the theory of real numbers.

The well-founded induction rule is expressed as follows. Suppose our initial tableau
is

assertions goals l}l(l(tl;))u ts

Pla]

Rla, z]

3]

In other words, we are attempting to construct a program f that, for an arbitrary input
a, yields an output z satisfying the input-output condition

if P[a]
then Rla, z].
According to the well-founded induction rule, we may prove this while assuming. as our

induction hypothesis, that the program f will yield an output f(z) satisfying the same
input-output condition

if Plz]
then R[z, f(z)],

provided that its input z is less than our original input a with respect to some well-founded
relation <, that is, z <., a. In other words, we may add to our tableau the new assertion

if z<wa
then if P|z]
then ‘R[r. f(z)]

where z is a new variable. The well-founded relation <, used in the induction rule is
arbitrary and must be selected later in the proof.

Example

The initial tableau in the square-root derivation is

1AA



assertions goals | EEA E
f sqrt(r, )

0<rand 0<e¢

L

not [(z+¢)* r]

By application of the well-founded induction rule, we may introduce as a new assertion
the induction hypothesis

if (z, v) <y (r, €
then if 0<z and 0 < v

then (sqrt(z, u))2 <z and
not (sqrt(z, v) + 1.:')2 < 1]

where z and v are variables. In other words, we may assume inductively that the output
of the square-root program being constructed will satisfy the input-output condition for
inputs z and v that are less than the given inputs r and ¢ with respect to some well-
founded relation <,. Because the program has two input parameters rather than one,
the induction hypothesis refers to pairs of nonnegative integers rather than individual
integers.

As it turns out, this particular induction hypothesis is never used in our square-root

erivation.
derivation g

Use of the induction hypothesis in the proof may account for the introduction of a
recursive call into the derived program. For instance, suppose that in our derivation we
manage to develop a goal of the form

6([Rls.21]* ] (2]

The boxed subsentences of this goal and the induction hypothesis,

if z <y a
then if P[z]

then R[z. f(z}] -

167



are unifiable; a most-general unifier is

é:

(z—s, i— f(8)}.

Therefore, we can apply the resolution rule to obtain the new goal

Gltrue]
and
if s<ya t[f(s)]

not |then if P[s]
then false

This goal reduces under transformation to

Gltrue]

an
P[s] and s <y, a

t[f(s)]

Note that a recursive call f(s) has been introduced into the output entry as a result
of this step. The condition P[s] in the goal ensures the legality of the argument s. i.e..
that it satisfies the input condition of the desired program. The condition s <., a ensures
that the evaluation of the recursive call cannot lead to a nonterminating computation. (If
there were an infinite computation, we could construct a corresponding infinite sequence
of arguments decreasing with respect to <,,, thus contradicting the definition of a well-

founded relation.)

Example

In our square-root derivation we have developed the goal

#<r
and

if (34 <r
* then z + ¢
else 2

not [(# + 2¢)* < r]

and the induction hypothesis

then

if (2, v) <w (1, €)
then if 0<z and 0 < v

(sqrt(z, u))2 <z and
not [(sqri(z, v) + v)2

< 7]

168




The boxed subsentences are unifiable; a most-general unifier is
6: {ze~r ve2¢ i sqri(r, 2¢)}.

We obtain (after transformation)

() 2¢) <y (r, €) if [sqrt(r, 2¢) + 5]2 < p
and then sqrt(r, 2¢) + ¢
0<r and 0<2¢ else sqrt(r, 2¢)

Note that at this point three recursive calls sqrt(r, 2¢) have been introduced into
the output entry. The condition (0 £ r and 0 < 2¢) ensures that the arguments r and
2¢ of these recursive calls will satisfy the input condition for the program, i.e, that ris
nonnegative and 2¢ is positive. The condition (r, 2¢) <,, (r, €) ensures that the newly
introduced recursive calls cannot lead to a nonterminating computation. The well-founded
relation <,, that serves as the basis for the induction is as yet unspecified.

For reasons that will become clear, this step will not actually be part of our square-
root derivation. r

The particular well-founded relation <,, referred to in the induction hypothesis is not
vet specified; it is selected at a later stage of the proof. If we allow well-founded relations
to be objects in our domain, we may regard the sentence z <, y as an abbreviation
for <(w, z. y); thus, w is a variable that may be replaced by a particular relation. We
assume that the properties of many known well-founded relations (such as <iree, the
proper-subtree relation over trees) and of operations for combining them are among the
assertions of our initial tableau.

The well-founded induction principle (from which the rule is derived) is universally
quantified over all well-founded relations: it is surrounded by a quantifier (Vw). When the
quantifiers are removed by skolemization, the input a of the program being constructed
becomes a skolem term a(w) rather than a constant a. (Those unfamiliar with skolemiza-
tion are asked to accept this on faith.) This has the effect that the well-founded relation
w cannot be chosen to depend on the input parameter a(w) itself. In particular, w is not
unifiable with any term containing an occurrence of a(w). Otherwise the induction rule
would be unsound and the termination argument sketched above would not apply. If we
could alter the well-founded relation with each recursive call, we might indeed have an
infinite computation. For simplicity of notation, however, we shall continue to write our
input parameters as constants.

160



5. INTRODUCTION OF AUXILIARY SUBPROGRAMS

The induction rule, as we have presented it. can be applied only to the initial rows of a
tableau. By the introduction of auxiliary subprograms, however, any rows of a tableau
can be taken as the initial rows of a new tableau, to which we may apply the induction
rule.

Suppose that in the course of a derivation we have obtained the rows

. outputs
assertions goals £ al))

'P[s]

A 12

where s is a ground term and 7 is a variable. Then we may consider introducing a new
auxiliary subprogram f(a), whose specification is

f(@) < find # such that R(a, ],
where P(a).

(If R contains several variables Z;, %, ..., 2,, we must construct several auxiliaries f,

far oo fal)

Assuming that we shall succeed in constructing such an auxiliary, we add to our original
tableau an assertion that the new subprogram always meets its specification; namely,

o if‘ﬁ[w? :' .
" then | R[z, f(2)] |~

The auxiliary f is taken to be primitive. By application of the resolution rule to the goal
R[s, 2] and the new assertion, we obtain (after true-false transformation)

Pls] r[f(9)]

By resolution c;f this goal with the assertion P[s], we obtain (after true-false transforma-
tion)

true r[f(s)]

If r[f(s)] is primitive, this may be taken to be the final step in a derivation of f(a). The

170



program we obtain is simply

fla) = r[f(9)].

In adding the new assertion Q, however, we are incurring the obligation to construct a
suitable auxiliary subprogram f(a). For this purpose, we introduce a new tableau, whose
initial rows are

assertions al outputs
e ja)
Pla)
Rla, 2] 3
Because this is an initial tableau, we may apply the induction rule to add the induction
hypothesis
if u<y,a

then if P[u]
then 7;’,[1:. f(u)]

We can actually form auxiliary subprograms whose input condition is a conjunc-
tion (Py and Py and ...) of assertions and whose output condition is a disjunction
(Ry or Ry or ...) of goals, but we can do without this complication here.

We shall defer giving an example of auxiliary-subprogram introduction until we have

discussed the strategic controls for such a step.

