
SPECIFICATION AND VERIFICATION USING HIGHER-ORDER LOGIC:
A CASE STUDY

F.K. Hanna and N. Daeche

Rapporteur: Mr. A.M . Koelmans

107

'"

Specification and Verification using
Higher-Order Logic: A Case Study

F K Hanna and N Daeche

University of Ken t

Canterbury! Ken t, U. K .

Higher-order logic is an ideal computer hardware description language: it allows the

behaviour of digital dev ices to be rigorously specified, and it allows the correctness of

digihl sys tem des igns to be Connally verified. T he VE RITAS app roach to specifica tion

and verification is based on the use of bigher-order logic. As a case s tudy of t his

approach, a behavioural specification for an edge· t ri ggered D· type flipfl op is formu

lated , and a desc ri p tion is given of t he stages involved in computationa lly ve rify ing

the correct ness of a commonly used implementat ion of t his kind of flip flo p.

1. Introduction

Contemporary computer ha rdware design languages (C HDL's) have been designed to ach ieve

many aims, includ ing the abi lity to:

• describe the structure of d igital systems (possibly hierarch ically),

• describe the behaviour of digit al syst ems (possibly at diffe rent leve ls of abst ract ionL

• simulate t he behaviour of aMemblages of digit al components,

• traDsform structural or behavioural desc ript ions inlo othe r forms (for example, into wiring

list., or into waveform diagrams, etc L

• generate fault diagnostic io fonn ;J.t ioo , etc .

One aim, however, which by and large t hey have not set ou t to ach ieve is t ha t of allowi ng

Te360DjDI about the properties of struct ures, t he properties of behav iours, or of t he interre·

iat ionship between s tructures and be haviou r!l- . Alt ernatively stated, litt le elllphasis has been

given to the definit ion of the sem an tics of C II UL's.

In this respect, C HDL 's are similar to many existi ng programmi ng languages (for example,

FORTRAN , LISP, AOA , etc). These languages , although they are seen as being we ll suited for

expressing complex sequences of computation, have semantics which (to the extent that they

have been defined at all !) are of immense intricacy. For example , a recent a ttem pt to define

the semantics of AOA ran to some severa.l hundred pages ..

108

On the other hand, some recent programming languages (OCCAM being a prime example)

do have a well defined, and relatively simple, semantics. This comes about not by accident, but

because the design of such languages started with semantic considerations, with other aspects

of the languages (eg, syntax, implementation, etc) being attended to only after the semantics

had been rigorously defined . The end result is that it is relatively simple to reason (either

intuitively, or fonnally) about the properties (correctness, termination, equivalence, etc) of

programs written in such languages.

We believe that a similar approach can usefully be adopted towards the design of CHDL's.

The clarity, simplicity and rigour of definition of the semantics of a CHDL (rather than, for

example, its syntax, or its built-in tim ing primitives, etc) should be the prime consideration

influencing its design .

Once this point of view has been adopted, the question naturally arises as to what notation

or formalism is best suited (or expressing the semantics of a CHDL. It is not difficult to list

the relevant criteria:

• Ideally, the formalism should already exist. This means that it will have been well re

searched, (independently of our intended use for it) and there will be an existing commu

nity of lexperts' from whom help may be sou ght in resolving any tricky technical points.

• The formalism should be both powerful and concise. In Cac t, if we intend to use it to reason

about arbitrary properties oC complex hardware designs, it should be powerful enough to

encompass a 'large part of mathematics itself.

• At the same time, the formalism shou ld be not too far removed from the informal modes

of expression and intuitive reasoning that digital engineers use most of the time.

• It should allow partial descriptions to be expressed and reasoned about. The real world

is both indeterminate and of unbounded. complexitYi our knowledge of it is therefore

inberently partial. Thus, any to tal description of it must necessarily be an incorrect one .

• Finally, the formalism should be a strict ly formal one. This implies that reasoning in the

formalism can be carried out by formal ioferencing (or, altern atively expressed, by symbol

manipulation). In turn, this implies that the logical soundness of any reasoning carried

out in the formalism can be comput.1tional/y checked.

Taken together, this list of criteria is almost prescriptive in sugges ting typed, higher·order

predicate logic 1111 as the formalism of choice. As a brief illustration of why higher-order logic,

rather than just first· order logic is appropriate, coc.sider the following seq uence or concepts:

• The volt:.ge at ;\ port. We c."!. " cO ll si<ier a voltage to be a firs t -order ec.tity.

