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ABSTRACT 

In a binary·search algorithlll for the co mpu tat ion of a numerical fu nc tion . the inten'al in 
which the desired ontput is sought is divi ded in half at each iteratio n. T he paper considers 
how such algorithms might be deri\'ed from their specificatio ns by an automatic s \' stell\ 
for program synthes is. The der i"ation of the binary · search concept has been found to 
be surprisingly straightforwa rd. The programs obtained. though reasonably simple i\ud 
efficient. are quite different from those that would have been constructed by informal 
means. 

Key Words : program synthesis. theorem proving, binary search. real square root. l"//luO 
function. 

1. INTRODUCTION 

Some of the simplest efficient algorithms for the computation of numer ica l functions re ly 
on the notion of binary search; according to this techn ique . the inten';1i in which the 
desired output is sough t is divided in half at each iteration until it is smalle r tha n a gi\'en 
tolerance. 

For example. le t us consider the following program for finding a real· number approx· 
imation to the square root of a nonnegati ve real number r , The program sets = to be 
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within a given positi ve tolerance ( les ~ t han Jr, 

.; - 0; 
" - m aJ: ( 1', I ): 
while ( 'S v do v - ,, / 2: 

if [= + "F < " the n = - = + ": 
1'etum( =) 

This is a classical square· root program based on that. of We ns ley [,'>9 1, T he program 
establishes and mainta ins t he loop invariant that z is wi thi n l' less t han Jr , i, e" that 
Jr belongs to t he half.open inter val [: . : + v ) , At ea ch ite ra t ion , th e program di vides 
th is in terval in half and tests whet her Jr is in th e r ig ht o r le ft half. ad j usting z and ' 
" accordingly, unt il l' is smaller t han th e g iven tolerance (. T he program is reasonably 
efficient: it term inates after rI09, ( "' '' '' ( 1' , I )/ ( ll iterat ions, 

Analogous programs provide an effici ent mea ns of comput ing a variety of numerical 
functions , It is no t imm ediatel,\' ohv io us how such programs can be developed bv au· 
tomatic program·synt hesis s\'stems, wh ich deri\'e programs to meet g iven specifications , 
Some researchers (e ,g" Ders how it z and \Ianna [ii i. Sm ith [8,'> ]) ha\'e suggested t hat syn­
thesis systems be provided with several general program schemata, which could be spe· 
cialized to fit particular application s, Binary se"rch would be one of these schemata, The 
, .\'stem would have to determine which schema, if any, is applicable to a new problem , 

It may indeed be valuable to pro\'ide a synthesis system with general schemata, but 
this approach leaves open the question of how such schemata are d iscovered in the first 
place, To our surprise, we have found t hat the concept of binary search emerges quite 
na turally and easily in the derivations of some numerical programs a nd t herefore does not 
need to be built in, The programs we have obta ined in this way a re si mple and efficient, 
but bizarre in appearance and quite d iffe ren t fr om those we would ha ve constructed by 
informal means. 

We have derived the programs in a ded ucti\'e framewo rk ( \I an na and \\'a ld inger 
[80]) in which the process of constructing a program is regar ded as a ta sk of proving a 
mathematical theorem, According to this approach. the program 's specific ation is phra~ed 
as a theorem, the theorem is proved. and a program guaranteed to meet the specification 
is extracted from the proof. If the specification refiects our intentions correctly, no further 
verification or testing is required, . 

In this paper we outline our dedu cti \'e framework and show the derivation of a novel 
real · number square· root progr"m , emph"iz in g t he emergence o f t he bi narv ·search con· 
cept. We then show several analogo us bi na r,' ·sea rch der ivat ions , fo r bo th different pro b· 
lems and different specifications of the same problem. 
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2. DEDUCTIVE PROGRAM SYNTHESIS 

In this section we present our framework brie R v, us ing t he square· roo t der i\'iltion as a 
continuing example . 

We begin with an outl ine of the logical concepts we shall need . 

LOGICAL PREREQUISITES 

The system deals with 

• temlS composed (in the usual way )' of constants a.b.c , .... variables 
U, t· . w, . .. • function symbols. and the conditional term constructor 
if-then-elSE . 

• aloms composed of relation (predicate) symbols, including the equality 
symbol =. applied to terms, and the truth symbols true and false . 

• SElllwCES composed of atoms and logical connectives . 

Sentences are quantifier·free . An expression is a term or a sentence. An expression is 
said to be ground if it cont.a.ins no variables. We sometimes use infix notation for function 
and relation symbols (for example, x + a or 0 -<w y). Certain of the sY'mbols are declared 
to be p,.intilit'E: these are the computable symbols of our programming la.nguage. 

We loosel,' follow the terminology of Robinson [79] . We denote a substitution 8 bv 
{.rt - It.x,) - I~, . .. 'Xn - In}. For any expression e, the expression ,8 is the result of 
applying 8 to E. obtained by simultaneously replacing every occurrence of the variable x, 
in e with the corresponding term I,. ,\'e shall also say that E8 is an i'l$/(lI1Cf of E. 

Let E. s , and I be expressions, where s and I are either both sentences or both terms. 
If we write f as e[s], then e[l] denotes the result of replacing every occurrence of S in e[s] 
with t. Let 8 be a substitut ion . Then e8[1] denotes the result of replacing everv occurrence 
of s8 in e8 with t. 

Variables in sentences are given an implicit universal quantification: a sentence is true 
under a given interpretation if every instance of the sentence is true , or, equivalently, if 
every ground instance of the sentence (i.e., an instance that contains no variables) is true. 

We now describe the basic notions of deductive program synthesis . 

SPECIFICATIONS AND PROGRAMS 

A specification is a statement of the purpose of the desired program. which does 
not need to indicate a method of achieving that purpose. [n this paper we consider on Iv 
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applicative (or functional ) programs, which yield an output but alter no data structures 
and produce no other side effects. The specifications for these programs have the . form 

f(a) <= find z such that R [a, :) 
where P ta). 

In other words. the program f that we want to construct is to yield. for a given input a, 
an Oll/pllt z satisfying the output condition R [a, z), provided that the input a satisfies the 
input condition Pta ). In other words, z is to satisfy the input. output condition 

if Pta) then R[a , z) . 

For example. suppose we want to specify the program sqrt. to yield a real number z 
that is within a given tolerance £ less than ,Jr, the exact square root of a given nonnegative 
real number r. Then we might write 

sqrt( r, <) <= find: such that 
z' ::; r and not [(z + £)2 ::; r] 

where 0 ::; ,. and 0 < <. 

In other words, we want to find an output: satisfying the output condition 

provided that the inputs 7' and £ satisfy the input condition 

o ::; rand 0 < <. 

The above square· root specification is not a program and does not indicate a par· 
ticular method for computing the square root; it describes the input.output behavior of 
many programs, employing different algorithms and perhaps producing different outputs. 
Of course , other specifications for a square· root program are possible. 

The programs we consider are sets of expressions of the form 

fila) <= ti, 

where ti is a primitive term, i.e., one expressed entirely in the vocabulary of our program· 
ming language. We regard the input a as primitive. These programs can be mutually 
recursive; i.e., we also regard the function symbols h as primitive. In the usual way, such 
a program indicates a method for computing an output. 

In a given theory, a program f is said to satisfy a specification of the above form 
if, for any input a satisfying the input condition Pta), the program f(a) terminates and 
produces an output t satisfying the output condition R[a, t). The problem we face is to 
construct a program satisfying a given specification. 
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DEDUCTIVE TABLEAUX 

The fundamental structure of our system. the deduc t ive t ableau. is a set of rorcs. eil ch 
of which must contain a sentence , ei t her a n (l ssertion or a goal: any of t hese rows mil~' 

also contain a term , the Olltpllt entry. An example of a tableau follows: 

assertions goals 
ou t pu ts 
sqrt( r , d 

1. o < r and 
0« 

2. : '1 ::; r (lnd 
not [( = + ( )2 $ rJ 

z 

3. not [(2 $ r ] 0 

Here z is a variable and rand ( are constants. 

Under a given interpretation for it s constant , function, and predicate symbols, a 
tableau is true whenever the following condition holds: 

If all instances of each of the assertions are true, 
then some instance of a t least one of the goals is true . 

Equivalently, the tableau is true if some instance of at leas t one of the assertions is filhe 
or some instance of at leas t one of the goals is true. Thus. the above tableau is true if 
assertion 1, 

0$ rand 0 < (, 

is false or if the instance (obtained by taking z to be 0) of goal 2 

02 $ rand 
not [(0 + (f $ rJ 

is true (among other possibilities). 

In a given theory, a tableau is said to be valid if it is true under any model for the 
theory. In the theory of real numbers, the above tableau is valid, since it is true under 
any modeL For either assertion 1 is false, or r is nonnegative and the instance of goal 2 
obtained by taking z to be .;r is true. 

Under a given interpretation and for a given specification 

f(a) <= find z such that 'R[a, z] 
where PIal, 
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a goal is said to have a suitable output entry if, whenever an instance of the goal is true. 
the corresponding instance t' of the output entry' will satisfy the Inpllt-olltput condition 

if P[aJ then R [a, t'J, 

(If the goal has no explicit output entry. it is said to have a suitable output entry if. 
whenever an instance of the goal is true. any term t' satisfies the input-output cond ition, ) 
An assertion is said to have a suitable output entry if, whenever an instance of the assertion 
is false. the corresponding instance I,' of the output entry will satisfy the input-output 
condition. 

For example. in the theory of real numbers, consider the square-root specification 

~qrt( r, c) <= find z such that 
z2 $ r and not [(z + f)2 $ r] 

where 0 $ rand 0 < (. 

Under any model for the theory, the output entries of the above tableau are suitable 
for the square-root specification. In particular, if some instance of goal 2, obtained by 
replacing z with a term s. is true_ then s will satisfy the input-output condition , 

if 0 $ rand 0 < f 

the" S2 $ r and not [{s + f ) 2 $ r], 

Also. if assertion 1. which has no output entry, is false, then any term s satisfies the above 
condition. 

Under a gi\'en interpret,ation J and for a given specification, two tableaux 7i and ~ 
have the same meaning if 

and 

7i is true under J 
if and only if 

0. is true under J 

the output entries of 7i are suitable 
if and only if 

the output entries of 72 are suitable. 

In a given theory and for a given specification. two tableaux are equimlfnt if, under any 
model J for the theory, the two tableaux have the same meaning, 

We' shall use the following properties of a tableau (for a particular theory and a 
particular specification): 

• Duality Property 

Any tableau is equivalent to the one obtained by removing an assertion and adding its 
negation as a new goal, with , the same output entry. Similarly, any tableau is equivalent 
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to the o ne obtained by rem oving a goal and adding its negat ion as a new assertion . Thus. 
we co uld manage with a svste m that has no goals o r a '.'· stem tha t has no asse rt io ns . but 
the dist inct.ion between assertions and goals does make cle ri ,·ations easie r to unde rstand . 

• R< naming Pro1,uly 

An,· t ab leau is equivalent to the one obtained b,· s,·stematicaUy renaming the vari· 
abies of any row . More precisely. we may replace an,· of the ,·ariables of the row with 
new variables, making sure that all occu rrences of the same variable in the row (incl uding 
those in the output entry) are replaced by the same variable and that distinct variables 
in the row are replaced by distinct variables. In other words , the variables of a row are 
dummies that may be renamed freely . 

• [ns/nnce Properly 

Any tableau is equivalent to the one obtained by introducing as a new row any 
instance of an existing roo The new row is obtained by replaci ng all occurrences of 
certain variables in the ex. ,ng row ( in cl uding those in the output entry) with terms. 
Note that the existing row is not replaced : the new one is simply added. 

THE DEDUCTIVE PROCESS 

Co nside r a particular theory and the speci fication 

J( a) -= find = such that R [a, =1 
where P[al . 

\\'e form the initial tableau 

assertions goals 

P[a] 

R[a, z] 

outputs 

J(a ) 

= 

Here the input condition P[a] is the initial assertion , the output condition R [a, z] is the 
initial goal, and the output z is the goal's output entry. \\·e regard the input a as a 
constant and the output z .as a variable. We may also include in the initial tableau (as 
an assertion) any valid sentence of the theory. 