STRATEGIC CONSIDERATIONS

Adding a new auxiliary subprogram is not without risk, because it can happen that
there is no program meeting the specification of the auxiliary even though the original
programming problem does have a solution. Although we are not primarily concerned with
the heuristic aspects of program synthesis in this paper, we shall mention the heuristic
indicators for introducing the auxiliary.

In the course of the main derivation, suppose we have obtained the rows

171



; outputs
assertions goals Fia)

&

tu

(s, ] (2]

as before. What indicates that we should take these rows as the specification for a new
subprogram?

Assume that, only fromn these rows and assertions representing valid sentences of the
theory, we obtain a goal of the form

G[RIt, 2]] ql]

where ¢ is a term, # a variable, and R is positive in G. In other words, the new goal
contains as a subsentence a “replica” R[t, 3] of the higher-level goal R(s, Z]. The replica
is obtained by replacing a term s of the goal with a different term ¢ and the variable 2
with a possibly different variable 3.

This suggests forming an auxiliary f(a) with input condition P[&] and output con-
dition R[a@, Z], where @ is a new constant, the input parameter of the subprogram. The
initial tableau for the auxiliary is

f outputs
assertions goals ;

f(a)

Pla]

R(a.

ST

]

t

If we succeed in imitating the original derivation in the auxiliary tableau and developing
a corresponding subgoal of the form

o([RE 7)) it

we can then apply the resolution rule to this goal and the induction hypothesis for the
auxiliary,

if u=<ya
then if Plu]

then ﬁ[u, f(u)] =

172



The unifying substitution is
{v—1 3= f()}

We obtain (after transformation)

G(true] and
f <y @ and P[]

§[f()]

In other words, the appearance of a replica in the main derivation suggests that we
form the appropriate auxiliary, so that in the auxiliary derivation we shall be able to
unify the corresponding replica with the conclusion of the auxiliary induction hypothesis.
There is, of course, the unfortunate possibility that we shall not be able to obtain the
appropriate replica in the auxiliary derivation, because we have replaced a term s in the
main derivation with the new constant @ in the auxiliary. If the original derivation relies
on special properties of s, we may not be able to imitate it with the constant a.

_ During the derivation of the auxiliary, we may discover that we require a new assertion
P'[a], where P’[s] is already an assertion in our original tableau. In this case, we may
attempt to add P’[a] as an input condition to the auxiliary specification, to obtain

fla) « find % such that R[a, 3]
where P(a] and P'[a).

We may then add the new condition to the initial assertion in the auxiliary tableau, to
obtain

Pla) and P'[a)

We must make corresponding alterations in the induction hypothesis for the auxiliary
tableau, in those portions of the proof that use the induction hypothesis, and in the
assertion describing the auxiliary in the main tableau. Thus the precise specification of
the auxiliary may be built up incrementally, after the derivation of the subprogram is
under way.

In Manna and Waldinger [80], we introduced auxiliary subprograms by adding a new
output column in the original tableau rather than adding a new tableau. Traugott [86]
uses multiple tableaux to introduce subprograms, as we do here.

SQUARE ROOT: INTRODUCTION OF THE SUBPROGRAM

In the tableau for the square-root derivation, we are initially given the rows



outputs

assertions goals sqrt(r. €)

1. 0<r and 0 < ¢

22 <r and
not [(z +¢)* < 7]

By resolving the goal with itself and transforming, we have obtained the subgoal

3. 22<r and I'f(é-l:c)"’ﬁr‘
(52050 | e

The entire subgoal is a replica of the initial goal, obtained by replacing the term ¢
with 2¢ and the variable z with 2. This suggests introducing a new auxiliary subprogram
sqrt(€), whose parameter ¢ plays the role of the replaced term ¢ in the initial goal. and
whose input and output conditions are the initial assertion and goal. with ¢ replaced by
€; that is,

s?rt(e') < find Z such that
2 <r and not [(: +¢)? <7
where 0 < r and 0 < €.

We do not include a parameter 7 in the auxiliary because r was not replaced in forming
the replica. For the auxiliary, r is global rather than a parameter. When sqrt is evaluated,
r will be bound to an argument of the main program sqrt.

The initial assertion (0 < r and 0 < ¢) in the main tableau was not actually used in
developing the replica. However, the corresponding initial assertion (0 < r and 0 < §€)
turns out to be necessary to complete the derivation of the auxiliary. In an automated
implementation, this condition would most likely be added to the input condition for the
auxiliary incrementally, after the derivation of the auxiliary was under way.

Assuming that we shall succeed in the synthesis of the auxiliary sqrt. we add to our
main tableau the assertion that sgrt does indeed meet its specification for all inputs v;
that is,

4. if0<rand O<v
(sqrt(v))’ < r and
not [(.s;;?'t(v) + 0)2 < r]

then

By resolving the initial goal 2 with this assertion, and then resolving the resulting goal
with the initial assertion, we obtain (after true-false transformation) the final goal

174



i 5. true [ sqri(e) E
- ; J

Note that the goal 3, which serves to suggest introducing the auxiliary sg¢rt. turns out
to play no part in the derivation of the main program. The main program we obtain is
simply

sqri(r. €) <= sqri(e).

The only difference between the main program sqrt(r, ¢) and the auxiliary §fr-t(e’) is
that r is a parameter for sgrt but not for sqrt. This turns out to be a crucial distinction,
however. because the well-founded relation we employ in the derivation of s’:-}:t depends
on r. The well-founded relation for a program cannot depend on a parameter for that
program: otherwise the induction is not sound and termination is jeopardized. Had we
not introduced the auxiliary, we would not have been able to complete this derivation.
(Other derivations would be possible, using more artificial well-founded relations.)

6. COMPLETION OF THE SQUARE-ROOT DERIVATION

In this section we apply the principles we have introduced to-complete the derivation of
the square-root subprogram.

INTRODUCTION OF THE RECURSIVE CALL

In deriving the auxiliary, we begin with the tableau

outputs

asserti s
rtions goals e

. 0<rand 0<é

in

We attempt to mimic the main derivation. Resolving the initial goal with itself and
transforming as before, we obtain

& 32 < r and if (487 <r
3. (/3 =12 & then * + ¢
not [(z+2£) < r] i
else Z

175



e assume inductively that the auxiliary sqrt will satisfy its specification for all inputs v
is than its parameter é, with respect to some well-founded relation <, l.e.,

4. ff v, €
then if 0<r and 0< v
(:;;;T"t(v))2 <r and

not [(E;"Fr(u) - 11)2 <7

then

-he boxed subsentences of the goal 3 and the induction hypothesis 4 are unifiable; a
lost-general unifier is

{v — 2, 7 — sqrt(2§)}.

Applying the resolution rule, we obtain (after transformation)

5 if [sqree)+¢° <r

5. 26<y,¢ and —~— ey .
0<r and 0 < 2 then ,3_‘_11"(2‘) e
else sqri(2é)

This step accounts for the introduction of three instances of a recursive call .;E;t('ZE)
nto the auxiliary subprogram. As before, the condition (0 < r and 0 < 2€) ensures
;hat the argument 2¢ of this recursive call will satisfy the input condition. The condition
2é <, € ensures that the newly introduced recursive call cannot lead to a nonterminating
computation. The well-founded relation <,, is as yet unspecified.