• The waveform at a port. A waveform is a fUDction Crom time to voltage, and hence it is a

second-order entity.

• The behavioural specification of a dev ice. As we shall discuss in §2.3 below, a beh avioural

specification is a predicate on a tuple oC wavefonns. It is, thereCore a tbird-order entity.

• The relation 'better tban', meaning that one behavioural specification is stronger (ie, more

109

"

restrictive) than another. This is a. predica te on pairs of behaviOural specifications, and

hence is a fourtb-order entity.

• The property 'js a tran sitive relation' (3 property that we might wish to assert the above

relation 'better tban' possesses). This property is a predicate on the above fourth-order

relation, and hence it itself is a Bfth-order entity.

Thus, (and this is not a particularly 'contrived' example) we find that a fairly intuitive property

- the transit ivity of the above relation - is a fifth-order one. By using higher-order logic we

gain the ability to freely introduce and manipulate bigher-order entities. In turn, this leads

to an easy and natura l correspondence between intuitive, everyday concepts and their precise,

fonnal expression within the CHDL.

The reason why a 'typed' species of logic is used is twoCold. Firstly, the (.informal) notations

of science and engineering tend to be typed (eg, let w be a waveform, t be an instant of time,

etc) and thus typed logic provides a more concise and natural means of expression than does

untyped logic. Secondly, like the untyped A-calculus, 'ordinary' higher-order logic suffers from

being inconsistent; the introd uction of types is one way oC overcoming this defect.

Relation t o other forma lism8 Another feature we might mention in favour of the use of

typed higher-order logic is that it includes, as proper subsets, two other formalisms which are

also currently being explored as a basis for reasoning about the properties of digital systems.

These are:

• The 'functional' subset (essentially Church's typed A-calculus) . Terms in this subset can be

'evaluated', and thus behavioural specifications rest ricted to this subset can be 'animated'.

• The 'first-order, Horn clause' subset (essentially PROLOG) . The truth values of (some)

terms expressed in this subset Can be mechanically determined, and thus questions posed

about properties or behavioural specifications restric ted to this subset can be automatically

answered .

1.1 Backgrou nd

We have given the name VEruTAS to the general approach to specification and verificat ion

of digital systems based on the use of predicate logic. We al~o use this name variously to

describe the oven II methodology, the project under which tbis approach bas bee n develo ped,

and the particular species of logic used. Work on the VERlTAS project started in 1981, with

the publication 121 of a set of theory presentations ch aracterising, within first- order logic, the

atructura.l and beh:\Viollr~1 properties o f di~c re te logic devices, ~nd the first computatio nally

checked proofs were obta.ined in 1982. The use of higher·order logic Co r this purpose was lirst

proposed in 131.

Relation to other work The use of logic to describe properties o f the physical world and

to reason about their interrelatio n finds its origins with Euclid's informal axiomatisation of

geometry in ancient times, and with Hilbert's more formal axiomatisatioD of the same at the

110

beginning of this cen tury. Since then, proposi tion al logic. (Boolean algebra) has underpinned

much of the development of digital logic and computers, and , over the last couple of decades,

both first-order logic and the ~ -c a lcu l us have found extensive use in software verification.

Within the field of hardware verification, approaches relating to the one desc ribed here

have been reported by several authors. Eveking 181 has advocated the use of first- order logic and

has developed an approach based on t he use of predicate transformers, and has discussed the

way that descrip tions at different levels of abstraction may be related. The use of higher-order

logic (with an emphasis towards specification and verification a.t higher levels of abstraction

than those discussed here) is described [71 by Gordon, and an associated case study by Herbert

is presented in 191. Finally, we mention that the use of predicate logic to reason abou t circuits

al Ihe analogue level i, described 161 by Shostak.

1.2 Contents

The main aim of th is paper is to present a case study, of moderate complexity, demonstrating

the VERlTAS approach to the behavioural spec ification of a digital device, and to the formal

verification of a proposed implementation of it . The remainder of this paper is organised as

follows:

• We begin with a discussion of our approach to partially describing waveforms, and in tro

duce the concept of a ' wavespec' - that is, a waveform spec ification.

• We illustrate (as a si mple example) how, using higber.order logic, the behaviou r deemed

to character ise a NAND gate can be specified.

• As a more complex example, we specify the behaviou r of an edge-triggered, D· type flipflop

(we abbreviate the name of this device to 'D·flipftop').