Note that the output entries of this tableau are suitable . Under any model for the 
theory. if the initial assertion P[a] is false . then any output satisfies the input·output 
condition vacuously: and if some instance R[II. I'] of the initial goal R[a, z] is true, 
the corresponding instance t' of the associated output entry satisfies the input·output 
condition. Furthermore. the valid sentences included as initial assertions cannot be false . 
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Example 

For the specification of the real· nu mber square·root program. 

sqrt ( r. d <= find: such th at 
=2 ::; r and not [(z + ( )2 ::; r] 

where 0 ::; rand 0 < (, 

we form the initial tableau 

assertions goals 

1. o ::; r and 0« 

2. =' < rand 
not-[( z + ()2 ::; r] 

outputs 
sqrt ( ,'. ( ) 

z 

Here the inputs rand ( are constants and the output z is a variable. We may also include 
as assertions valid sentences of the theory of real numbers , such as 

, 
U· = U . U 

O· v = 0 

where u and v a.re .varia.bles . ... 

In the deductive process. we attempt to show that the initial tableau is valid. For 
this purpose, we apply deduction rules that add new rows without changing the tableau's 
meaning in any model for the theory. In other words, under a given model, the tableau 
is true before application of the rule if and only if it is true afterwards. and the output 
entries are suitable beforehand if and only if they are suitable afterwards. We describe 
the deduction rules in the next section. 

The process continues unti l we obtain either of the two rows 

true 

or 

false 

where the output entry t is primItIve. i.e., expressed entirelv m the vocabulary of our 
programming language. At this point , we derive the program 

Ita) <= t. 
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Vie claim that t satisfies the given specification. For. in app l" ing the deduction r ul es . 
lVe have guaranteed that the new ou t put entries wi ll be su itable if the earlier output ent ries 
ilre suitable. We have seen that the in itial output entr ies are all sui til ble : the refo re . th e 
final output entrv I is also suitable. This means that. under anv model. if t he fi nal goa l 
Irue is true or the final assertion false is false. the corresponding output entry ( \\ ill sat "f,' 
the input -output condition 

zf 'P[al liz en R[a. II. 

But , under any model. the truth symbols lrue and false are true and false. respecti'·el,·. 
and hence I will satisfy' the input-output condition. Therefore. the program f(a) <= I does 
satisfy the specification. 

For example. from the square-root der.ivation we shall obtain the program 

sqrt( 1'. c) <= 

if max(r, 1) < £ 

Ih.,. 0 
else if [sqrl ( r, 2£) + £]' S r 

Ihen sqrt( r, 2£) + £ 
else sqrt(r, 2£). 

( Actually we sha ll obtain a slightly different program.) Before we describe the deduction 
rules of our system, let us say a few words about this program. This will help the 
understanding of the ensuing deriva.tion. 

DISCUSSION OF THE PROGRAM 

The program first checks whether the error tolerance £ is reasonably small. If £ is 
very big , that is, if max(r, 1) < £, then the output can safely be taken to be O. For. 
beca.use 0 S ", we have 

oj S 1'. 

And because ma.,,( r, 1) < £. we have r < £ and 1 < £. and hence r < £' - that is. 

110t [(0 + £)1 S r]. 

Thus, in this case, ta.king z to be 0 satisfies both conjuncts of the output condition 

Z2 S r and not [(z + £)' S r]. 

If £ is small, that is, if £ S max(r. I), the program finds a rougher estima.te sqrt( r. 2£). 
which is within 2£ less than Jr. the exact square root of r. In other words. the root is 
within the half-open interval [sqr t(r. 2£), sqrt(r, 2£)+2£). The program then asks whether 

[sqrt( r. 2c) + £]' Sr. tha tis. whether the root is in the right or t he left half of t his interval. 
The situation is illustrated below: 
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I j 

, .;r , 

1-[ ---f'------t-X -~--'------J 
3qrt(r,2<) sqrt ( r, 2, ) +, sqrt(r , 2() + 2, 

If the root is in the right half. we can increase our rough estimate by" for sqrt ( r. 2, )+, 
is then within' less than the roo t, On the other hand. if the root is within the left half, 
we can leave the estimate alone. for sqrt ( r, 2, ) is already within' less than the root . 

The termination of the program may seem a bit problematic, because the argument < 
is doubled with each recursive caU , However , the argument r is unchanged and recursive 
calls are evaluated only until max ( r.l ) < " so there is a uniform upper bound on these 
increasing arguments. 

If the multiple occurrences of the recursive call sqrt(r, 2< ) are combined by elimi­
nating common subexpressions , the program we obtain is reasonably efficient ; it requires 
flog, (max (r, I )/<ll recursive calls . Fur t hermore , the resulting program is of "linear" 
form and may be transformed into an iterat ive equivalent ( Harrison and Khoshnevisan 
[86)). 

Our final program is somewhat different from the iterative program we considered in 
the introduction, The iterative program divides all interval in half at each iteration; the 
recursive program doubles an interval with each recursive call. Division of the interval 
occurs implicitly as the recursive program unwinds. i.e .. when the recursive calls finally 
yield output values. Our program may actually be superior if-doubling a real number is 
faster than halving one . 

It is possible to obtain a version of the iterative program by formal derivation from 
the specification within the deductive-tableau system, Although the derivation and the 
resulting program are more complex (the program requires two additional inputs) , it was 
this more complex derivation we discovered first, as we were already familiar with the 
iterative program. 

We later found the recursive program while examining the consequences of purely 
formal derivation steps, not because we expected them to lead to a program, but because 
we were looking for strategic considerations that would rule out these branches of the 
search space. When we examined the program initially, we suspected an error in the 
derivation_ We had not seen programs of this form before, and we certainly would not 
have constructed this one by informal means. 

THE TRANSFORMATION RULES 

We now begin to introduce the deduction rules of our system. illustrating them with 
fragments from the square-root derivation. Afterwards, we shall review the entire deriva­
tion_ We begin with the simplest of the rules. 
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The transformation rules replace subexpressions of an assertion. goal. or output entrv 
with equal or equivalent expressions . For instance. witll Ihe t ransformation rule 

P and true - P. 

we can replace the subsentence (( A or H) and Irue ) " 'ith ( A or H) in the asse rtion 

((A or H) and Irue) or D 

yielding 

(A or H) or D 

With the transformation rule (i n the theory of in tegers or reals) 

u + u - 2u, 

we can replace a su bterm (a + b) + (a + b) with the term 2( a + b). 

a 

a 

We use an associalzve-commut(Jlil'e matching algorithm (Stickel [S I}), so that the 
associative and commutative properties of operators can be taken into account in applying 
the transformation rules. Thus. we can use the above rules to replace a subsentence 
(true and H) with the se ntence H and the subterm (a + b) + b with the term a + 2b . 

We include a complete set of tme-false transformilt ion rules, suc h as 

not false - trlle 

if P then false - not P . 

Repeated application of these rules can eliminate from a tableau row any occurrence of it 
truth symbol true or false as a proper subsentence. 

The sou ndness of the transformation rules is evident. since each produces an expres­
sion equivalent or equal (in the theory ) t.o the one to which it is applied. 

3. CONDITIONAL FORMATION 

In this section we introduce the resolution rule , which can account for the introduction of 
the conditional (if-then-else ) construct into the derived program. 

THE RESOLUTION RULE: GROUND VERSION 

The resolution rule corresponds to case analysis in informal reasoning . We first 



present the ground version of the rule . which appUes to ground goals. i.e .. goals with no 
variables. We express it in the following notation: 

assertions goals 
outputs 
f(a ) 

, 
F [P] 3 

9[P] t 

F[true] if P 
and then s 

9 [jalse] else t 

In other words, suppose that our tableau contains two ground goals, F and 9 , whose 
output entries are sand t, respectively. Suppose further that F and \I have a common 
subsentence P. Then we may derive and add to our tableau the new goal obtained by 
replacing all occurrences of P in F with true , replacing all occurrences of P in (/ with 
faIst, and forming the conjunction of the results . The output entry associated with the 
derived goal is the conditional term whose test is the common subsentence P a.nd whose 
then-clause and else-clause are the output entries 3 and t for F and 9, respectively. 
Because the resolution rule always introduces occurrences of the truth symbols true and 
false as proper subsentences, we can immediately apply true-false transformation rules to 
the derived goal. 

Example 

Suppose our tableau contains the rows 

assertions goals 
ou t pu ts 
sqrt( r. E) 

I mllx(r, 1) < ( 1+ 0 

if [sqrt (r, 2£) + £]2 ::; r 
not I max ( r , 1) < ( 1 then sqrt(r , 2()+( 

else sqrt( r, 2() 

These goals have a common subsentence max(r, 1) < £, indicated by boxes. Therefore we 
may derive and add to our tableau the new goal 
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'f mll.r ( r . I ) < ( 
then 0 

true and 
eJ~ f if [s qrt ( r. 2€) + f ~ r not false 

th en sqrt ( r. 2€) + ( 
elsE sq1'f( r. 2€) 

By application of transformation rules, this goal reduces to 

if max(r, I ) < £ 
then 0 

true else if [5 qrt ( r, 2£) + £)2 S r 

the n sqrt(r, 2£) + £ 
else 5qrt( ", 2£) 

Note that, because we have derived the goal true with a primitive output entry, this could 
be the final step in a square-root derivation. ( In fact. however. this will not be the final 
step in our derivation of a square-root program .) .. 

If one of the given goals has no output entry, the derived output entry is not a 
conditional term; it is simply the output entry of the other given goal. If neither given 
goal has an output entry, the derived goal has no ou tput cnt ry either. We do not require 
that the two given goals be distinct ; we may apply the rule to a goal and itself. 

We have presented the resolution rule as it applies to two goals . According to the 
duality property of tableaux, however , we may transform an assertion into a goal simply 
by negating it. Therefore, we can apply the rule to an assertion and a goal, or to two 
assertions. 

The resolution rule may be restricted by a polarity strategy. according to which we 
need not apply the rule unless some occurrence of P in F is "positive" and some occurrence 
of Pin 9 is "negative". (Here a subsentence of a tableau is regarded as positive or negative 
if it is within the scope of an even or odd number , respectively, of negation connectives not. 
Each assertion is considered to be within the scope of an implicit negation; thus . while 
goals are positive, assertions are negative. The if·c1ause P of a subsentence (if P then Q) 
is considered to be within the scope of an additional implicit negation. ) This strategy 
allows us to disregard many useless applications of the rule . The application in the 
previous example is in accordance with the polarity strategy; the boxed subsentence ,s 
positive in the first goal and negative in the second, as indicated by the annotation. 

Let us show that the resolution rule is sOllnd; that is, in a given model of the theory 
and' for a given specification, the meaning of the tableau is the same before and after 
application of the rule. It actually sllffices to show that, if the derived goal is true, then 
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at least one of the given goals is true and. if the given output entries are suitable . so is 
the derived output entry. 

Suppose the derived goal (F [lrl/<) and 9[jolse)) is true. T hen both it s conjunct; 
F[lrue) and 9[jalse) are true. We distinguish between two cases. depending on whether 
or not the common subsentence l' is true or false. In the case in which l' is true. the 
(ground) goal .1'[1') has the same truth·value as the conjunct F [lrue); that is . .1'[1' ) is true. 
In the case in which l' is false. the goal 9[1'1 has the same truth·value as the conjunct 
9[jalse); that is, 9[1') is true. In either case, one of the two given goals • .1'[1') and 9[1'). is 
true. 

Now assume that the given output entries are suitable. To show that the der ived 
output entry is suitable. we suppose that the derived goal is true and establish that the 
derived output entry satisfies the input·output condition. We have seen that, in the case 
in which l' is true, the given goal .1'[1') is true; because its output entry s is suitable, it 
satis fies the input·output condition. Similarly. in the case in which l' is false, the output 
entry t satisfies the input ·output condition. In either case, therefore, the conditional term 
(if l' Ihen • else I ) sa.tisfies the input·output condition; but this is the derived output 
entry. 

THE RESOLUTION RULE: GENERAL VERSION 

We have described the ground version of the resolution rule, which applies to goals 
with no variables . We now present the general version, which applies to goals with 
variables. In this case , we can apply a substitution to the goals, as necessary, to create a 
common subsentence. 

assertions goals 
ou t pu ts 
f(a) 

.1'[1') s 

9[15) 1 

Fe[true) if 1'9 
and then .9 

99[jalse) else t9 

More precisely, suppose our tableau contains goals .1' and 9, which have no variables 
in common. (This can be ensured by renaming the variables of the rows as necessary. 
according to the renaming property .) Suppose further that some of the subsentences of .1' 
and some of the subsentences of (; are unifiable. with a most· general unifier 9; let 1'9 = 159 
be the unified subsentence. Then we may derive and add to ollr tableau the new goal 
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obtained by replacing a.lJ occurrences of P9 in F9 with true. replacing a.lJ occurrences of 
P9 in 9(/ with false , and forming the conjunction of the results . The associated output 
entry is a conditional term whose test is the unified subsentence P9, and whose then· 
clause and els€·clause are the corresponding instances 59 and t9, respect ively, of the given 
output entries . 