THE CHOICE OF THE WELL-FOUNDED RELATION

We have assumed that the definitions and properties of well-founded relations over
several domains, including the real numbers, are among the assertions of our tableau. The
relation to be selected in this derivation is the bounded-doubling relation <u4(y), defined
on the positive reals so that

u <pd(y) V if and only if u=2v and v < y,

for some fixed upper bound y. Thus, with respect to this relation, 2v is actually less than
v. The upper bound y is a parameter of the relation: for each real number y, we obtain
a different relation <y4(y)-

The bounded-doubling relation is well-founded because we cannot double a positive
real forever without exceeding the bound y; thus, with respect to this relation, no infinite

176




decreasing sequences exist. Note that we could have replaced the constant 2 with any
real constant greater than 1 or, indeed, with a variable z. which would then become
an additional parameter for bd: but we shall not require such generality here. Also. for
u <pq(y) U to be true. we require that v < y but not that u < y.

The property of the bounded-doubling relation we employ is

if 0<v and v <y ]

|
dher (25 om0 |

Recall that we regard u <, v as an abbreviation of < (w, u,v). The boxed subsentences
of our goal

) if [sqrt(2€) + ' gr
_. — = |+ d —_—
5 2¢€ <y € |7 an then sqrt(2€) + €

< € —
HEr w Qe else sqrt(2€)

and the above assertion unify; a most-general unifier is
{v—¢& w—bd(y)}.

By resolution of the goal with the assertion, we obtain

6. 0<r and 0 < 2¢ if [5&7:(26)+€]'$r
and then sqrt(28) + ¢
0<éand é<y else sqri(2é)

At this stage, the well-founded relation <, has been chosen to be the bounded-doubling
relation <y4(y). The upper bound y is as yet undetermined.

The rest of the derivation relies on the special-relation rules (Manna and Waldinger
(86]), which we have not presented here, and is relatively straightforward. We shall not
give it in detail, but we would like to give the intuitive argument, indicating some of the
properties we use but not what rules we apply.

With the help of the initial assertion for the auxiliary,

1. 0<rand 0< ¢

we can discard the first three conjuncts of our goal 6, leaving



if [sqre(2e)+ ¢  <r
then .S'(;"—!('ZE) + €
else sqrt(2¢)

-
~
IN

L~

We shall refer to this as the upper-bound goal. It maintains that, if we can find some
upper bound y on our input parameter ¢, its output entry meets the specification.

Note that, because ¢ is a parameter, it was initially our abbreviation for a skolem
term é(w). Then the well-founded relation w was taken to be bd(y), so € in the upper-
bound goal € < y stands for é(bd(y)). Thus, this goal é(bd(y)) < v is not unifiable with
the reflexivity assertion u < u - they have no common instance — and we are prevented
from resolving them. In other words, we (fortunately) cannot take the upper bound on ¢é
to be € itself.

Let us set the upper-bound goal aside for the moment; its proof depends on our
treatment of the base case, which we consider next.

THE BASE CASE

Recall that the initial goal for the auxiliary procedure sqrt(é) is

L&)

2. 2 <roand not[(:+€)° <

We employ the initial condition 0 < r and properties of the reals (including 0-v = v),
taking 7 to be 0, to reduce the goal to not (¢ < r), that is,

8. r<é 0

Note that at this stage the output entry has become 0.
We next employ the transitivity of the less-than relation and the property
if 1 <u then u < u?

to decompose our goal further, to (r < € and 1 < €), that is,

9. maz(r,1)< ¢ 0

In other words, in the case in which maz(r,1) < é, the output 0 will satisfy the input-
output specification.

178



PROVING THE UPPER-BOUND GOAL

Because we have introduced the goal mazir.1} < é. we can restrict our attention to
the case in which not [mn.r(r. 1) < é!. that is. é € maxir 1). But in this case the upper
bound y for our bounded-doubling relation <54y, €an be taken to be maz(r.l) itself.
Formally speaking, we apply the theory resolution rule to this goal 9 and our upper-bound
goal

f [sqre2ar+ 8 < r i
s ER Y l then 5‘5?1'{‘26) + € ’
else 52'71(26) I

We invoke the property (u < v or v < u) and take the most-general unifier to be
{u — maz(r. 1), v — & y — maz(r. 1)}.

\We obtain the final goal

l if max(r. 1) <é€

then 0

else if [sqrt(28) + e"]2 <r 1
then sqrt(2é€) + ¢
else sqri(2é)

Tﬁ. true

The new conditional in the output entry is introduced by the theory resolution rule.

At this stage we can see why the introduction of an auxiliary in which » is not a
parameter was necessary for this derivation. Had we retained r as a parameter. it would
have appeared in the initial goal as a skolem function #(w). Because w was subsequently
replaced by bd(y), the occurrence of r in the goal maz(r,1) < ¢ would have become
7(bd(y)). We would have been prevented fron unifving y with the term max (7 (bd(y)).1).
which contains y; this last step could therefore not have been performed. From an intuitive
point of view, if » were not a parameter, the system would suspect that r might be
increased with each recursive call. There might then be no upper bound for the bounded-
doubling relation. and termination would not be guaranteed.

We have completed the derivation of the main program and the auxiliary. The final
program we obtain is therefore

179



sqri(r.€) & sqri(e)

if maz(r, 1) <€
then 0
sqri(é) <« else if [;ﬁr(26)+ E]z <r
then sqri(2¢) + €
else sqri(2é)

7. SUMMARY

At this point we reproduce the entire square-root derivation, again omitting some straight-
forward steps.

MAIN PROGRAM

The initial tableau:

§ outputs
assertions goals sqri(r,€)
1. 0<rand 0<ce¢
2. z2<r and ,
not [(z+ €)? < 7]
By resolution applied to goal 2 and itself:
3. 3¥<r and if (2+e?<r
¢ [(3 + 26)? < then z + ¢
no [(z+ €)° < r] e &

By auxiliary-procedure introduction:

4. f 0<rand O<v
then (.;t;wmrt(u))2 <r and
not [(sqrt(v) +v)’ < 7]

This step has been motivated by the replication of goal 2 in goal 3.

By resolution, from goal 2, assertion 4, and assertion 1:

180



5. true s‘a-r—-'t(e)
AUXILIARY SUBPROGRAM
The initial tableau:
2 outputs
assertions goals sari(d)
1. 0<rand 0<é
2. 22 <r and "

not (£ + €)? < ]

By resolution applied to goal 2 and itself:

&

2 <r and
not((2 + 2¢)* < 7]

if (é+€)’gr
then 4 ¢
else 2

The induction hypothesis:

4. if v< €

then if 0 <r and 0 < v
then (.;E_'rt(v))? <r and
not [(sgrt(v) + v)? < r]

By resolution applied to goal 3 and assertion 4:

if [sqre2e) + ) < r
then sqrt(28) + ¢
else sqrt(2¢)

Here the recursive calls have been introduced.

A property of the bounded-doubling relation:

181




ifO0<vand v<y
then 2v <pq(y) v

By resolution applied to goal 5 and the above property:

. 0<rand 0<2¢ | if [sqrt(2e)+¢] <+
and then sqri(2é) + ¢
0<éand €<y else sqrt(2é)

At this stage the well-founded relation is taken to be the bounded-doubling relation.

By resolution and special-relation rules. from goal G, assertion 1, and properties of the
reals:

if [sqre(2e)+¢)’ <r
then sqrt(2¢) + ¢
else ét-;?t(%)

-
~
IA

L~

al.?y resolution and special-relation rules, from goal 2, assertion I, and properties of the
reais:

8. r<cé 0

Here the output Z has been taken to be 0.