• We describe a proposed implementation, in tenns of NAND gates , of a D· HipHop, and

attempt to describe, at an intuitive level, how it works. This turns ou t not to be easy ...

• We introduce the notions of formal veri fica.tion, and of computational theorem proving.

• As a case study in formal verification , we desc ribe the various stages involved in com·

putationally constructing a fonnal proof assertin g the correctness of the above proposed

implementation of the D·fti pftop.

• Finally, we indic:lte the pract ic al significance of the above resul t , :lnd summarise our main

conclusions.

Although this paper is largely self·c ontained, it does not attempt to cover all aspects of the

subject. A different perspective on t he use of higher·order logic for specifica tion and verifica tion

will be found in [41, with an cmph:lsis on the formal specific:ltioD of st ructures (ie, circui t

diagrams). In addition , in \51 can be found a full and detailed account of the forrnallogic used

here and a. descrip t ion of the VERITAS Theorem Prover, together with a tu torial exposit ion on

the la.tter.

111

1.3 Notation

The mathematical notation used in this accouot is, with one or two minor exceptions, one of

the nota.tions used by the computational impif!mentatioD of the system (as described la ter) .

There are only three features that need comment:

• The application of a function f to a set of arguments %1, Xl, . .. I In is denoted. (in the

'app\icative' style) by ([Xl Xl ... Xn) ra.ther than by I(Xll %" ... I xn).

• It is often convenient to represent multi-argument (unctions in bigher-order (or 'curried')

form; for example ((F XI) x,) instead of (f XI x,).

• The relative indentation of multi·line expression~ is used, along with parentheses, to indi

cate grouping.

2. General Approach

The methodological .. peets of the VERlTAS approach are a little more fully described in [4[;

here we have space to present only a. very brief and supe rficial summary. Overall, the approach

involves defining a. tbeory which characterises the universe of discourse o f digital engineering .

A theory is defined by a signaturej this is simply a list of the symbols that can occur in terms

and the axioms that can be used in constructing derivations (or 'proofs') of theorems within

the theory. The intention is that:

• Each symbol should correspond to :Jome entity in the universe of discourse.

• Each axiom should describe some relation between these entities that is known (o r asserted)

t o be true.

In practice, it is convenient to define a signatu re in a structured way, as a series of extensions

of a primitive signature. This therefore gives rise to a corresponding nested series of theories.

In the following subsections, we summarise the principal features of e::lch of these theo ries and

indicate their intent . The most primitive t heory in the sequence is that of pure higher·order

logic. The symbols introduced include the type bool (comprising the two propositional truth

values true and fal3e) together with the logic al connec tives (A, V, .." etc) and equal ity (ie,

'='). The axionu introduced define cerlJ.in fu nd3mentat properties of bigher·order logic (for

instance, reflexivity oC equality, extensionality, etc) .

2.1 Theory of Numbers and of Time

Tbe first important extension of the sigo;'Lture of pure higher· orde r logic defines the theory of

Natural Numbers, introducing the type nat (of natur;).1 numbers), various aritbmetic operators

(succ, +, -, etc), and a set of axioms that ch aracterise number theo ry. As an example, the

112

,

following axiom describes induction:

~'VP: nat - bool.

(P 0)

Vn: nat. (P n) ~ (P (succ n))

Vn : nat..(P n)

(Note that, since this axiom involves quantification over the set of aU properties P, it is an

intrinsically higher-order one.)

One feature of this theory to which we need to draw attention is th3t the operator '-'

denotes natural Bubtraction (th3t is, a - b = 0 if b ~ a). This operator shares only some of

the properties of 'ordinary' subtr3ction (<loS commonly defined on the integers). As a simp le

example, consider the relation (a + b) - c :;:::: (a - c) + b Whilst this relation is true if b :;::: 0 or

if a ~ c, it is not true in general.

The next extension of the sign3ture defines a theory or time. Specifically, it introduces

three data types

time - describing instants of time

dur - describing non-neg3tive durations of time

intul - describing intervals of time

and a collection of functions between them. 10 particular, the function

I : time x dur _ intul

is used for constructing intervals. The interval (I t d) is defined as the semi-open interval

starting at t, and of duration d.

2.2 Theory of Waveforms

The behaviour of a digital system is defin ed in terms of the waveforms present at its ports.