In other words , to apply the general version of the rule to F •. nd 9. we apply the 
ground version of the rule to F9 and 99. T he soundness of the general version can be 
deduced from the soundness of the ground version and the instance property. The polarity 
strategy applies as before. If we wish to apply the rule to an assertion and a goal or to 
two assertions, we can regard the assertions as goals by negating them , as in the ground 
case. 

Example 

Suppose our tableau contains the rows 

assertions goals 
outputs 
sqrt(r, () 

if (i + ()' ~ r i' ~ rand + then z + ( not [(= + 2()' < rl 
else i 

if (x. t·) -<w (r, () 
then if 0 ~ x and 0 < u , 

(sqrt(x , ti)) ~ x and 
then -

not [(sqrt(x, til + til' ~ xl 

The boxed subsentences are unifiable; a most·general unifier is 

9 : (x - r, ti - 2(, i - sqrt(r, 2()} . 

The subsentences have respectively positive and negative polarity, as indicated by the 
annotation. We may regard the assertion as a goal by negating it. By application of the 
general version of the resolution rule, we may derive the new row 

true 
and if [sqrt(r, 2() + (l' ~ r 

[if (r, 2l) -<", (r, l) ] then sqrt(r, 2l ) + l 
not then if 0 ~ rand 0 < 2l else sqrt( r , 2l) 

then false 

By the application of transformation rules, this goal reduces to 



(r, 2c ) -<,., (r, c) if [sqrt(r, 2d +cr ~ r 
and then sqrt( r. 2c) + c 

o ~ r and 0 < 2c else sqrt ( r. 2c) 

Note that the unifier (J has been applied to all variables in the given rows . including those 
in the output entry. Because the given assertion has no output entry. no new conditional 
term is formed in deriving the output entry. This application of the rule is in accordance 
with the polarity strategy. 

.I 

Our resolution rule differs from the familiar resolution rule of Robinson [65J in that 
it is nonciallsal; it applies to quantifier-free sentences with a full set of logical connectives 
that need not be in clausal form or any other normal form. Nonclausal resolution reduces 
to classical resolution in the clausal case. The nonclausal rule was developed independently 
by Manna and Waldinger [SOJ and Murray [S2J. The resolution rule and the true-false 
transformation rules have been shown by Murray to constitute a complete system for 
first -order logic. The polarity strategy maintains this completeness. 

We use an associative-commutative unification algorithm (as in Stickel [SI]) so that 
the associative and commutative properties of such operators as addition and conjunction 
can be taken into account in finding a unifier ; thus, p(J(x) + (b + 9(11 ))) can be unified 
with p((g(y) + f(b)) + x). 

The resolution rule accounts for the introduction of the notion of binary search into 
our derivation . 

THE DISCOVERY OF BINARY SEARCH 

Recall that our initial goal is 

'I 2. 1 zl < r 1+ and not [(z+c)2 ~ r] 

We are a.bout to apply the resolution rule to this goal and itself. To make this step 
ea.sier to understand, let us write another copy of the goal. 

We have renamed the variable of the second copy of the goal so that, as required, the two 
copies have no variables in common. 
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The boxed subsentences of the two copies of the goal are unifiable ; a most-general 
unifier is 

IJ: {:-i+,} . 

Therefore , we can apply the resolution rule between the two copies of the goal to obtain 

true and not [(( : + <l + ,) 2 ~ r] 
and 

£2 :5 r and not false 

By application of transformation rules, including the rule 

u + u - 2u, 

t his goal can be reduced to 

3. £2 :5 r 
and 

not ((: + 2,)2 ~ rJ 

if (i + d ~ r 
then z +, 
else z 

if (i + ,)2 ~ r 
then z +, 
else z 

(We have reordered the conjuncts for pedagogical reasons only; because we use associative­
commutative uni fi cation, their actual order is irrelevant.) 

According to this goal, it suffices to find a rougher estimate t, which is within a 
tolerance 2, less than ,fr. For then either i +, or i itself will be within' less than ,fr, 
depending on whether or not i +, is less than or equal to ,fr, that is, (Z + , )2 ~ r . The 
two possibilities are illustrated below: 

,fr ,fr 

[ 1 ) [ 1 ) 
i i+, i + 2, i z+, .: + 2, 

Case: .: + , ~ ,fr Case: not (i +, ~ ,fr J 

Goal 3 contains the essential idea of binary search as applied to the square-root 
problem . Although the idea seems subtle to us, it appears almost immediately in the 
derivation. The step is nearly inevitable: any brute-force search procedure would discover 
it. 

The derivation of the new goal is logically straightforward, but the intuition behind it 
may be a bit mysterious. Let us paraphrase the reasoning in a more geometric way. Our 
initial goal expresses the fact that it suffices to find a real number z such that ,fr belongs 
to the half-open interval (z, z + 'I. Our rewritten copy of this goal expresses the fact that 
it is equally acceptable to find a real number': such that ,fr belongs to the half-open 
interval (i, i + 'I. We shall be content to achieve either of these goals ; i.e., we shall be 
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happy if Vr belongs to either of the two half-open intervals. In taking z to be i + (. we 
are concatenating the two intervals. obtaining a new half-open int erval [': . .:.,. 2(.) twice 
the length of the origina.1. It suffices to find a real number': such that ,fi belongs to this 
new. longer interval. beca.use then ,fi must belong to one or the other of the two shorte r 
ones. 

THE THEORY RESOLUTION RULE 

It is difficult to prevent a system from deriving numerous irrelevant consequences 
from the rows in a tableau. We ca.n apply the resolution rule to virt ually every goal in 
our derivation if our tableau contains an assertion such as ( u < v or v $ u). Stickel [85J 
has introduced an extension to the resolution rule, which enables it to behave as if certain 
properties of the theory were "built in." This theory resolution rule does not add to the 
logical power of the system, but it does give us a heuristic advantage over a system in 
which all properties must be represented as assertions. When a property is built into the 
theory resolution rule. it is brough t to bear only when it is appropriate . 

The instance of Stickel's rule that we shall need is as follows. (Stickel's actual rule 
is more general.) Let us suppose that H[P, QJ is a valid sentence we wish to build in. 
Then the ground version of the theory resolution rule, invoking the property H[P, QJ, is 
as follows: 

assertions goals 
outputs 
f (a) 

.r[pJ s 

9[QJ t 

.r[trueJ and if l' 
9[trueJ and then s 
not H[jal$e. falseJ else t 

For strategic purposes, we may assume that l' and Q are of pos itive polarity in the tableau 
and in H. (In other words, they are within the scope of an even number of explicit 
or implicit negations in H.) There are other versions of the rule that are strategically 
preferable if P or Q is negat ive. The soundness of the rule actually does not depend on 
the polarity_ 

The rule can be justified by adding the property H[p. QJ to the tableau as an assertion 

H[P,@J- J 
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(Note that because Q is positive in the assertion 'It and because each assertion is within 
the scope of an implicit negation, Q is negat ive in the tableau .) Applying the ordinary 
resolution rule to the goal 

and to this assertion, we obtain the new goal 

9[trueJ and 
not 'It [ 0 -, falseJ 

Applying the resolution rule again, to the goal 

F[0+J s 

and to the new goal, we obtain 

F[ trueJ and if P 
9[trueJ and then s 
not H[jalsr. falseJ else t 

But this is precisely the conclusion drawn by the theory resolution rule, invoking the 
property H[P, QJ. 

We have just presented the ground version of the rule. To apply the general version, 
we first assume that the rows and the property H have no variables in common . We 
then apply a most· general unifier fJ that allows the ground version of the rule to become 
applicable to FfJ and 9fJ, invoking HfJ. 

Example 

Suppose our tableau contains the two goals 

assertions goals 
outputs 
sqrt(r. () 

1 max(r, 1) < ( 1+ 0 

I ( ~ y 1+ 
if [sqrt(r, 2(j + (jl ~ r 
then sqrt(r, 2(j + ( 
else sqrt(r,2() 
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SUPPO" we hAve built into the theory resolution rule the sentence 

'H: I u < v 1+ or I v :5 u 1+· 
The boxed subsentences of the two goals are unifiable with the correspondingly boxed 
subsentences of the sentence rt ; a most ·general unifier is 

8 : {u - mar(r, 1), v - (, Y - mar(r , I)} . 

According to the theory resolu tion rule , we can obtain the new goal 

if mar(r, 1) < ( 
true and then 0 
true and else if [sqrt(r, 2() + (ll :5 r 
not (fa/se or false) then sqrt(r, 2() + ( 

else sqrt( r, 2() 

which is transformed into 

if mar(r, 1) < ( 
then 0 

true else if [sqrt( r , 2€) + (ll :5 r 
then sqrt(r, 2€) + ( 
e/stsqrt(r,2() 

(Note that this could be the final step in a square-root derivation .) .. 
We have introduced two additional rules to give special treatment to equality, order· 

ings, and other important relations (Manna and Waldinger [86]), but these rules play no 
PArt in the portion of the derivation to be discussed in detail. 

We shall now need the induction rule; this we describe in the next section. 

4. RECURSION FORMATION 

The rules presented so far do not allow us to introduce any repetitive construct into the 
program being derived . The mathematical· induction rule accounts for the introduction 
of recursion into the derived program. 

We employ a single well· founded induction rule, which applies to a variety of theories. 
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THE MATHEMATICAL INDUCTION RULE 

A well-founded relation --<", is one that admits of no in finite decre"sillg seqllellces. 
I.e., sequences Xl t I1 ,I3. "', such that 

Xl ~w X2 and X2 >-w.rJ and .... 

For instance, the less-than relation < is well-founded in the theory of nonllegative integers. 
but not in the theory of real numbers . 

The well-founded induct ion rule is expressed as follows . Suppose our initial tableau 
is 

assertions goals 
outputs 
f(a) 

P[a) 

R[a, z) z 

In other words, we are attempting to construct a program f that , for an arbitrary input 
a, yields an output z satisfying the input-output condition 

if Pta) 
then R[a , ~) . 

According to the well-founded ind uc tion rule , we may prove th is while ass umlllg. as ou r 
induction hypothesis, that the program f will yield an output f(xl satisfying the same 
input-output condition 

if P[x) 
then R[x , f (xl] , 

provided that its input x is less than our original input a with respect to some well-founded 
relation --<"" that is, x --<", a. In other words, we may add to our tableau the new assertion 

if x -<", a 
then if PIx) 

then R[x, f(xl] 

where x is a new variable . The well-founded relation --<", used 10 the induction rule is 
arbitrary and must be selected later in the proof. 

Example 

The initial tableau in the square-root derivation is 



1 
. 1 

I, 

assertions I goals I 
out puts ! -''1r t! r. (\ , 

o ::; r and 0 < € I I 
.:1 S rand 

; 
not [{ :+€ f::; r] 

By application of the well-founded induction rule , we may introduce as a new assertion 
the induction hypothesis 

if (x, v ) -<", (r, €) 
then if 0 ::; x and 0 < v 

then (sqr/(x, v))2 ::; x and 

not [(sqrt(x. v) + v)' ::; x] 

where x and v are variables . In other words. we may assume inductively that the output 
of the square-root program being constructed will satisfy the input-output condition for 
inputs x and v that are less than the given inputs rand ( with respect to some well­
founded relation """,. Because the program has two input parameters rather than one . 
the induction hypothesis refers to pairs of nonnega.tive integers rather than individual 
integers . 

As it turns out, this particular induction hypothesis is never used in our square-root 
deri vat ion . .I 

Use of the induction hypothesis in the proof may account for the introduction of a 
recursive call into the derived program. For instance. suppose that in our derivation we 
manage to develop a goal of the form 

9 [I R[s . =11+ ] 

The boxed subsentences of this goal and the induction hypothesis , 

if :r ""'" a 
then if P[xJ 

then "':'1 R--'~ [~:r .~f~( x~) ]"-'1-
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are unifiable ; a most -general un ifier is 

(J : {x - s, : - f( s)}. 