A property of the reals:

ifl<u
then u < u?

By special-relation rules, from goal 8, the above property, and others:

9. maz(r,1)< € 0

By theory resolution, invoking the property (x < v or v < u), applied to goals 9 and 7

182



| if maz(r. 1) <é |
‘ then 0 . i |
else 1f {sqrt('zé) + E]' <r
then sqrt(2¢) + ¢
else sqrt(2¢)

Té. true

At this stage, a suitable upper bound for the bounded-doubling relation has been found
to be maz(r,1).

The real-number square-root derivation was first discovered manually; it was subse-
quently reproduced with an interactive program-synthesis system.

8. VARIATIONS

In this section we present several analogous binary-search derivations for different prob-
lems and for different specifications of the same problem.

OTHER SQUARE-ROOT SPECIFICATIONS

It may have occurred to the reader that we were just lucky in our choice of specifica-
tion, in that two subsentences of the output condition turned out to be unifiable. What
if the specification had been in some other form? Would we have been able to obtain the
same program?

For example, suppose we had phrased the output condition as
*<roand (z+€¢)?>r
or
2<rand r<(z+¢€)?
instead of
22 <r and not [(z +¢€)® < 7).

Then we would not have been able to unify the two subsentences of the initial goal
and apply the resolution rule, as we did in our original derivation. How could we have
proceeded?

In fact, we can apply the theory resolution rule, invoking the property

u<voru>v

183



or. respectively,
u<tvoruv<u.
\We obtain (after transformation) the new goal
H<<rand (34202 >r
or, respectively,
22 <r and r < (+2¢)?,
each of which is a replica of the initial goal. The balance of the derivations are as before.
We could also have phrased the output condition as
VT =z <e

Here /7 is the precise square root of r; the function \/u is a nonprimitive that can
nevertheless be employed in specification. This specification is weaker than the one we
were given originally, since it permits = to be larger than \/r. With the help of the input
condition, properties of the absolute value function, and other properties of the reals, we
can develop the goal

0<r—zand JT1-z<c¢
and then
0<zand s> <r and r < (= +¢€)?.

From this goal, we can derive the same program as before. Of course, because the speci-
fication is weaker, we can obtain a broader class of programs.

Many binary-search algorithms can be derived in an analogous way. Let us first
consider some other real-number problems.

THE DIVISION ALGORITHM

Suppose a program to perform real-number division is specified as follows:

div(r, s, ¢) < find z such that
z-s5<r and not [(z4¢)-s< 7]
where 0 <r and 0 < s and 0 < e.

In other words, the program is required to yield a real number = that is within a tolerance
¢ less than r/s, the exact quotient of dividing r by s. We obtain the program

184



div(r, 8, €) <« Ja'(c)

ifr<é s
then 0
diw(s) « {else if [div(28)+¢ s<r
then div(2€) + é
else div(2¢)

The auxiliary subprogram div, which is analogous to the auxiliary subprogram Eﬁ't.
is like the top-level division program div but takes r and s to be globals, not parameters.
It meets the specification

dﬁi'v(é) < find 2 such that
-8 <r and not [(E+€)-s$r]

where 0 < rand 0 < sand 0 < €.

The rationale for the div program, like its derivation, is analogous to that for the
real-number square root. The program first checks whether the error tolerance is very
big, that is, if 7 < é - s. If so, the output can safely be taken to be 0. For, because 0 < r,
we have

0-s<r.
And, because r < é-s, we have r < (0 + €) - s, that is,
not [(0+€)-s <rl.
Thus, 0 satisfies both conjuncts of the output condition for div in this case.

__ Ontheother hand, if € is small, that is, if &s < r, the program finds a rougher estimate
div(2é), which is within 2¢ less than r/s. The program considers whether increasing this
estimate by ¢ will leave it less than r/s. If so, the rough estimate may be increased by ¢;
if not, the rough estimate is already close enough.

The termination proof for this program is also analogous to that for the square root.
Although the argument ¢ is doubled with each recursive call, the other arguments are
unchanged and the calls are evaluated only in the case in which é -8 < r, that is, € < r/s.
Thus, there is a uniform upper bound on the doubled argument.

BINARY SEARCH SCHEMATA

It may be clear from the foregoing discussion that there is little in the derivations for
the square-root and division programs that depends on the properties of these functions.
More or less the same derivation suffices for finding an approximate solution to an arbitrary
real-number equation f(z)=r.

185



For a given primitive function symbol f, we consider the specification
solve(r, €) « find z such that
f(z) £ r and not [f(: +¢) < r]
if b<u
where f(a) < r and t{Ien not (f(u) < r)} and 0 < €

Here a and b are primitive constants and u is a variable. In other words, we assume that
there exist real numbers a and b such that f(a) < r and f(u) > r for every real u greater
than 6. The specification is illustrated as follows:

aY”

\ P . ;

a z z+e b

If fis assumed to be monotonically increasing, the input condition can be simplified. But
we do not need to assume that f is increasing or even continuous; if f is not continuous,
an exact solution to the equation f(a) = r need not exist, but an exact solution is not

required by the specification.
The program we obtain is
solve(r, ¢) <« s;-l-_t;e(c)

ifb<a+é
en o ...
solve(é) « { else if f(solve(2¢) + &) < r
then solve(2¢) + €
else sa;e(?e’)

In the recursive case, in which a + ¢ < b, the solve program is so closely a,na.logous
to the previous binary-search programs as to require no further explanation.

In the base case, in which b < a + €, the output can safely be taken to be a. For, by
an input condition, we have

fla)<r

186



and (by the other input condition. because b < a + ¢)
not [fla+¢é) < ).
Thus. a satisfies both conjuncts of the output condition for sofve in this case.

The above program may be regarded as a schema. since we may take the symbol f to
be any primitive function svmbol. An even more general binarv-search program schema
can be derived from the specification

search(r, ¢) <« find :z such that
p(r, z) and notp(r. = + ¢€)
fb<u

then not p(r.u)] e G

where p(r, a) and [

where p is a primitive relation symbol and a and b are primitive constants. Ve obtain the
schema

search(r. €) <= se‘c—z‘;‘ch(e)

if b<a+é
then a
search(é) <« { else if p(r,search(2é) + ¢)
then search(2¢) + ¢
else search(2¢)

INTEGER ALGORITHMS

The programs we have discussed apply to the nonnegative real numbers: using the
same approach, we have derived analogous programs that apply to the nonnegative inte-
gers.

Integer square root

The integer square-root program is intended to find the integer part of \/n, the real
square root of a nonnegative integer n. It can be specified in the theory of nonnegative

integers as follows:

isqrt(n) <« find z such that
z? < n and not((z + 1)* < n].

In other words, the program must yvield a nonnegative integer = that is within 1 less than

/.

187



In the course of the derivation. we are led to introduce an auxiliary program to meet
the more general specification
isqrt(i) <« find I such that
3 <n oand not [(3+ 1) < 1
where 0 < 1.
In other words, we wish to find a nonnegative integer  that is within 7 less than /7.

This auxiliary specification is precisely analogous to the specification for the real-number
square-root auxiliary sqrt(€), with ¢ playing the role of the error tolerance €.