Although these are often idealised as being perfect , two- valued 'binary' wavefonns, in reality

they are analogue waveforms that are only in a ' binary' sta te during certa in intervals of time.

The general approach followed by the VEnlTAS 3xiomatisation is not to pretend that reality is

other than it is, but simply to axiomatise o~ly those prope rt ies of it that we actually require.

In the theory of Waveforms, defined by the next extension of the signature, two types are

introduced; these are wf the set of analogue waveforms, and C, a type containing the two .

elements cl and c" repre~enting the two 'digital' cons tants. (Note: these digital co n~t:lnt.!t,

(pseudonyms 0, 1, or Jow, b igh, etc) should not be confused in any way with the propositional

truth values .true, false of type bool introduced above) .

Wavupece One of the found.lti ons upon which the entire VERITAS approach to specifying

behaviours rests is in the use of a particular predicate

const: (intv l x C) ~ (wI ~ bool)

113

This predicate (the fact that it is 'curried', or higher-order, is unimportant) is defined by the

tenn
((cons! c) w)

meaning that throughout an inte~1 of t ime i, the analogue wa.veform w assumes the digita.l

value c. This is sketched in Fig. lao Note the partial nature of canst, and in particular, the fact

that it makes no assertion whatsoever concerning the behaviour of w outside the interval i. It

is convenient to introduce a graphical notatioD) as shown in Fig. lb, for expressing assertions

of this general form.

(b) J

Fig 1.

(al Both the assertioD ((cons! c.) w) aDd the assertioD ((cons! j c,) w) are true .

(b) This shows the convent ion adopted for depicting these assertions graphically.

We call a predicate defined on a wavefonn (or, more generally, on a collection of waveforms)

a wavespec (for 'waveform specification'). For example, the tenn (canst Ct) is a wavespec.

As we shall see, wavespecs are of fundamental importance in the VERITAS approach.

2.3 Theory of Gate Behaviours

The theory of Gate Behaviours (defined by a furt her extension of the a.bove signatu re) contains

the definHions for the bebavioural (as dist inct from the structural) characteristics implied by

common usage of the terms 'AND gate\ Ion gate', etc. Insofar as these are pure definitions, the

reader i. free to decide the extent to which they succeed in capturing what is generally meant

by the.e terms.

We will illustrate the general approach adopted for characterising device behaviou rs by

taking the behaviour of· :\ 2·input NAND g:\te :\s :\n cx;ullplc: ot her gate behaviours follow i1.

similar pattern, as do other device behaviours (e.g. RAM 's, ALU 's, etc).

We begin by' noting that, as a NANO gate has three ports, the general form of the def

inition will be a predicate on three wavefonns (ie , a wave spec on a 3-tuple ' of waveforms).

Because NAND gates have differing Ispeeds l
, the definition must also incorporate some timing

parameters. We choose to use a tuple of four durations to characterise the speed; this allows

ll4

a. much 'tighter ' definition than is nonll ally used for specHying the characteristics of gates. As

an aside, we note that there is , of course, no reason why a. 'looser ' definition (ie, one with fewer

parameters) should not be used if so desired, but then, because less would be known about

the ga.te's behaviour, it would not be possible to infer so much about the properties of systems

employing such gates.

The 8ymbol we use for characterising the behaviour of a NAND gate is

NAND .BEHAV: dur' _ (wI' _ boo I)

As before, it turns out that it is convenient to express it as a bigber-order function. The

meaning we wish the term

to have is (approximately) :

"The three wavefonns Win,1 Win, and Wout exhibit the behavioural characteristics of a

NAND gate, with propagation and hold t imes (for low inputs) of d t and d'l respectively,

and propagation and hold times (for bigb inputs) of d3 and d" respectively."

Let us now propose a definition for this pred ic ate. We will first illustrate its intent in terms of

wavefonn sketches, and then evolve the corresponding formal definition .

~. t - ,
)

w- i -,
"'

)

........ _t t
J, J "

)

f-oI
d. ,

Pig 2. llluslralioD of Ihe predicate ((N AN D . BEH AV d, d, d, d,) w;n, w;n, wo • .)

Let Win, and Win, be the waveforms at the input ports of a NAND gate, and assume (see

Fig 2) that these two waveforms satisfy the various constraints shown in the diagram (ie, the

wavefonn Win, is in the c, (or 'low') state throughout the interval ill etc). Consider what

assertions ma.y be ma.de about the wa.veform W u u ! at the output port of the gate. We would

argue that {to capture the essence of 'NAND gate behaviour'} this waveform must satisfy the

constraints sbown (ie, it must be in the Cr state throughout an interval;l, which starts d, after

it starts and finishes d'l after i l fin ishes, etc) .