Therefore, we can apply the resolution rule to obtain t he new goal 

9[ true] 
and 

[if Hw a ] not then if PIs] 
then false 

This goal reduces under transformation to 

9 [true] 
and 

PIs] and s ~ w a 

t [f( s) ] 

t[f(s) ] 

Note that a recursive call f (s ) has been introduced into the output entry as a result 
of this step. The condition PIs] in the goal ensures the legality of the argument ~ _ i.e .. 
that it satisfies the input condition of the desired program. The condition s ~w a ensures 
that the evaluation of the recursive call cannot lead to a non terminating computation. (If 
there were an infinite computation, we could construct a corresponding infinite sequence 
of arguments decreasing with respect to ~ w , thus contradicting t.he definition of a well­
founded relation.) 

Example 

In our square-root derivation we have developed the goal 

.2 ~ r if (Z + E)2 ~ r 
and + then i + E 

not [(Z + 2l)1 < r] else • 

and the induction hypothesis 

if (%, v) -< .. (r, l) 
then if 0 < % and 0 < v 

then 
(sqrt(x , u))' ~ x and -
not [(sqrt (x . u) + u)2 ~ x] 
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The boxed subsentences are unifiable; a most-general unifier is 

B: {x - r, tI - 2£, .i - sqrt(r, 2£ )) . 

We obtain (after transformation) 

(r, 2£) -<", (r, £) if [sqrt(r, 2£) + £] 1 ~ r 
and then sqrt(r, 2£) + £ 

o ~ rand 0 < 2£ else sqrt( r, 2£) 

Note that at this point three recursive calls sqrt(r, 2£ ) have been introduced into 
the output entry. The condition (0 ~ rand 0 < 2£) ensures that the arguments rand 
2£ of these recursive calls wiU satisfy the input condition for the program, i.e, that r is 
nonnegative and 2£ is positive . The condition (r, 2£ ) -<", (r, £) ensures that the newly 
introduced recursive calls cannot lead to a nonterminating computation . The well-founded 
relation -<tu that serves as the basis for the induction is as yet unspecified. 

For reasons that wiU become clear , this step wiU not actually be part of our square­
root derivation . .. 

The particular well-founded relation -<", referred to in the induction hypothesis is not 
yet specified; it is selected at a later stage of the proof. If we allow well-founded relations 
to be objects in our domain, we may regard the sentence x -<tu Y as an abbreviation 
for -«w, x_ y); thus , w is a variable that may be replaced by a particular relation. We 
assume that the properties of many known well-founded relations (such as -<'rn, the 
proper-subtree relation over trees ) and of operations for combining them are among the 
assertions of our initial tableau. 

The well-founded induction principle (from which the rule is derived ) is universally 
quantified over all well-founded relations: it is surrounded by a quantifier (\fw) . When the 
quantifiers are removed by skolemization, the input a of the program being constructed 
becomes a skolem term a(w) rather than a constant a . (Those unfamiliar with skolemiza­
tion are asked to accept this on faith _) This has the effect that the well-founded relation 
w cannot be chosen to depend on the input parameter a(w ) itself. In particular , w is not 
unifiable with any term containing an occurrence of a(w). Otherwise the induction rule 
1V0uid be unsound and the termination argument sketched above would not apply. If we 
could alter the well-founded relation with each recursive call, we might indeed have an 
infinite computation. Fot simplicity of notation, however, we shall continue to write our 
input parameters as constants. 
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5. INTRODUCTION OF AUXILIARY SUBPROGRAMS 

The induction rule, as we have presented it. can be applied on ly to the initial rows of a 
ta.bleau. By t he introduction of auxi liary subp rograms , however , any rows of a tableau 
can be taken as the initial rows of a new tableau , to which we may apply the induction 
rule. 

Suppose that in the course of a derivation we have obtained t he rows 

assertions goals 
outputs 
f (a) 

p [s] 

1 R[s, i] 1+ r[i] 

where s is a ground term and i is a variable . Then we may consider int roducing a new 
auxiliary subprogram i ta), whose specification is 

i ta) <= find z such that R[a, =], 
where P[a]. 

(If R contains several variables iI, i 2, ... , ino we must construct ' several auxiliaries il ' 
k .. . ,in ' ) 

Assuming that we shall succeed in constructing such an auxiliary, we add to our original 
tableau an assertion that the new subprogram always meets its spec.ification; namely, 

Q : if p[ zCJ..l :-;-~-:-1 
then I n[x, i(x )] 1-

The auxiliary i is taken to be prim.itive. By application of t he resolu tion rule to the goal 
n[s, i] and the new assertion, we obtain (after true·false transformation ) 

P[s] r[i(s )] 

By resolution of this goal with the assertion p[s] , we obtain (after true·false transforma· 
t ion) 

true r[i(s)] 

If r [it s)] is primitive, this may be t aken to be the final step in a deri vation of f ( a). The 
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program we obtain is simply 

f(a) <= f [it .. )] . 

In adding the nelV assertion Q . however. we are inc urring the obligation to constru ct a 
suitable auxiliary subprogram ita ). For t his purpose , we introduce a new tableau. whose 
ini tial rows are 

assertions goals 
outputs 

i rii) 
P[a] 

R[a. z] i 

Because this is an initial tableau , we may apply the induction rule to add the induction 
hypothesis 

if u -< '" ii 
thw if p[u] 

then R[lL. i(,,)] 

We can actually form auxiliary subprograms whose input condition is a conjunc­
tion (PI and P2 and .. . ) of assertions and whose output condition is a disjunction 
Clil or R2 or ... ) of goals, but we can do without this complication here. 

We shall defer giving a·n example of auxiliary-subprogram introduction until we have 
discussed the strategic controls for such a step. 

STRATEGIC CONSIDERATIONS 

Adding a new auxiliary subprogram is not without risk , because it can happen that 
there is no program meeting the specification of the auxiliary even though the original 
programming problem does have a solution. Although we are not primarily concerned with 
the heuristic aspects of program synthesis in this paper, we shall mention the heuristic 
indicators for introducing the auxiliary. 

In the course of the main derivation. suppose we have obtained the rows 
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assert ions I goals 
out putS 
f(a) 

Pis) 

R[s. =) ,. [=) 

as before. What indicates that we should take these rows as the specification for a new 
subprogram? 

Assume that, only from these rows and assertions representi ng "alid sentences of the 
theor!', we obtain a goal of the form 

9[R[t. ill q[i) 

where t is a term, _ a var iable , and R is posItIve m 9. In other words, the new goal 
contains as a subsentence a "replica" R[t, =) of the higher.level goal R[s , i). The replica 
is o btained by replacing a term s of the goal with a different term t and the variable i 
with a possibly di ffe rent variab le i. 

This sugges ts forming an auxiliary j(a) with input condition Pia) and output con· 
dition R[I; , i), where Ii is a new constant, the input parameter of the subprogram. The 
initial tableau for t he auxiliary is 

assertions goals 
outputs 
I (a) 

P[a) 

R[a, z) i 

If we succeed in imitating the original derivation in the auxiliary t ablea u and developing 
a corresponding subgoal of the form 

9 [ 1 R[ i, i) 1 + J q(i) 

we can then apply the resolution rule to this goal and the induction hypothesis for the 
auxiliary, 

if u -<w a 
thEn if P(u) 

then .-'-1 R"""~ ['-u ,-f~' (U- )"] 1-
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The unifying substitution is 

{u - i, i - j (i)}. 

We obtain (after transformation ) 

9[ true] and 

i -<", Ii and PIn <i[jU)j 

In other words , the appearance of a replica in the main derivation suggests that we 
form the appropriate auxiliary, so that in the auxiliary derivation we shall be able to 
unify the corresponding replica with the conclusion of the auxiliary induction hypothesis . 
There is, of course, the unfortunate possibility that we shaH not be able to obtain the 
appropriate replica in the auxiliary derivation , because we have replaced a term s in the 
main derivation with the new constant ii in the auxiliary. If the original derivation relies 
on special properties of s, we may not be able to imitate it with the constant ii. 

During the derivation of the auxiliary, we may discover that we require a new assertion 
P'[ii], where P'[sJ is already an assertion in our original tableau. In this case , we may 
attempt to add P'[iiJ as an input condition to the auxiliary specification, to obtain 

j(a) ¢: find i such that R[a, .oj 
where P[aJ and P'[a ]. 

We may then add the new condition to the initial assertion in the auxiliary tableau, to 
obtain 

P[aJ and P'[aJ 

We must make corresponding alterations in the induction hypothesis for the auxiliary 
tableau, in those portions of the proof that use the induction hypothesis, and in the 
assertion describing the auxiliary in the main tableau. Thus the precise specification of 
the auxiliary may be built up incrementally, after the derivation of the subprogram is 
under way. 

In Manna and Waldinger [80J, we introduced auxiliary su bprograms by adding a new 
output column in the original tableau rather than adding a new tableau. Traugott [86J 
uses multiple tableaux to introduce subprograms, as we do here. 

SQUARE ROOT: INTRODUCTION OF THE SUBPROGRAM 

In the tableau for the square-root derivation, we are initially given the rows 
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assertions goals 
ou tp uts 
S",.I( r. d 

I. o :::; r and 0« 

2. z2 :::; rand 1+ 
nat [( z+ £)l:::; rJ 

: 

By resolving the goal with itself and transforming, we have obtained the subgoal 

3. i 2 =:; r and if (i + £)2 :::; ,. 

not [(i + 2( )2 :::; rJ then i + ( 
elu z 

The ent.ire subgoal is a replica of the initial goal, obtained by repla.cing the term ( 
with 2( and the variable z with z. This suggests introducing a new auxiliar)' subprogram 
sqrt(l), whose parameter i plays the role of the replaced term ( in the initial goal. and 
whose input and output conditions are the initial assertion and goal. with ( replaced by 
i; that is , 

_'qrl.( i) ~ find £ such that 
jl :::; r and not [(£ + £)2 :::; rJ 

where 0 :::; rand 0 < i. 

We do not include a parameter r in the auxiliary because r was not replaced in forming 
the replica. For the auxiliary, r is global rather than a parameter. When sqrl is evaluated, 
r will be bound to an argument of the main program sqrt. 

The initial assertion (0:::; rand 0 < l) in the main tableau was not actually used in 
developing the replica. However, the corresponding initial assertion (0 :::; rand 0 < £) 
turns out to be necessary to complete the derivation of the auxiliary. In an automated 
implementation, this condition would most likely be added to the input condition for the 
auxiliary incrementally, after the derivation of the auxiliary was under way. 

Assuming that we shall succeed in the synthesis of the auxiliary sqrl., we add to our 
main tableau the assertion that aqrt does indeed meet its specification for all inputs t:; 
that is, 

4, if 0 < rand 0 < v 
- 2 (aqrt(v)) :::; r and 

then -
not [(sqrt(v) + v)2 < rJ 

By resolving the initial goal 2 with this ilSsertion, and then resolving the resulting goal 
with the initial assertion, we obtain (after true-false transformation) the final goal 
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S. t rllt 

:\o te that th e goa l 3. which serves to suggest introducing the a u,ili ~rv .' ''''1. turns Ollt 
to plav no part in the derivation of th e main program . T he main program we obt ~ in is 
simply 

$qrl ( r. £) ¢' sqrt(£). 

The only difference between the main program sq7'l(r . <l and the auxiliary .~t(() is 
that r is a parameter for sqrt but not for sqr:t. This turns out to be a crucial distinction . 
howe\·er. because the well-founded relation we employ in the derivation of $qrt depends 
on r . The well-founded relation for a program cannot depend on a parameter for that 
program : otherwise the induction is not sound and termination is jeopardized. Had we 
not introduced the auxiliary, we would not have been able to complete this derivation . 
( Other der ivations would be possible, using more artificial well-founded relations .) 

6 . COMPLETION OF THE SQUARE-ROOT DERIVATION 

In this section we apply the principles we have introduced to 'complete the derivation of 
the square-root subprogram. 