The motivation for introducing the auxiliary is as follows. In the derivation of the
main program isqri(n), we have the initial goal

:* < n and not [(z+ 1)? < ]

(8]

By resolving this goal with itself and transforming, we obtain the new goal

if (3+41)2<n
¥ < n and not [(5+ 2 < n] then 41
else 2

This subgoal is a replica of the original goal. obtained by replacing the term 1 with 2
and the variable = with 3. This suggests introducing the new auxiliary isqrt(i), whose
parameter : takes the place of the replaced term 1 in the initial goal. The input condition
0 < i for the auxiliary is introduced incrementally, while the derivation of isqrt(i) is in
progress.

The programs we obtain to meet these specifications are
isqri(n) <= i;c}_i:t(l)

(z'f n<i

then 0

isqri(i) « ¢ else if [z';ﬁt(2§)+§]2 <n
then isqrt(2:) + ¢
else i:s-t}.;t(Q;')

Integer quotient
The integer quotient program can be specified similarly:

guot(m. n) <« find z such that
z-n<m and not [(z+1)-n < m)|
where 0 < n.

188



In other words, we wish to find a nonnegative integer z that is within 1 less than m/n,
the real-number quotient of m and n.

In the course of the derivation, we are led to introduce an auxiliary subprogram to
meet the more general specification

quot(i) <« find 3 such that
Z:-n<m and not [(E+:)~n5m]

where 0 < n and 0 < i.
In other words, we wish to find a nonnegative integer 7 that is within i less than m/n.
The programs obtained to meet these specifications are
quot(m, n) <« q‘z-x?a‘t(l)

(:’f m<i-on

then 0

q?gx(?) « (else if [q%t(?i) -+ 2] ‘n<m
then quot(2i) +1

else qTEf('Z?)

Here too the derivation is analogous.

THE LAMBO FUNCTION

The function /lambo is a nonnegative-integer approximation for the inverse of a given
nonnegative integer function f. We assume that f has the following properties:

f is monotonically increasing, i.e.,

ifu<v
then f(u) < f(v),

f is unbounded, i.e.,
(3h)[u < £(h)),
for all nonnegative integers u and v. Here h also ranges over the nonnegative integers.
The specification for the desired program is

lambo(n) < find z such that
n < f(z) and

(Vg)[if g <z then f(g) < n].

189



In other words, lambo(n) is the least nonnegative integer = such that n £ f(z). Note that
this specification depends on the given function f: for a different function f, we obtain a
different specification and. presumnably, a different program.

A linear-time lambo program was derived by Dijkstra [32]. who used transformations
of that program to provide a novel proof of a theorem of Lambek and Moser—hence the
name of the function. The derivation of a lambo program was posed as an exercise for
participants at the 1985 Workshop on the Specification and Derivation of Programs, in
Marstrand, Sweden. A construction analogous to our square-root derivation turns out to
yield a binary-search lambo program. We outline that derivation briskly here.

We begin with the tableau

outputs

assertions goals lambo(n)

1.n < f(z) and
if g(z) < z then f(g(=)) <n

Here g(z) is a skolem function obtained by eliminating the quantifier (¥g) from the spec-
ification. The unboundedness of f is expressed by the assertion

2. u < f(h(u))

where h is a skolem function introduced to eliminate the quantifier (3h). (Note that,
by duality, existential quantifiers in assertions are treated in the same way-as universal
quantifiers in goals.) The monotonicity of f is not represented by an assertion; it is
declared, and treated by the special-relation rules.

Using the property of the nonnegative integers
not (u < 0),

taking z to be 0, we reduce our initial goal 1 to

3.n < f(0) 0

In other words, in the case in which n < f(0), our original goal is true and the output 0
meets the specification.

Returning to our initial goal 1, using the property
u<v+1l = u<v,

we can develop the goal

190



4. f(')<n and n < f('+1) 41

From an intuitive standpoint, if this goal is true for some z', the original goal 1 is true,
taking z to be z' + 1. For then n < f(z' 4+ 1) and. if we assume that g(z'+1) < 2/ + 1, we
have g(z' + 1) € 2’ (by the property), hence f(g(z'+ 1)) £ f(z') (by monotonicity), and
hence f(g(z' + 1)) < n (by goal 4 and transitivity). Thus, both conjuncts of the initial
goal 1 are true. In the system, the goal is obtained by a special-relation rule.

Goal 4 is analogous to the initial goals of our other derivations. Theory resolution of
the goal with itself, invoking the property

u<voruv<u,

vields the new goal (after transformation)

i if flz+1)<n
5. f(2)<n and n < f(:+2) then 2+ 2
else 241

This is a replica of our previous goal 4, obtained by replécing the constant 1 with the
constant 2. This suggests forming an auxiliary subprogram, which we shall call limbo(1),
with output condition '

f(3)<n and n < f(Z+41).
Two input conditions,
0<i and f(0)<n,

are introduced incrementally during the derivation of [imbo. In short, the ultimate spec-
ification for the subprogram is

limbo(i) < find # such that
i f(3)<n and n< f(:+1)
where 0 < ¢ and f(0) < n.

An assertion describing the auxiliary /imbo is introduced into the main tableau; we
can then complete the main derivation, obtaining the program

if n < f(0)
lambo(n) <« then 0
else limbo(1) + 1.

The derivation of the auxiliary limbo closely resembles the other binary-search deriva-
tions. We obtain the program

191



f n < f1)
then 0
limbo(i) <« else if f(limbo(2i) + 1) < n
then limbo(21) + 1
else limbo(21)

(As usual, the three recursive calls can be combined by common-subexpression elimination
and the program can be transformed into an iterative equivalent.)

The well-founded relation that serves as the basis for the induction (and the termi-
nation argument) is again the bounded-doubling relation <4(,). The upper bound y in
this case is h(n), where h is the skolem function in the unboundedness assertion

u < f(h(u)).

(Therefore, h(n) is an argument that will force f to exceed the given integer n.) For,
intuitively speaking, if the parameter : of /imbo exceeds this upper bound, that is, if

h(n) < i,
we have

f(h(n)) < f(3)

(by the monotonicity of f) and hence
n < f(1)

(by the unboundedness assertion and transitivity). In this case, the /imbo program exits
via the base case; the recursive call is not executed. Consequently, the upper bound on i
is maintained whenever the recursive call is executed, and termination is not endangered.
In the derivation, of course, this argument is conducted within the rules of the system.

Note that, in this example, the choice of the well-founded relation <4(x(n)) depended
on the skolem function A. This function is not primitive; we are told that an argument
exists that will cause f to exceed the given integer, but we are not told how to compute
such an argument. For this reason, the lambo example has sometimes been regarded as a
challenge to systems that extract programs from purely constructive mathematical proofs
(e.g., Martin-Lof [79], Sato [79], Nordstrém and Smith [84], Bates and Constable [85]). In
such a system, a quantity exists only if we have the means to compute it. Here we deal
with a quantity that, we are told, exists — but we have no means to compute it; however,
we do not need such a computation, because the quantity's precise value has no bearing
on the output.

192



9. CONCLUSION

The examples in this paper serve to illustrate the application of the deductive-tableau
system. In a more general sense, they suggest ways in which a mechanical system might
invent a novel programming concept.