INTRODUCTION OF THE RECURSIVE CALL 

In deriving the auxiliary, we begin with the tableau 

nssertions goals 
output s 

-'fJ7't( () 

i. o ::; r nnd 0< i I 
2. z2 ~ r and 

not [(2 + i)' ::; r] -

We attempt to mImIc the main derivation. Resolving the initial goal with itself and 
transforming as before , we obtain 

if (Z + i)1 ::; r 
3. .:~ < rand + 

not-[(Z + 2n' ::; r] then .: + i 
eI.oe 
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·e assume inductively that t he auxili a ry $qr l wi ll sa tisfy its specification fo r all inputs t· 

. ;s than its parameter <, with respect to some well- foun ded relation -<,." i. e., 

~ . if v -<,., l 
th en if 0 S r and 0 < v 

then 
(sqrt ( lO l) l S r and -
not [(sqrt(v ) + lO)2 S rJ 

-he boxed subsentences of the goal 3 and the induct ion hypot hesis 4 are unifiable; a 
lost-general unifier is 

{v - 2i, i - sq;:-'(2l)}. '1 
Applying the resolution rule, we obtain (after transformation) 

5, 2i -< ,., < and 
if [sqrt(2i) + il 2 

S r 

I o S rand 0 < 2< tlien sqrt(2l) + i 
else sqrt(2i) 

This step accounts for the int.roduct.ion of three instances of a recursive call sqrl (2£) 
nto the auxiliary subprogram . As before, the condition (0 S rand 0 < 2i) ensures 
:hat the argument 2< of this recursive call will satisfy the input cond ition. The condition 
Ii -< ,., i ensures that the newly introduced recursive call cannot lead to a nonterminating 
:omputation. The well-founded relation -< ,., is as yet unspecified. 

THE CHOICE OF THE WELL-FOUNDED RELATION 

We have assumed that the definitions and properties of well-founded relatiot:ls over 
several domains, including the real numbers , are among the assertions of our tableau. The 
relation to be selected in this derivation is the bounded-doubling relation -<b.( y)' defined 
on the positive reals so that 

u -<bd(») v if and only if u = 2v and v ::; y, 

for some fixed upper bound y. Thus, with respect to this relation, 2v is actually less than 
v_ The upper bound y is a parameter of the relation: for each real number y, we obtain 
a different rel ... tion -< b.( y) ' 

The bounded-doubling rel ... tion is well-founded because we cannot double a positive 
real forever without exceeding the bound y; thus, wi t h respect to this relation , no infinite 
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decrea.sing sequences ex ist. :-iot e th at we could ha\'e replaced th e constant 2 with anv 
real constant greater than lor. indeed, with a qriable x, which would then become 
an additional pare meter fo r bd: but we sh all not require such general it\' here . ,.1. 1'0. for 
" -<,d(v) t' to be true. we requ ire thet t' :5 y but not that 1I :5 y. 

The property of the bounded-doubl ing relation we employ is 

if 0 < v and t' :5 y 

then 12v -<,dey ) v 1-

Recall that we regard II -<w U a.s a n ab brev iation of -< (w, u, u). The boxed subsentences 
of our goal 

if [sqrt (2i) + i ]1 :5 r 
5. 12i -< w ; 1 + and 

then sq1't(2; ) + ; o :5 r and 0 < 2; 
else sqrt (2<) 

and the above a.ssertion unify ; a most-general unifier is 

(v - l, U' - bd(y)}. 

By resolution of the goal with the assertion _ we obtain 

6. o :5 r and 0 < 2; if [sq,:-t (2i) + ; ]1 :5 r 

and then sqrt(2i) + ; 
0<; and; :5 y else sqrt( 2<) 

At this stage, the well-founded relation -<w ha.s been chosen to be the bounded- doubling 
relation -<,dey) ' The upper bound y is a.s yet undetermined. 

The rest of the derivation relies on the special-relation rules ( ~lanna and Waldinger 
[86]), which we have not presented here, and is relatively st ra ightforward. \\'e ,hall not 
give it in detail, but we would like to give the intuitive argument, indicating some of the 
properties we use bu t not w hat rules we apply. 

With the help of the initial a.ssertion for the auxiliary, 

i. 0:5 rand 0 < i 

we can discard the first three conjunc ts of our goal ii, leaving 
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if [s qrt (2i) + i]2 S r 

7. i s Y 111m sqrt (2i ) + i 
els f sqr/ ( 2i) 

We shaU refer to this as the upper-bound goal. It mainta.ins that , if we can find some 
upper bound y on our input parameter i , its outpu t entry meets t he specification . 

Note that, because i is a parameter , it was initially our abbreviation for a skolem 
term i(w). Then the weU-founded relation w was taken to be bellY), so i in the upper­
bound goal i :S y stands for i (bd(y). Thus , this goal i (bel(y») :S y is 1I0t unifiable with 
the reflexivity assertion u S u - they have no common instance - and we are prevented 
from resolving them . In other words, we (fortunatel y) cannot take the upper bound on i 
to be i itself. 

Let us set the upper-bound goal aside for the moment; its proof depends on our 
t reatment of the base case, which we consider next . 

THE BASE CASE 

RecaU t hat the initial goal for the auxiliary procedure sqrt(i) is 

2. £2 :S r and not [(I + if S r] 

We employ the initial condition 0 :S r and properties of the reals (including O· v = v), 
taking i to be 0, to reduce the goal to not (i2 :S r), that is, 

o 

Note that at this stage the output entry has become O. 

We next employ the transitivity of the less-than relation and the property 

if 1 < u then u < ul 

to decompose our goal further, to (r < i and 1 < i), that is , 

9. max(r, 1) < i o 

In other words, in the case in which max(r, 1) < i, the output 0 will satisfy the input ­
output specification. 
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PROVIN G THE U PPER-BO GND GOAL 

Because we h;:!s e int roduced the goai nUIl' I, r , 1) < f . we can restr ict ou r at te ntion to 

th e ca !' € in whi ch no t i nu1l" ( r.l ) < (1, that is, i. S tJ1(I .t f r ,l L But ill this case the upper 

bound y for our bounded . do ubling ~ elat i on -<"'" ca n be t ake n to be ma .! l r . 1) itse lf. 

Formally speak ing. we applv the theor y resolu t ion rule to this goal !i a!ld ou r upper. bound 
goal 

, . i:S y 
'f r;q;U2i l "-il

1 :s r 

(h ell sQ;'l(2i l -+- i 

eI.<e sQ;'I (2i l 

II'e in\'oke the propert\· (u < t' o r ":S II ) a nd ta ke the most .ge nera l un ifie r to be 

{u - ma:r ( r. 1). t· - i . y - max( ,·. I )}. 

I\ 'e obtain the final goal 

10 . Irlll' 

if m a .! ( r. 1 ) < i 
(hl'll 0 
els l' if [sTrI ( 21) + i]? < r 

Ihl'n sq rl ( 21) + i 
else .~1 ( 2i) 

The new conditional in the output entry' is int ro du ced by t he theo ry resolutio n ru le. 

At this st age we can see why the introductio n of an au:oJlia rv in which ,. is not a 
parameter was necessary for thi s derivation. Han we reta ined r as a par a me ter. it wou ld 
have appeared in the in i tial goal as a skolem functi o n "( w I. Recause w was subsequently 
replaced by bd(y). the occurrence of ,. in the goal max ( r.l I < i 1V0 uid have become 
"(bd(y)) . We would have been prevented frolll un ify ing y with the t e rm max {>' (bd( y )) .I). 
which contains y: this last step could therefo re not have bee n perfo r med. From an intuitive 
point of view, if r were not a parameter, the system wo uld suspec t that r might be 
increased with each rec ursive call . There might then be no u ppe r bound for the bounded· 
doubling relation, and termination would not be guaranteed . 

We have completed t he derivation of the llIa in program and t he au,ili ar,·. The final 
program we obtain is therefore 
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sqrt(r , i ) ¢' sqrt(l) 

;q;t ( i) ¢' 

'f mar(r. 1) < i 
then 0 
<lse if [sqrt(2i) + iJ 2 :s r 

then .<qrt(2i ) + i 
el.<e sqrt (2i) 

7. SUMMARY 

At this point we reproduce the entire square· root derivation, again omitting some straight· 
forward steps. 

MAIN PROGRAM 

The initial tableau : 

assert ions goa.!s 
OUtPUtS 

sqrt( r. £) 

L o :s r and 0 < l 

2. z2 :s rand 

not [(z + i)2 :s rJ z 

By resol ution applied to goa.! 2 and it~lf: 

3. £2 :s rand if (i+l)2:s r 

not [(Z + 2£)2 :s rJ then i + l 
else i 

By auxiliary· procedure introduction: 

4. i/ 0 $ rand 0 < v 

then - )2 (~qrt(v) :s r and 

not [(~qrt(v) + V)2 :s rJ 

This step has been motivated by the replication of goa.! 2 in goa.! 3. 

By resolution , from goa.! 2, assertion 4, and assertion 1: 
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5. true 

AUXILIARY SUBPROGRAM 

The initial tableau : 

assertions goals 
outputs 
3qrt( i) 

i. o ::; r and 0 < i 

2. i'l ::; rand 
i not [(i + i)2 ::; r) 

By resolution applied to goal 2 and itself: 

3. i 2 :5 r and if (Z + ill ::; r 

not[(z + 2i)1 ::; r) 
then £+l 
else z 

The induction hypothesis: 

4. if v -<", l 
then if 0 ::; rand 0 < v 

then (- I 3qrt( v)) ::; rand 

not [(3qrt(v) + v)l ::; r) 

By resolution applied to goal 3 and assertion 4: 

5. U-<", land 
if [sqrt(2l) + ill ::; r 

then sqrt( 2l) + l o ::; rand 0 < 2l 
else ,;q;t( 2l) 

Here the recursive calls have been introduced . 

A property of the bounded-doubling relation: 

,.... = 
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if 0 < v and v :5 y 
then 2v ~bd( y) U 

By resolution applied to goal 5 and the above property: 

6. o :5 r and 0 < 2i 
and 

0 < i and i :5 y 

If [s qJ·t (2i) + if :5 r 

then sqrt( 2i ) + i 
else sq;t(U) 

At this stage the well-founded relat ion is taken to be the bounded-doubling relation. 

By resolution and special-relation ru les. from goal 6, assertion i , and properties of the 
reals : 

if [sqrt(U) + iJ' :5 r 

7. i :5 y then sqrt ( U) + i 
else sqrt( 2i) 

By resolution and special-relation rules, from goal 2, assertion i , and properties of the 
reals: . 

8. -, 
r < c 

Here the output z has been taken to be O. 

A property of the reals : 

if 1 < u 
then u < u' 

o 

By special-relation rules, from goal 8, the above property, and othe rs: 

9. max(r, l) < i o 

By theory resolution, invoking the property (u < v or v :5 u ), applied to goals 9 and 7: 
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10. true 

if max ( r. 1) <; 
then 0 
e/,e .j [sqTt (li ) +;r ~ r 

then .;q;t( 2; ) + ; 
e/,e sqr/( 2i) 

At t.his stage, a suitable upper bound for the bounded-doubling relation has been found 
to be maxi r, 1). 

The real-number square-root derivation was first discovered manually; it was subse­
quently reproduced with an interactive program-synthesis system. 

8_ VARIATIONS 

In this section we present several analogous binary-search derivations for different prob­
lems and for difTerent specifications of the same problem. 

OTHER SQUARE-ROOT SPECIFICATIONS 

It may haxe occurred to the reader that we were just lucky in our choice of specifica­
tion. in that two subsentences of t he output condition turned out to be unifia.ble. What 
if the specification had been in some other form? Would we have been a.ble to obtain the 
same program? 

or 

For example, suppose we had phrased the output condition as 

:~ ~ rand (z + ()2 > r 

instead of 

z~ ~ r and not [(z + (j2 ~ rJ. 
Then we would not have been able to unify the two subsen tences of the initial goal 
and apply the resolution rule, as we did in our original deri vation . How could we have 
proceeded? 

In fact , we can apply the theory resolution rule . invoking t he property 

u ~ v or u > v 
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or. respecth 'ely, 

u ::; t' or v < u. 

We o btai II (after trans forma.t ion) the new goal 

.:~ :s rand ( ': + 2( )2 > r 

or . respectively, 

each of which is a replica of the initial goal. The balance of the derivations are as before, 

We could also have phrased t he ou t put condition as 

IVr-=I <L 
Here Vr is the precise square root of r ; the function ,fii is a non primitive that can 
nevertheless be employed in specification . This specification is weaker than the one we 
were given originally, since it permits: to be larger than Vr. With the help of the input 
condition , properties of the absolu te value function , and other properties of the reals , we 
can develop the goal 

o ::; Vr - = and Vr - z < € 

a lld then 

I • ). o ::; z an( z- ::; rand r < (z + < - . 

From this goal , we can derive the same program as before. Of course , because the speci­
fication is weaker. we can obtain a broader class of programs. 

~lany binary·search algorithms can be derived in an analogous way. Let us first 
consider some other real· number problems. 