The results of this investigation run counter to our usual experience. It is common
for a bit of apparently simple and intuitively straightforward reasoning to turn out to be
difficult to formalize and even more difficult to duplicate automatically. Here the opposite
is true: an idea that requires a substantial leap of human ingenuity to discover is captured
in a few easy formal steps. We may consequently imagine that truly original ideas will
arise from the fortunate application of simple mechanisms.

ACKNOWLEDGMENTS

We would like to thank Martin Abadi, Michael Beeson, Ron Burback, Bengt Jonsson,
Yoni Malachi, Eric Muller, Larry Paulson, Mark Stickel, and Jonathan Traugott for help-
ful discussions and constructive suggestions on the subject of this paper; and Evelyn
Eldridge-Diaz, for TEXing many versions of the manuscript. The square-root derivation
was reproduced with an interactive program-synthesis system by Frank Yellin.

REFERENCES

Bates and Constable [85]
J. L. Bates and R. L. Constable, Proofs as programs, ACM Transactions on
Programming Languages and Systems, Vol. 7, No. 1, January 1985, pp. 113-136.

Dershowitz and Manna [77]
N. Dershowitz and Z. Manna, The evolution of programs: Automatic program
modification, IEEE Transactions on Software Engineering, Vol. SE-3, No. 6,
November 1977, pp. 377-385.

Dijkstra [82)
E. W. Dijkstra, Lambek and Moser revisited (Function property proving), in
Theoretical Foundations of Programming Methodology (M. Broy and G. Schmidt,
editors), Reidel, Dordrecht, Holland, 1982, pp. 19-23.

Harrison and Khoshnevisan [86]
P. Harrison and H. Khoshnevisan, Efficient compilation of linear recursive func-
tions into object-level loops, SIGPLAN ’86 Symposium on Compiler Construc-
tion, Palo Alto, Calif., June 1986, pp. 207-218.

193



Manna and Waldinger [80]
Z. Manna and R. Waldinger, A deductive approach to program synthesis, ACJM
Transactions on Programming Languages and Systems. Vol. 2. No. 1, January
1980, pp. 90-121.

Manna and Waldinger [86]
Z. Manna and R. Waldinger, Special relations in automated deduction, Journal
of the ACM, Vol. 33, No. 1, January 1986, pp. 1-59.

Martin-Lof [79]
P. Martin-Lof, Constructive mathematics and computer programming, Sizth In-
ternational Congress for Logic, Methodology, and Philosophy of Science, Han-
nover, August 1979.

Murray [82]
N. V. Murray, Completely nonclausal theorem proving, Artificial Intelligence,
Vol. 18, No. 1, 1982, pp. 67-85.

Nordstrom and Smith [84]
B. Nordstrom and J. Smith. Propositions and specifications of programs in
Martin-Lof's type theory, BIT, Vol. 24, 1984, pp. 288-301.

Robinson [65)
J. A. Robinson, A machine-oriented logic based on the resolution principle, Jour-
nal of the ACM, Vol. 12, No. 1, January 1965, pp. 23-41.

Robinson (79]
J. A. Robinson, Logic: Form and Function, North-Holland, New York, N. Y.,
1979.

‘Sato [79)
M. Sato, Towards a mathematical theory of program synthesis. Sizth Interna-
tional Joint Conference on Artificial Intelligence, Tokyo, Japan., August 1979,
pp. 787-762.

Smith [85]
D. R. Smith, Top-down synthesis of simple divide-and-conquer algorithms, Ar-
tificial Intelligence, Vol. 27, No. 1, September 1985, pp. 43-96.

Stickel [81]
M. E. Stickel, A unification algorithm for associative-commutative functions,
Journal of the ACM, Vol. 28, No. 3, July 1981, pp. 423-434.

Stickel [85]
M. E. Stickel, Automated deduction by theory resolution, Journal of Automated
Reasoning, Vol. 1, No. 4, 1985, pp. 333-355.

- 194



Traugott (86]
J. Traugott. Deductive synthesis of sorting programs. Eighth [nternational Con-
ference on Automated Deduction. Oxford, England. July 1986, pp. 641-660.

Wensley (39]
J. H. Wensley, A class of nonanalytical iterative processes, Computer Journal,
Vol. 1, January 1959, pp. 163-167.

195



DISCUSSION

After Dr. Manna had concluded his talk, Professor Backhouse commented
on his style of notation. Referring back to a talk given earlier by Dr. Gries,
Profesor %ackhouse remarked that one usually used smaller symbols for those
operations that bind tightly. He also suggested that the use of tableaux was to
overcome problems with notation. Dr. Manna replied that he preferred to use
spaces, as opposed to parentheses, to show how symbols bind, and refuted
Professor Backhouse's suggestion that there was a problem in deciding what is
the actual scope of some quantifier or other.

Professor Randell asked if Dr. Manna could comment on the relative power
of the present automated proof systems, like those at Texas, SRI and Argonne.
Dr. Manna replied that he preferred to restrict himself to comments on the actual
loqic behind systems such as these, only suggesting that the systems did not, as a
rule, match the beauty of the underlying logic.

Professor Pnueli asked how temporal logic fitted into the scheme of things,
with Dr. Manna replying that the techniques presented earlier could be applied to
temporal formulae.

Finally, Dr. Schneider wondered whether any work was at present
underway to packaﬁe the computer-produced proof in a form easily
understandable to the human reader. Dr. Manna replied that the system of Boia.r
and Moore already produced proofs which included %nglish statements, and that
these proofs are quite simple to follow.

196



AUTOMATED DEDUCTION

First-order: quantifier-free, with equality

e Goal:
Show that a given set of sentences
(“deduced set”)

is unsatisfiable
e Application:
To show that
B is valid

in a theory with axioms Ay,..., Ay,
show that

Aj, ..., A,, B is unsatisfiable

e Non-Clausal:
free form
full set of connectives

197



DEDUCTION RULES

Add new sentences to the set,
preserving its unsatisfiability

F,F,...,F}
F

e soundness:

(Fl/\FQ/\°"/\Fk)—+F

e deductive process:
Given set of sentences,
add sentences
until false is introduced.

e rules:
non-clausal resolution rule
replacement rule
induction rule

198



RULE: Non-Clausal Resolution

(ground version)

F(false] Vv G[true]
e soundness

(F[P]ANG[P]) — (F[false]V G[true])

e true-false simplification

AV true = true,
AANtrue = A,

e polarity strategy
Pt < false in F

P —true in G

© 199



POLARITY

-|IR V QAR
[ LA‘:J*] —in even # of —'s

-[R Vv [QARM
(3 —in odd # of —’s

Q- — R* same as (mQ)V R
Q* = R* same as (Q- —= R*Y) A
(R~ — Q)

property:
Consider F[A*] and G[A™]

(A — B) - (F[AT] — F[B])
(A— B) - (G[B] - G[A7])  valid

200



RULE: Non-Clausal Resolution

F(PR,...,P,]
G[P,..., Py
FO|false,..., false] Vv GO[true,...,true]

where § simultaneous, most-general unifier

P=---=Ph=Ph=---=P,0

e standardized apart
no common variables in F', G

e true-false simplification

e polarity strategy
Pt < false in F

_~

P~ —true in G

201



EXAMPLE

F: =[(22<a) A =((z+¢)* <a)
resolution rule applied to F itself /— P
F: —1:(z2 <a) A —z!—(z-l-e)z < af"}

G [ 2<al™ A —1((w+5)2§a)]

B

most-general unifier

0 ={w—2z+¢}

by resolution rule

V

by simplification

ﬁ[(zzga) A —:false]

—a[t'rue A ((z+e)+e) < a)]

(22 <a) V ((z+e)+e)*<a

202



e non-clausal resolution

rule: Manna & Waldinger [80]
completeness: Murray [82]
implementation: Stickel [82]

SPECIAL CASE:

e clausal (classical) resolution
Robinson [65]

Fzm QWP
G —=—> BV =P

QVR

/’/ /J‘

F[false] G[true]

203



POLARITY OF SUBTERMS

We define polarity of occurrences of
z and y in P

w.r.t. <

so that (“polarity replacement”)

T <y — -
(P(z*,y7) — P(y,z))  valid

Example:
P: eard(s~)<m -w.r.t. C
Therefore

(sCt) —
(card(t‘) <m = card(s) < m) valid

204



RULE: <-replacement

(ground version)

F[[s<t]"]
G(st,t7)
F'| fal Vv G(t, ?
|false] £} + w.r.t. to <
Example:

. l
F: pla) V[scCt(™

G: card(st)<m — q(s)
by C-replacement rule '\\
pla) V false
\
card(t) <m — q(s)
1.e.
p(a)
\
card(t) <m — q(s)

(¢ [543 1 o(‘, ]:/-o<4=>

205



.~ EQUALITY (=) AXIOMS

e tramsitivity: (z=yAy=2z)—z==2
e symmetry: r=y—>y==z

e reflexivity: z =2z

e functional substitutivity: e.g.

z=y — f(z,2)=f(y,2)
r=y — f(z,a:)=f(z,y)

e predicate substitutivity: e.g.

rT=y — p(xaz) Ep(y, Z)
r=y — p(z,z)=p(z,vy)

PROBLEMS:
e Many axioms

e Difficult to control

206



RULE: =-replacement

(ground version)

e special case: < is =

e Every subterm is £ w.r.t. =

Fl[s=¢t]|"]
G(s, 1)

F(false] Vv G(t,s)

Non-clausal version of paramodulation

207



s
F' l&uzo
G: —.[( z-d
s__ "7

most-general unifier

EXAMPLE

s=t

+

<n) A ((z+1)-d>n)]

§={z«0, ud}

by =-replacement rule

false Vv —l[(OSn) A ((O+1)-d>n)]

1.e.

—'[(esn) A ((0+1)-d> n)]

208



EXAMPLE

3

z° = x ipa ring = ring is commutative
Assertions
O+z==2 - (—z)+x=0
z-(y+z)=z-y+z-2
(z+y) z=xz-2+y-2
—0=0 —(-z)==
z:0=0 Q-2=0
—(z+y)=(-2) + (-y)
z-(-y)=—(zy) (—z)-y=—(z-y)
(z+y)+z=z+@y+2) z+y=y+=z
(z-y)-z=2-(y-2)
z3 = z (hypothesis)
Goal Boyer & Moore (Texas)
U V=vV-U Stickel (SRI)

Wos & al. (Argonne)

- 209



DIRECT PROOFS

First-order: quantifier-free, with equality

e Non-Clausal:
free form
full set of connectives

e To show that
B is valid
in a theory with axioms
A, ..., Ay,
prove the validity of the tableau:

assertions | goals

Ay

An

210



TABLEAU

assertions | goals
P
Q—R
Q
~R
meaning
(P AN Q)—
(@—R) v -R)
duality

assertion A = goal - A
goal G —> assertion -G

211



51

DEDUCTION RULES

add new { goal , } to the tableau
assertion

preserving its validity

goal true

il th .
bl Soe { assertion false

} is introduced

e rules:
non-clausal resolution rule
replacement rule
induction rule

212



RULE: Non-Clausal Resolution

(ground version)

assertions goals
F[[P] *]
G[ B ]

F[true] A G[false]

e polarity strategy

Lﬂ"‘%true in F
P|~ < false in G

213



RULE: Non-Clausal Resolution

assertions goals
FI[P]]
GI[Q] 7]

Fl[true] A GO|false]

where

e 0 most-general unifier of P, @

PO = Q80
e no common variables in F', G

polarity strategy

F[""——Mrue in F
Q] ~ — false in G

e

- 214



RULE: <-replacement

assertions goals

F[[s<¢t]"]

GG, 1)

FO[false] v G6(t6, s6)

where

o = w.or.t. <

e 6 most-general unifier of s, 3 and ¢, ¢
So=80 t9=16

e no common variables in F', G

polarity strategy

8§ <t|” — false in F

215



EXAMPLE

assertions goals
F pla) V  sCt f‘
G | card(st) <m — q(s)

by C-replacement rule

p(a) V false
\%
card(t) <m — q(s)

by simplification

216



RULE: =-replacement

e special case: < is =

e every subterm is &+ w.r.t. =

assertions goals

Fl[s=1]"]
G(3, t)
| FO[false] v GO(t9, s6)

where

e no common variables in F', G
e 0 most-general unifier of s, 3 and ¢, ¢

36 = 36, t9 =t
e 1o polarity restriction for 3, ¢
Non-clausal version of paramodulation

polarity strategy

s=1t/" < false in F

217



TEMPORAL-LOGIC PROOFS

goal

o(p(a) Vg(a)) A OVz.-p(z)] — Ogla)
ie.

Lip(a)Vgla) A VEEVZ-p(z)]] — Lig(a)
skolemization

1:p(a)Vg(a) A ti-p(z)] — 1:g(a)

1nitial tableau:

assertions goals

Al. 1:.p(a)’ - VvV q(a)

A2, t:-[p(@)] *

|

Gl. \1:q(a) *

218



resolution: Al, A2 {z «a,t < 1}

1: false VvV q(a)
V

1: -true
A3. | 1: q(a,), B
YeSO,Zﬂéc‘am G, A3
true
V
- false
G2. true

- 219




DIRECT TEMPORAL PROOF

goal
O(p(a) Vg(a)) A OVz.—p(z)] — Ogla)

negation
OV [g(@]*) A OVz.-pe) A -Ofgla) -
resolution

[ A OVz.—p(z) A ]
A

[O(p(a) V false)v—!arue]
simplification

OvVz.-p(z) A Op(a)

O (derived) rule: Ou —Ou
OVzr.=p(z) A Op(a)

220



skolemization

velom 7@ - AO [la)]

resolution

V:c[[/\] A O-true Vv Ofalse]]
simplification

false

221



RULE: well-founded induction

assertions goals

(U < a) — F[u] §
Fla] )
Yo .Flz]

222



i c——

APPLICATION:
" PROGRAM SYNTHESIS

Specification
f(a) <= find z such that Rla, 2] where P|a]

l

Theorem

(Va)(32){if Pla] then Rla, 2|}

1

Proof

constructive

l

Program

correct
terminates

z#0 — Jylz=y+1)
z#0 — z=(z—-1)+1<*

223



REAL SQUARE ROOT

Specification:
sqrt(r,e) <= find z such that
22<r A —r[(z—{—s)z Sfr]
where 0 <r A 0<e¢

- )

Z ' Z 1+ E

Program

sqrt(r,e) <= if max(r,1) < ¢

then 0
else if [sqrt(r,2¢) +€]? < r

then sqrt(r,2¢) + ¢
else sqrt(r, 2¢)

224



RATIONALE

e CASE : max(r, 1) < ¢

| VT )
L )
0 3
e CASE : ¢ < max(r, 1)
/N
[ Y \
| L )
sqrt(r, 2¢) sqrt(r, 2¢) sqrt(r, 2¢)
+¢ +2¢

225

e iy



HOW TO BEGIN?