THE DIVISION ALGORITHM 

Suppose a program to perform real· number division is specified as follows: 

dive r, &, €) ~ 

where 0 :s r 

find z such that 
: ·s::;r and not [(z+<).s::;,·] 

and 0 < sand 0 < L 

In other words, the program is required to yield a real number z that is within a tolerance 
< less t han r / $, the exact quo tient of dividing r by s. We obtain the program 
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diu(r, s, £) ¢' di l'(l) 

if 7' < l . s 
then 0 

diu(l ) ¢' else if [di u( 2l) + l ] . s ~ r 

then ;!.:. t·( 2l) + l 
else di l'( 2l) 

The auxiliary subprogram diu. which is analogous to the auxiliary subprogram sqrt. 
is like the top-level division program diu but takes rand s to be globals, not parameters. 
It meets the specification 

diu(l) ¢' find i such that 

i · s ~ r and not [(i + l). s ~ r] 
where 0 ~ rand 0 < s and 0 < i. 

The rationale for the dT.., program , like its derivation , is analogous to that for the 
real-number square root. The program first checks whether the error tolerance is very 
big, that is, if r < i· s. If so. the output. can safely be taken to be O. For, because 0 ~ r, 
we have 

O· s ~ r. 

And, because r < i· s , we have r < (0 + i)· s, that is, 

not [(O+l ) ·s ~ r]. 

Thus, 0 satisfies both conjuncts of the output condition for diu in this case. 

_ On the other hand, if l is small, that is, if l·s ~ r, the program finds a rougher estimate 
diu(U), which is within Uless than r / s. The program considers whether increasing this 
estimate by i will leave it less than r / s. If so, the rough estimate may be increased by l; 
if not, the rough estimate is already close enough. 

The termination proof for this program is also analogous to that for the square root. 
Although the argument l is doubled with each recursive call, the other arguments are 
unchanged and the calls are evaluated only in the case in which i· s ~ r , that is, l ~ r / s. 
Thus, there is a uniform upper bound on the doubled argument. 

BINARY SEARCH SCHEMATA 

It may be clear from the foregoing discussion that there is little in the derivations for 
the square-root and division programs that depends on the properties of these functions. 
More or less the same derivation suffices for finding an approximate solution to an arbitrary 
real-number equation f(z ) = r . 
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For a given primitive function symbol I. we consider the specification 

solvi( r. l) <= find: such that 
I (z) :s r and not [1(: + <):s ,.] 

where [
il b < u 1 

I (a) :S r and then not (J(u) :S r ) and 0« . 

Here a and b are primitive constants and u is a variable. In other words . we assume that 
there exist real numbers a and b such that I( a) :S rand 1(" ) > r for every real" greater 
than b. The specification is illustrated as follows: 

flu) 

__ ~~ ________ ~~~~~ ________ ~L-+-_____ ' 

----~~------~--~----------------~-----u 
z z+t b 

If I is assumed to be monotonica.lly increasing. the input condition can be simplified. But 
we do not need to assume that I is increasing or even continuous; if I is not continuous. 
an exact solution to the equation I (a) = r need not exist . but an exact solution is not 
required by the specification. 

The program we obtain is 

solve(r, i) <= solve(i) 

solve( () <= 

il b < a + i 
then a 
else il I( s~e(2i) + i) :S r 

then s~e(2i) + i 
else s~e( 2i) 

In the recu~ive case, in which a + i :S b, the solve program is so closely analogous 
to the previous binary-search programs as to require no further explanation. 

In the base case, in which b < a + i, the output can safely be taken to be a. For. by 
an input condition, we have 

I(a) :S r 
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~nd (b~' the other input condition. because b < a + i) 

no/ [/ (a + i ) ~ ,.]. 

Thus . a s~ t isfies both conjuncts of the output condition for .'Oil· ' in this case. 

The above program may be regarded as a schema. since we m~y take the svmbol I to 
be ~ny primitive funct.ion symbol. An even more general bina rv-search program schema 
c~n be derived from the specification 

.. earch(r , ( ) <= find = suc h that 
p(r, z) and not p(r. = + €} 

whe re p( ,'. a ) ant I [
if b < 1L ] 

then not p(r. u) and 0 < '-

where p is a primitive relat ion symbol and a and bare primiti\'e constants. We obt.ain t he 
schema 

.. earch(r . () <= sea rch(€) 

.. enrch( i) <= 

il b < a + i 
then a 
else if p(r, se-;;;ch(2i) + i) 

then .. earch(2 i ) + i 
else search(2i) 

INTEGER ALGORITHMS 

The programs we have discussed apply to the nonnegati\'e real numbers: using the 
same approach , we have derived analogous programs that apph' to the no nnegative inte­
gers. 

Integer sq uare root 

The integer square-root program is intended to find the integer part of Jii. the real 
square root of a nonnegative integer n. It can be s pec ified in the theory of nonnegative 
integers as follows: 

isqrt(n) <= find z such that 
z2 ~ nand not[(z + 1)2 ~ n]. 

In other words, the progra m must yield a notlnegiltive integer = th~t is \\'it hin 1 less than 
.fii. 
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In the course of the derivation. we are led to introduce a·n auxiliary program to meet 
the more general specification 

i~tn) <= find:: such that 
,2 ~ n and not [(::+;f ~ n] 

where 0 < i. 

In other words. we wish to find a nonnegative integer i that is within. less than .;n. 
This auxiliary specification is precisely analogous to the specification for the real-number 
square-root auxiliary sq rt( i'). with; playing the role of the error tolerance i. 

The motivation for introducing the auxiliary is as follows. In the derivation of the 
main program isqrt ( n). we have the initial goal 

By resolving this goal with itself and transforming. we obtain the new goal 

.:.1 not [(i + 2)2 ~ n] 
if (Z + 1)2 ~ n 

- ~ n and then i + 1 
else Z 

This su bgoa.l is a replica of the original goal. obtained by replacing the term 1 with 2 
and the ,·ariable 0 with :5. This suggests introducing the new auxiliary i~t(l ). whose 
parameter; takes the place of the replaced term 1 in the initial goal. The input condition 
o < ; for the auxiliary is introduced incrementally. while the derivation of isqTt(') is in 
progress. 

The programs we obtain to meet these specifications are 

isqrt(n) <= i~t(l) 

Integer quotient 

if n < ; 
then 0 
else if [i~t(2;) + ;]2 ~ n 

then i~t(2;) + ; 
else i~t(2;) 

The integer quotient program can be specified similarly: 

qllOt( m. n) <= find z such that 
z . n ~ m and not [( z + 1) . n ~ m] 

where 0 < n. 
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In other words, we wish to find a nonnegative integer z that is within I less than min, 
the real-number quotient of m and n. 

In the course of the derivation . we are led to introduce an auxiliary subprogram to 
meet the more general spec ification 

"uot( , ) <= find i such that 
i . n ::; m and not [(i + i) . n ::; m] 

where 0 < nand 0 < ,. 

In other words, we wish to find a nonnegative integer i that is within' less than m i n . 

The programs obtained to meet these specifications are 

quot(m, n) <= quot(l) 

if m < , . n 

then 0 
else if [qMt(2,) + i] . n ::; m 

then quoI( 2;) + i 
else quot(2, ) 

Here too the derivation is analogous . 

THE LAMEO FUNCTION 

The function lambo is a nonnegative-integer approximation for the inverse of a given 
nonnegative integer function f . We assume that f has the following properties: 

f is monotonically increasing, i.e., 

if u ::; v 
then f(u)::; f(v), 

f is unbounded, i.e., 

(3h) [u ::; f(h)], 

for all nonnegative integers u and v. Here h also ranges over the nonnegative integers. 

The specification for the desired program is 

/ambo( n) <= find z such that 
n ::; f(z) and 

(Vg ) [if 9 < z then f(g) < n]. 
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In other words, lambo{n) is the least nonnegative integer = suc h that" ::; f ( z). No te that 
this specification de pends on the gi\'en functio n f: for it different function f. we obtain a 
diffe rent specifi cation and . presumably. a differe nt progra m . 

A linear· time lambo program was derived by Dijkstra [821. who used transfo rmations 
of that program to provide a novel proof of a theorem of Lambek and ~-[oser-hen ce the 
name of the function . The derivation of a lambo program was posed as an exercise fo r 
participa.nts at t he 1985 Workshop on t he Specification and Derivation of Programs. in 
Marstrand. Sweden. A construction analogous to our square· root derivation turns out to 
yield a binary·search lambo program. We outline that deri vation briskly here. 

We begin with the tableau 

assertions goals 
out puts 
la mbo( n) 

1. n ::; f( z) and 
= if g( z ) < z then f(9{= )) < n 

Here g(z) is a skolem function obtained by eliminating the quantifier (Vg) from the spec­
ification. The unboundedness of f is expressed by t he assertio n 

2. II ::; f(h (uj) 

where h is a skolem function introduced to eliminate the quantifier (3h ). (Note that. 
by duality, existential quantifiers in assertions are treated in the same way· as universal 
quantifiers in goals .) The monotonicity of f is not represented by an assertion ; it is 
declared , and treated by the special-relation rules . 

lIsing the property of the nonnegative integers 

'lot (u < 0), 

taking z to be 0, we reduce our initial goal 1 to 

3. n ::; f lO) o 

In other words, in the case in which n ::; f lO) , our origina.l goal is true and the output 0 
meets the specification . 

Returning to our initial goal I, using the property 

u < v + 1 = u::; v, 

we can develop the goal 
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From an intuitive sta,ndpoint, if t hi s goal is t rue for some ; ', t he or iginal goal 1 is true , 
taking z to be,' + 1. For then n ::; f (t' + 1) and. if we assume that 9( z' + 11 < z' + 1, we 
ha"e 9(Z' + 1) ::; z' (by the property), hence f (9( z' + 1)) ::; f (z ' ) (by monotonic it)' )' and 
hence f(9(z' + 1)) < n (by goal 4 and transitivity) . Thus , both conjuncts of the initial 
goal 1 are true. In the system, the goal is obtained by a special· relation rule. 

Goal 4 is analogous to the initial goals of our other deri vations. Theory resolution of 
the goal with itself, invoking the property 

u ~ v or v < u, 

yields the new goal (after transformation) 

5. f(i ) < nand n::; f(i:+2) 
if f(i:+ 1) < n 
then i: + 2 
else i + 1 

This is a replica of our previous goal 4, obtained by replacing the constant 1 with the 
constant 2. This suggests forming an auxiliary subprogram, which we shall call limbo(l), 
with output condition 

f(i) < nand n ::; fe: + I). 

Two input conditions, 

0<1 and f(O) < n, 

are introduced incrementally during the derivation of limbo. In short , the ultimate spec­
ification for the subprogram is 

limbo(l) ~ find i such that 
f(i) < nand n::; f(Z + I) 

where 0 < I and flO) < n. 

An assertion describing the auxiliary limbo is introduced into the main tableau; we 
can then complete the main derivation, obtaining the program 

lambo(n) ~ then 0 
{

if n ::; f(O) 

else limbo( 1) + 1. 

The derivation of the auxiliary limbo closely resembles the other binary-search deriva­
tions. We obtain the program 
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lin/boO) <= 

If n <::; 1(;) 
Ihe n 0 
else if l(limbo(21) + ;) < n 

Ih", limbo(2! ) + ! 
else l imbo(2! ) 

(As usual , the three recursive calls can be combined by common· subexpression elimin at ion 
and the program can be transformed into an iterat ive equi valent.) 

The well· founded relation t hat serves as the basis for the induction (and t he tenni· 
na tio n argumen t ) is again t he bounded· doubling relation --: bd(y)' The upper bound y in 
this case is hi ll). where h is the skolem func t ion in the unboundedness assert ion 

,, <::; f (hlu)). 

(Therefore , h ( n) is an argument that will force I to exceed t he given integer n . ) For. 
intuitivel,' speaking. if the parameter; of lim bo exceeds this upper bound , that is , if 

hi ll ) < ! . 

we ha\'e 

I (h(n)) <::; I (!) 

(by the monotonicity of f) and hence 

(by the unboundedness assert ion and transitivity ). In this case. the limbo program exi ts 
via the base case; the recursive cail is not executed . Consequently, the upper bound on ; 
is maintained whenever the recursive caU is executed , and termination is not endangered. 
In the derivation, of course , this argument is conducted within the rules of the system . 