Specification:

f(a) <= find z such that R]a, 2]
where Pla]

Theorem:

(Ya)(32){Pla] — Rla, 2]}

Initial tableau:

assertions | goals | output
/(a)
Pla]
Rla, 2] 2
a constant
z variable

domain knowledge < assertions

226



EXAMPLE: SQUARE ROOT

Specification
sqrt(r,e) <= find z such that
2 <r A —r[(z+s)2 gfr]
where 0<r A 0<e¢

Theorem:
0<r AN 0<e) —
Vr)(Ve) (3 -
( )( )( Z) 22 S r A —‘[(Z + 5)2 S 7']
Initial tableau:
assertions goals output sqrt(r, )
f(a)
0<r A
0<e
22 <r A 2
=[(z +¢€)? < 7]

227



STRUCTURE OF PROGRAM
REFLECTS
STRUCTURE OF PROOF

Case analysis ~ Conditionals

sqrt(r,e) < --- if --
then ---
else - --

Mathematical induction ~» Recursion

sqrt(r, e) <« ---sqart(r, 2¢) - --

228



DEDUCTION RULES

Add new rows to a tableau
without changing its meaning

assertions goals output
sqrt(r, )
0<r A
O0<e
2Z2<r A 2

229



HOW TO FINISH?

assertions | goals output sqrt(r,e)
. ,
o
o
if max(r,1) < e
then 0 |
trve | else if [sqrt(r,2e) + €2 <r

then sqrt(r,2¢e) + ¢
else sqrt(r, 2¢)

The final program is

L primitive

sqrt(r,e) <= if ¢ < max(r,1)
then O
else if [sqrt(r,2¢) + ]2 < r

then sqrt(r,2¢) + ¢
else sqrt(r, 2¢)

230



RULE: Non-Clausal Resolution
(Case Analysis)

assertions goals | output f(a)
FP¥] S
G[P~] t
Fltrue] | if P
A then s
G[false] | else t

P occurs in both F' and G

e general case: unification
e polarity

e non-clausal

231




EXAMPLE: invention of binary search

goals output sqrt(r, ¢)
+ A =l(z+e)?<r] |z
w<r A o |[(wteldr|T | w

!

={z —w+e}

true A -[((w+e)+e)?<r]|if (w+e)?<r
A then w + ¢
w?<r A -false else w

transformation

if (w+e)?<r
“[(w+2)?2<r] A wr<r then w + ¢
else w

232



RULE: theoi'y resolution

H(P*,Q™) valid

(Stickel)

assertions goals output f(a)
F[P*] S
GlQ7] t
F(true] A if P
G[true] A then s
- H|false, false] | else t

233



EXAMPLE :

goals

output sqrt(r, €)

max(r, 1) < ¢

0

ey

if [sart(r, 2¢) +¢]°<r
then sqgrt(r, 2¢) + ¢
else sqart(r, 2¢)

H :

u < v orlv < u

most-general unifier
0 = {u max(f, 1), v — €, y «— max(r, l)}

- 234




il

if max(r,1) <e

true A then 0

true A else if [sqrt(r,2e) + > <r
—( falself false) then sqrt(r,2¢) + ¢
else sqrt(r, 2¢)

1.e.

if max(r,1) <e¢

then 0

true else if [sqrt(r,2e) +e)* <r
then sqrt(r,2e) + ¢

else sqrt(r, 2¢)

Semsrmece oy ey 235



THEORY OF PLANS

s:hat(a) hat(a) in state s
s::Clear(a) truth value of clear(a) in state s
s;put(a,table) executing plan in state s

D155 P2 composition of plans

put-table-on axiom:

Clear(w, x) —
On(put(w,x,table), x, table)

that is
w::Clear(x) —
On(w;put(x,table), w:x, table)

:: ; not primitive
i primitive

T 236



APPLICATION:
SYNTHESIS OF PLANS

(or imperative programs)

Goal
R|[so, a, 2]

l

Theorem
(Vs0)(Ya)(3p)R[s0, a, so; P]

|

Proof

constructive
(in plan theory)

l

Plan

o 237



EXAMPLE : Monkey, Banana and Bomb

J

a b

PLAN THEORY (Manna & Waldinger) :
no plan (constructive proof)

SITUATIONAL LOGIC (McCarthy, Green) :
theorem : (Vsg)(3z)hasbanana(z)

program : getbanana(sg) <
if hasbanana(goto(sg, a))
then goto(sg, a)

else goto(sq, b)

non-executable “plan”

238



EXAMPLE : CLEAR A BLOCK

b

—>| a ' a
C c b
30 S0, D

Clear(sg; p, a)

|
(¥s0)(¥a)(3p) Clear (so; p, a)

|

constructive proof

l

" makeclear(a) <« if clear(a)
" then A
else makeclear(hat(a));
put(hat(a), table)

© 239



APPLICATION :
LOGIC PROGRAMMING

sentences : Horn clauses
deduction : SLD-resolution
language : PROLOG

sentences : quantifier-free
first-order logic
deduction : non-clausal resolution
equality rule
language : TABLOG

e model world as assertions
e express problem as goal P(T)

e prove sentence 37 P(T)
e extract answer from the proof

240



COMPUTE FIRST n PRIME NUMBERS

ASSERTIONS

primes(n) = truncate(n, sift(integers(2)));

truncate (0, u) = [1;

truncate(succ(n), i.u) = i.truncate(n, u);
integers(i) = i.integers(succ(i));
sift(i.u) = i.sift(filter(i, u));
filter(p, n.u) = if p divides n

then filter(p, uw)

else n.filter(p, w);

GOAL x = primes (50);

x= [2;, 8; 65 T, 11; ..+ 220]

241



- - PROLOG VERSION

primes(N, U) :- truncate(N, int(2), U).

truncate(0, U, []) :- !.

truncate(N, U, [P|V]) :-
getone(U, P, Ul), N1 is N-1,
truncate (N1, filter(P, U1l), V).

getone(int(N), N, int(N1)) :- N1 is N + 1.
getone(filter(P,U), M, W) :-

getone(U, N, V),

filter(P, N, V, M, W).

filter(P, N, V, N, filter(P, V)) :-
divides(P,N), !.

filter(P, N, V, M, W) :-

getone(V, N1, V1),
filter(P, N1, Vi, M, W).

242



DISCUSSION

Dr. Schneider began the discussion by asking whether Dr. Manna worries
about underflow and overflow. Dr. Manna replied that, to a certain extent, he

doesn't.

Professor Randell remarked that he found it difficult to see how plan theory
is not just another terminology for specifying programs, provoking instant
agreement from Dr. Manna.

Professor Sintzoff found the program synthesis very interesting but
remarked that very stupid and inefficient programs could be generated. He asked
Dr. Manna whether this aspect could be controlled; that is, whether he could
formally require some semantic properties. Dr. Manna replied that little had been
done in this area and that this is a new avenue to be followed in the near future.
He added that at present only the most basic restrictions can be applied.

243