Note that. in this example, the choice of the weil·founded relation -< bd(h(n)) depended 
on the skolem function h. This function is not primitive; we are told that an argument 
exists that will cause I to exceed the given integer , but we are not told how to compute 
such a·n argument. For this reason, the {ambo example has somet imes been regarded as a 
challenge to sys tems that extract programs from purely construc tive mathemat ical proofs 
(e .g .. Martin·Lof [i9J, Sato [i9]. Nordstrom and Smith [84J, Bates and Constable [85]) . In 
such a system, a quantity exists only if we have the means to compute it. Here we deal 
with a quantity that, we are told, exists - but we have no means to compute it ; however, 
we do not need such a computation, because the quantity 's precise value has no bearing 
011 the output. 
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9. CONCL USION 

The examples in this paper serve to illustrate the applicat ion of the dedu ctive· ta bleau 
system. In a more general sense , they suggest ways in which a mechanical system might 
in"ent a novel programming concept. 

The results of this investigation run counter to our usual experience. It is common 
for a bit of apparently simple and intuitively straightforward reasoning to turn out to be 
difficult to formalize and even more difficult to duplicate automatically. Here the opposite 
is true: an idea that requires a substantial leap of human ingenuity to discover is captured 
in a few easy formal steps. We may consequently imagine that truly original ideas will 
arise from the fortunate application of simple mechanisms. 

ACKNOWLEDGMENTS 

We would like to thank Martin Abadi, Michael Beeson, Ron Burback, Bengt Jonsson , 
Yoni Malachi, Eric Muller, Larry Paulson, Mark Stickel , and Jonathan Traugott for help­
ful discussions and constructive suggestions on the subject of this paper; and Evelyn 
Eldridge-Diaz, for 1E:,Xing many versions of the manuscript. The square-root derivation 
was reproduced with an interactive program-synthesis system .by Frank Yellin. 

REFERENCES 

Bates and Constable [85J 
J. L. Bates and R. L. Constable, Proofs as programs, A CM Transactions on 
Programming Languages and Systems, Vol. 7, No.1, January 1985, pp. 113-136. 

Dershowitz and Manna [77J 
N. Dershowitz and Z. Manna, The evolution of programs: Automatic program 
modification, IEEE Transactions on Software Engineering, Vol. SE-3, No.6, 
November 1977, pp. 377-385. 

Dijkstra [82J 
E. W. Dijkstra, Lambek and Moser revisited (Function property proving), in 
Theoretical Foundations of Programming Methodology (M. Broy and G. Schmidt, 
editors), Reidel, Dordrecht, Holland, 1982, pp. 19-23. 

Harrison and Khoshnevisan [86J 
P. Harrison and H. Khoshnevisan, Efficient compilation of linear recursive func­
tions into object-level loops, SIGPLAN '86 Symposium on Compiler Construc­
tion, Palo Alto, Calif. , June 1986, pp. 207-218. 

193 



Manna and Waldinger [80] 
Z. Manna and R. Waldinger, A deductive approach to progrilm sy nt hesis. ,.leI! 
Transactions on Programm ing Languages and Syste1li$. Vol. 2. :\0. 1. Jan uary 
1980, pp. 90-121. 

Manna and Waldinger [86) 
Z. Ma.nna and R. Waldinger, Special relations in automated deduction, Journal 
of the ACM, Vol. 33, No.1, January 1986, pp. 1-59. 

Martin-Lor [79) 
P. Martin-Lof, Constructive mathematics and computer programming, Sixth In­
ternational Congress for Logic, Methodology, and Philosophy of Science, Han­
nover, August 19i9. 

M urra~' [82) 
N. V. Murray, Completely nonelausal theorem proving, Artificial Intelligence, 
Vol. 18, No.1, 1982 , pp. 67-85. 

Nordstrom and Smith [84) 
B. Nordstrom and J. Smith , Propositions and specifications of programs III 

Martin-Lo!'s type theory, BIT, Vol. 24, 1984, pp. 288-301. 

Robinson [65) 
J. A. Robinson, A machine-oriented logic based on the resolution principle, Jour­
nal of the ACM, Vol. 12, No.1, January 1965, pp. 23-41. 

Robinson [i9) 
J. A. Robinson, Logic: Form and Function, North-Holland, New York, N. Y .. 
19i9 . 

. Sato [79) 
M. Sato, Towards a mathematical theory of program synthesis, Sixth Interna­
tional Joint Conference on Artificial Intelligence, Tokyo, Japan . August 1979, 
pp.757-762_ 

Smith [85J 
D. R. Smith, Top-down synthesis of simple divide-and-conquer algorithms, Ar­
tificiallntelligence, Vol. 27, No. 1, September 198.5, pp. 43-96. 

Stickel [8lJ 
M, E. Stickel, A unification algorithm for associative-commutative functions , 
Journal of the ACM, Vol. 28, No. 3, July 1981, pp. 423-434. 

Stickel [85 J 
M. E. Stickel, Automated deduction by theory resolution, Journal of Automated 
Rea3oning, Vol. 1, No.4, 1985, pp. 333-355 . 

. 194 



Traugott [86] 
J. Traugott. Deductive svnthesis of sorting programs. £ ighlh i lliernillional COIl­
jerellce Oil ,4utomal<d Deductioll. Oxford, England . J uly 1986. pp . G~I-G60 . 

\\ 'ensley [59] 
J . H. Wensley, .-\ class of nonanalvtical ite rative processes, Compuler Journal. 
Vol. I, January 1959, pp. 163-16;. 



DISCUSSION 

After Dr. Manna had concluded his talk, Professor Backhouse commented 
on his style of notation. Referring back to a talk given earlier by Dr. Gries, 
Profesor Backhouse remarked that one usually used smaller symbols for those 
operations that bind tightly. He also suggested that the use of tableaux was to 
overcome problems with notation. Dr. Manna replied that he preferred to use 
spaces, as opposed to parentheses, to show how symbols bind, and refuted 
Professor Backhouse's suggestion that there was a problem in deciding what is 
the actual scope of some quantifier or other. 

Professor Randell asked if Dr. Manna could comment on the relative power 
of the present automated proof systems, like those at Texas, SRI and Argonne. 
Dr. Manna replied that he preferred to restrict himself to comments on the actual 
logic behind systems such as these, only suggesting that the systems did not, as a 
rule, match the beauty ofthe underlying logic. 

Professor Pnueli asked how temporal logic fitted into the scheme of things, 
with Dr. Manna replying that the techniques presented earlier could be applied to 
temporal formulae. 

Finally, Dr. Schneider wondered whether any work was at present 
underway to package the computer-produced proof in a form easily 
understandable to the human reader. Dr. Manna replied that the system of Boyar 
and Moore already produced proofs which included English statements, and that 
these proofs are quite simple to follow. 
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AUTOMATED DEDUCTION 

First-order: quantifier-free, with equality 

• Goal: 
Show that a given set of sentences 
("deduced set" ) 
is unsatisfiable 

• Application: 
To show that 

B is valid 

in a theory with axioms A l , ... , An, 
show that 

AI, ... , An, ,B is unsatisfiable 

• Non-Clausal: 
free form 
full set of connectives 
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DEDUCTION RULES 

Add new sentences to the set, 
preserving its unsatisfiability 

FI , F2 , ••• , Fk 
F 

• soundness: 

• deductive process: 
Given set of sentences, 
add sentences 
until false is introduced. 

• rules: 
non-clausal resolution rule 
replacement rule 
induction rule 
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RULE: Non-Clausal Resolution 

(ground version) 

• soundness 

F[P] 

G[P] 

F[jalse] V G[true] 

(F[P] /\ G[P]) --+ (F[false] V G[true]) 

• true-false simplification 

A V true => true , 

A /\ true => A, 

• polarity strategy 

p+ ~ false In F 

p- ~ true in G 
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POLARITY 

-'[R V -'~iJ 
in even # of -,'s 

-'[R V [~-] 
"L..-----in odd # of -,'s 

Q- -+ R+ same as 

Q± = R± same as 

property: 

Consider F[A+] and G[A-] 

(-,Q) V R 

(Q- -+ R+) /\ 

(R- -+ Q+) 

(A -+ Ii) -+ (F[A+] -+ F[BD 

(A -+ B) -+ (G[B] -+ G[A -D valid 
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RULE: Non-Clausal Resolution 

F[P1, ... ,Pn ] 

G[P1, .•• , Pm] 
F()[false, ... , false] V G()[true, ... , true] 

where () simultaneous, most-general unifier 

• standardized apart 
no common variables in F , G 

• true-false simplification 

• polarity strategy 

~+ ~ false In F 
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EXAMPLE 

F: '[(Z2 < a) 1\ .((Z + c)2 < a)] 

resolution rule applied to F itself ~ p 
F: .[(z2~a) 1\ .[(z+c)2~al-IJ 

G: .[[w2~a - 1\ .((w+c?<a)] 

mo!general unifier 

()={w~Z+c} 

by resolution rule 

'[(Z2 < a) 1\ .false] 

V 

• [true 1\ ..., ( ( (z + c) + c) 2 < a)] 

by simplification 
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• non-clausal resolution 

rule: Manna & Waldinger [80] 
completeness: Murray [82] 

implementation: Stickel [82] 

SPECIAL CASE: 

• clausal (classical) resolution 
Robinson [65] 

F --z..-:'=? Q V P 

G ~ R V -,P 

Q V R 

// 
F[false] G[true] 
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POLARITY OF SUBTERMS 

We define polarity of occurrences of 
x and y in P 
w.r.t. -< 
so that ("polarity replacement") 

x-<y-+ 
(P(x+, y-) -+ P(y, x)) valid 

Example: 

P: card(s-) < m -w.r.t. C 

Therefore 

(s C t) -+ 

(card(t-) < m ---r card(s) < m) valid 
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I Example: 

RULE: -<-replacement 

(ground version) 

F[/s-<tl+] 
G(s+, t-) 

F[jalse] V G(t, s) 

F: pea) v{s~t1+ 

± w.r.t. to -< 

G: card(s+) < m --+- q(s) 
~ 

by C -replacement rule \ 

p(a) V false 

V 

card(t) < m --+- q(s) 
. 
l.e. 

p(a) 

V 

card(t) < m --+- q(s) 
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EQUALITY (=) AXIOMS 

• transitivity: (x = y 1\ Y = z) -+ x = z 

• symmetry: x = y -+ y = x 

• reflexivity: x = x 

• functional substitutivity: e.g. 

x = y -+ J(x;z) = J(y,z) 

x=y -+ J(z,x)=J(z,y) 

• predicate substitutivity: e.g. 

x=y -+ p(x,z)=p(y,z) 

x=y -+ p(z,x)=p(z , y) 

PROBLEMS: 

• Many axioms 

• Difficult to control 
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RULE: =-replacement 

(ground version) 

• special case: -< is = 

• Every subterm is ± w.r.t. = 

F[ Is = t 1 +] 
G(s, t) 

F[jalse] V G(t , s) 

Non-clausal version of paramodulation 
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EXAMPLE 

~S:t-

F :[ r--0-' -u-=:;;""'o-'I + 

G: ...,[(~<n) 1\ ((z+l).d>n)] 
'S~ 

most-general unifier 

{] = {z f- 0, U f- d} 

by =-replacement rule 

false V ...,[(O<n) 1\ ((O+l).d>n)] 

. 
l.e. 

.,[{6--<E-n) 1\ ((0 + 1) . d > n)] 
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EXAMPLE 

x 3 = x il a ring ==:::}- ring is commutative 

Assertions 

O+x=x (-x)+x=O 

x· (y + z) = x . y + x . z 

(x+y)·z=x·z+y·z 

-0=0 - '(-x)=x 

x·O=O O·x=O 

-(x + y) = (-x) + (-y) 

x·(-y)=-(x·y) (-x)·y=-(x·y) 

(x + y) + z = x + (y + z) x + y = y + x 
(x . y) . z = x . (y . z) 

x3 = x (hypothesis) 

Goal 

U'V=V'U 

Boyer & Moore (Texas) 

Stickel (SRI) 

Wos & al. (Argonne) 
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DIRECT PROOFS 

First-order: quantifier-free, with equality 

• Non-Clausal: 
free form 
full set of connectives 

• To show that 
B is valid 

in a theory with axioms 
AI, ... , An, 

prove the validity of the tableau: 

assertions goals 

Al 

B 
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• meanIng 

duality 

TABLEAU 

I assertions I goals I 

P I I 
I Q -.R I 

Q I I 
I .,R I 

(P /\ Q)-. 

((Q-+R) V 'R) 

assertion A ;- goal ,A 

goal G ;- assertion ,G 

211 
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DEDUCTION RULES 

add new {goal" } to the tableau 
assertIOn 

preserving its validity 

"1 h {gOal true }" " d d untI t e t" f l IS Intro uce asser IOn a se 

• rules: 
non-clausal resolution rule 
replacement rule 
induction rule 
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RULE: Non-Clausal Resolution 

(ground version) 

assertions goals 

F[W +] 

G[ [B -] 
F[true] /\ G[Jalse] 

• polarity strategy 

fPl + '-+ true In F 

o -'-+ false in G 
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RULE: Non-Clauital Resolution 

assertions goals I 

F[[B+] I 

F8[true] 1\ C8[jalse] I 

where 

• 8 most-general unifier of P, Q 

PB = QB 

• no common variables in F, G 

polarity strategy -

Ipl + '-+ true in F 

fQ7 - '-+ false in G -

. 21 4 
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RULE: -<-replacement 

assertions goals 

F[ [s -< t f ] 

FB(false] V GB(tB, sB) 

where 

• ± w.r.t. -< 

• B most-general unifier of s, sand t, i 
-58 = Sf) tf) = if) 

• no common vana;bles in F, G 

polarity strategy 

)s -< t 1- C-...+ false In F 
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EXAMPLE 

I I assertions I goals I 
I F I p( a) V I s c; t (- I I 
I G I card(s+) :s m ~ q(s) I I 

by C-replacement rule 

p(a) V false 

V 

card(t) < m ~ q(s) 

by simplification 

p(a) 

V 

card(t) < m ~ q(s) 
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RULE: =-replacement 

• special case: -< is = 

• every sub term is ± w.r.t. = 

assertions goals I 

G(s, t ) I 
FO[jalse] V GO (tO, sO ) I 

where 

• no common variables in F, G 

• 0 most-general unifier of s, sand t, t 
sO = sO, to = to 

• no polarity restriction for s, t 
Non-clausal version of paramodulation 

polarity strategy 

[s = t j- ~ false in F 
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TEMPORAL-LOGIC PROOFS 

goal 

[O(p(a) V q(a)) 1\ DVX.-,p(X)] ---+ Oq(a) 

I.e. 

skolemization 

[l:p(a) V q(a) 1\ t: -,p(x)] ---+ 1: q(a) 

initial tableau: 

I assertions I goals I 
I AI. 1: I p(a)) - V q(a) I I 
I A2. t: -, (p(x)J + I \ 

I I G 1. \ 1: q( a) I + \ 
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resolution:A.1, A2 {x ~ a, t ~ 1} 

1: false V q(a) 

V 

1: ,true 

I A3. (l:q(a)l-

vesoLv/-''fh, .' G I J 113 

. 21 9 

true 
V 

,false I 
I G2. true I 
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DIltECT TEMPORAL PROOF 

goal 

[o(p(a) V q(a)) 1\ oV'x .• p(x)] -+ Oq(a) 

negation 

o (p(a) V \ q( a) I +) 1\ oV'x.-,p(x) 1\ • O~ -

resolution 

[... 1\ oVx .• p(x) 1\ ... J 

1\ 

[O(p(a) V false) v.OrueJ 

simplification 

ovx .• p(x) /\ Op(a) 

o (derived) rule: Du -+Ou 

o Vxo-,p(x) 1\ Op(a) 
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skolemization 

'ix~ ~(x)l- 1\0' p(a)} +] 
resolution 

'ixf[· .. /\ . .. J /\ p.true V OfalseJ] 

simplification 

false 
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RULE: well-founded induction 

assertions I goals 

I (U -< a) ~ F[u] I 

I I F~ ) 

I I Vx.F[x] I 
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APPLICATION: 
-

PROGRAM SYNTHESIS 

Specification 

f(a) ~ find z such that R[a, z] where P[a] 

1 
Theorem 

(Va)(3z){if P[a] then R[a, z]) 

1 
Proof 

constructi ve 

1 
-- --- -- Program 

correct 
terminates 

x i= 0 ~ 3y(x = y + 1) 
x :F- 0 ~ x = (x - 1) + 1 ... 
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REAL SQUARE ROOT 

Specification: 

sqrt( r, €) -{:= find z such that 

Program 

z2 < r A ..., [ (z + €) 2 < r] 
where 0 < r A 0 < € 

[_--'!Vr~r __ ) 
z z+€ 

sqrt( r, €) -{:= if max( r, 1) < € 

then 0 
else if [sqrt(r, 2€) + €F < r 

then sqrt(r, 2€) + € 

else sqrt( r, 2€) 
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RATIONALE 

• CASE: max(r, 1) < € 

[ 
o 

• CASE: € < max(r, 1) 

[ 
sqrt(r, 2€) sqrt(r,2€) 

+€ 
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sqrt(r, 2€) 
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HOW TO BEGIN? 

Specification: 

f(a) <¢= find z such that R[a, z] 
whereP[a] 

Theorem: 

(Va)(3z){P[a] -r R[a, z]) 

Initial tableau: 

a constant 

z variable 

assertions 

P[a] 

goals output 

f(a) 

R[a, z] z 

domain knowledge ~ assertions 
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--_ .... 

E~AMPLE: SQUARE ROOT 

Specification 

sqrt(r, c) ~ find z such that 

z2<r /\ -'[(z+c)2<r] 

where 0 <r /\ 0 < c 

Theorem: 

[ 
(0 < r /\ 

(V'r)(V'c:)(~z) 2 -
Z < r /\ 

o < c:) -l- 1 
-,[(z + c:)2 < r] 

Initial tableau: 

assertions goals output sqrt(r,c:) 
f(a) 

o <r A 

O<c: 
z'l. < r /\ z 

-,[(z + c:)2 < r] 
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STRUCTURE OF PROGRAM 

REFLECTS 

STRUCTURE OF PROOF 

Case analysis ~ Conditionals 

sqrt(r, c:) ~ ... if .,. 

then· .. 

else· .. 

Mathematical induction ~ Recursion 

sqrt(r, c:) ~ ... sqrt(r, 2c:)· .. 
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DEDUCTION RULES 

Add new rows to a tableau 
without changing its meaning 

assertions goals 

O<r !\ 

O<c 

z2 < r !\ 

.[(z + c)2 < r] 

u 2 = u· u 

v·O = 0 

• 
• 
• 

• 
• 
• 

229 
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_ . 

HOW TO FINISH? 

assertions goals output sqrt( r, E:) 

• 
• 
• 

if max(r, 1) < c 
then 0 

tp.ve else if [sqrt(r, 2c) + cF < r 
then s'qrt(r, 2c) + c 
else sqrt(r, 2c) 

\. . • • pnrrutlve 

The final program is 

sqrt(r, c): if c < max(r, 1) 
then 0 
else if [sqrt(r, 2c) + cF < r 

then sqrt( r, 2c) + c 
else sqrt(r, 2c) 
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RULE: N on-Clauilal Reliolution 

(Case Analysis) 

assertions goals I output f(a) I 

F[P+] I s I 
G[P-] I t I 

R 
F[true] if P 

/\ then s 
G[Jalse] else t 

P occurs in both F and G 

• general case: unification 

• polarity 

• non-clausal 
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EXAMPLE: invention of binary itearch 

I goals I output sqrt( r, c) 

Iz 
I w 2 < r /\ -, I (w + c )2-< r 1 - Iw 

fJ={z+-w+c} 

true /\ -,[((w + c) + c)2 < r] if (w + c)2 < r 
/\ then w+ c 

w 2 < r /\ -, false else w 

transformation 

232 
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else w 
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RULE: theory resolution 

(Stickel) 

assertions I goals I output f(a) I 
F[P+] I S I 

I " G[Q+] I t I 

R 
F[true] 1\ if P 
G[true] 1\ then s 

-,H[false, false] else t 
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EXAMPLE: 

I goals I output sqrt(r, c) 

Imax~r, 1) < er- a 
if [sqrt(r, 2e) + e]2 < r 

(e < Y~ 
then sqrt(r, 2e) + e 

else sqrt (r , 2e) 

H: ! u < vr- or lv ::; ut+­
most-general unifier 

() = {u +- max(r,l), v+- e, y +- max(r, 1)} 
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true 1\ 

true 1\ 

-,(falseV false) 

l.e. 

true 

if max(r, 1) < 6 

then 0 

-----

else if [sqrt(r, 26) + 6J2 < r 
then sqrt( r, 26) + 6 
else sqrt(r, 26) 

if max(r, 1) < 6 

then 0 

else if [sqrt(r, 26) + 6]2 < r 
then sqrt(r, 26) + 6 
else sqrt(r, 26) 
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THEORY OF PLANS 

s:hat( a) hat( a) in state s 

s::elear( a) truth value of c1ear( a) in state s 

s;put( a,table) executing plan in state s 

PI; ; P2 composition of plans 

put-table-on axiom: 

that is 

· .. · .. 
• • 

" 

Clear(w, x) ~ 

On(put(w,x,table) , x, table) 

w::Clear(x) ~ 

On(w;put(x,table), w:x, table) 

not primitive 
primitive 

236 



t 

. I ' 

APPLICATION: 
SYNTHESIS OF PLANS 
(or imperative programs) 

Goal 

R[so, a, z] 

1 
Theorem 

(Vso) (Va) (3p)R[so, a, so;p] 

1 
Proof 

constructi ve 
(in plan theory) 

1 
Plan 

237 
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EXAMPLE: Monkey, Banana and Bomb 

monkey 

a b 

PLAN THEORY (Manna & Waldinger) 

no pia n (constructive proof) 

SITUATIONAL LOGIC (McCarthy, Green) 

theorem: ('Vso)(3z)hasbanana(z) 

program getbanana(so)-¢= 

if hasbanana(goto(so, a)) 

then goto(so, a) 

else goto(so, b) 

non-executa ble "pia nil 

- ----- -- ---- - -"- ---- --
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EXAMPLE: CLEAR A BLOCK 

b 

~ a p , a 

c c b 

So 

Clear(so;p, a) 

(Vso)('lJa)(:Jp)Clear(s o; p, a) 

constructive proof 

makeclear(a) ~ if clear(a) 

then /\ 

else makeclear(hat(a)); 

put(hat(a), table) 
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APPLICATION: 

LOGIC PROGRAMMING 

sentences: Horn cia uses 

deduction: SLO-resolution 

la ng uage : PROLOG 

-/ 

sentences: quantifier-free 

fi rst-order log ic 

deduction non-cia usa I resol ution 

equa lity ru le 

language: TABLOG 

• model wortU as assertions 

• express problem as goal P(x) 

• prove sentence :3x P(x) 

• extract answer from the proof 
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COMPUTE FIRST n PRIME NUMBERS 

ASSERTIONS 

primes(n) = truncate(n, sift(integers(2»); 

truncate(O, u) = [J; 

truncate (succ(n), i.u) = i.truncate(n, u); 

integers(i) = i.integers(succ(i»; 

sift(i.u) - i.sift(filter(i, u); 

filter(p, n.u) - if P divides n 

then filter(p, u) 

else n.filter(p, u); 

GOAL x - primes (50); 

x = [2, 3, 5, 7, 11, . .. , 229] 
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- ---

- PROLOG VERSION 

primes(N, U) :- truncate(N, int(2) , U). 

truncate(O, U, [J) . - , . · . 
truncate(N, U, [P I VJ) · -· 

getone(U, P, Ui), N1 is N-1, 

truncate(N1, filter(P, Ui), V). 

getone(int(N), N, int(N1)) :- N1 is N + 1. 

getone(filter(P,U), M, W) :-

getone(U, N, V), 

filter(P, N, V, M, W). 

filter(P, N, V, N, filter(P, V)) :­

divides(P,N), !. 

f il ter (P, N, V, M, W) :­

getone(V, N1, V1), 

filter(P, N1, V1, M, W). 
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DISCUSSION 

Dr. Schneider began the discussion by asking whether Dr. Manna worries 
about underflow and overflow. Dr. Manna replied that, to a certain extent, he 
doesn't. 

Professor Randell remarked that he found it difficult to see how plan theory 
is not just another terminology for specifying programs, provoking instant 
agreement from Dr. Manna. 

Professor Sintzoff found the program synthesis very interesting but 
remarked that very stuJ(id and inefficient programs could be generated. He asked 
Dr. Manna whether thiS aspect could be controlled; that is, whether he could 
formally require some semantic properties. Dr. Manna replied that little had been 
done in this area and that this is a new avenue to be followed in the near future. 
He added that at present only the most basic restrictions can be applied. 
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