There are three interesting points about this definition. First, it is a partial defin ition of

the behaviour: it places bounds on what is required, but it does not artificially overconstrain

115

.,

it. For example, it does not imply id ea.lised rise and fall transients. Secondly, it is DOD-s tr ic t

for 'low' inputs: (or example, during interval i 1 it does not impose any requirements on the

beha.viour of waveform Win" Thirdly, it does no t state what the actual rise and fall times of

the analogue waveforms must be: it simply ~ pec ifies bounds on them.

Now let U8 make tbis definit ion prec ise. First, it is useful to introduce, as a subsidiary

definition, a. function ~ : dur1 - (intvl - intv l) that 'propagates' intervals. The interval

is defined to be the interval which starts d1 later that it starts and finishes ~ later than

it finishes (it is, in fact , the interval iJ of Fig(2)}. Using tbis function, we can define the

'low-mode' aspects of the NAN D .BEH AV predicate, a.3 follows:

Vi: inttll.

((con, t cI) Win,)

((const ((t. d, d,) i) cd woud

or, in narrative form:

"'For any interval i, if waveform Win, is in sbte cJ throughout i, or waveform Win, is

in state cJ throughout i, then waveform Woul will be in state c, throughout the interval

starting d1 after i and finishing d'J after i."

The corresponding 'high-mode ' aspects is identical, save only th a t the roles of cJ and c, are

interchanged, that dJ ,d4 appear in place of dl,d'J, and that V (disjunction) is replaced by A

('t')njunction) .

We can now present the actual definition of the behavioural pred ica te NAN D .BEH AVj

it is

;dtJ

Vi : inttll.

((con,t cI) Win,) V ((c onst

-
((con,t ((t. d, d,) i) cd Woul)

" ((con,t c,) Win,) A ((const Cd Win,)

((con , t ((t. d, d.) i) c I) woud

In narrative form, tbis reads (approxim ately) as:

"The predicate NAN D.BEII AV (th:\t is deellled to characteri se the behaviour of a NAND

gate) applied t o a 4· tuple of duration s d1 ,d"dJ ,d4 (representing the timing parameters

of the gate), in t urn applied to a 3·t uple of wavefonns Win,. Win" Wout (representing the

116

waveform3 at the ports o r the gate) is defined as meaning that for aDy interval of time,

1, the two following assertions hold

(1) if input waverorm Win, is in state cl throughout i, or input waveform Win, is in

state cl througho ut i , then output wavefonn Wout will be in state Ct throughou t the

interval starting d l after i starts, and finishing d'l after i finishes, and

(2) if input waveform Winl is in state ' I throughout 1, and input waveform Win, is in

state CI througho ut i, then ou tput waveform Wout will be in state c, throughout the

interval starting dJ after i starts, and finishing d4 after i finishes.

There are a number of points to mil.ke in connection with this definition .

• It is quite a complicated definition (although, with familiarity, it is readily com prehensible).

However, we would maintain that this complexity is intrinsic to the digital designers no tion

of the behaviou.r o f a NAND gate .

• One point we have deliberately glossed over is the partial nature of 6, the 'propagate'

function . 10 particular, we wou ld not wish to be able to apply 6 to a null interval and

have it yield a non -null interval. For example, we would not wish the interval defined by

((~ 2 5) (T t 0))

to be the interval (I t + 2 3). In the present context, such behaviour (corresponding to

'pulse-stretching' a null pulse into a non·null on e) would be distinctly non-physical! The

axiomatic definition of 6 has been carefully contrived to avoid such a meaning. (In this

respect, it differs from the definition of 6 as used in 141, in which (because all intervals

wer~ defined as being closed ra.ther than sem i-open, as here) it was necessary to 'guard'

explicitly against such a possibility at every usage of fi, a feature which gave behavioural

definitions a somewhat clumsy appearance.)

3. Specification of aD-flipflop

In this section we will first describe, in informal te rms, how (we believe) an 'edge-triggered, D

type flipflop' (or, in short, a D-fliptlop) is meant to behave. We will then make this description

more precise by recasting it as a collection of wavespec dbgrams. Finally, we will fonnulate it

as a. wavespec definition.

S.l Informal description

A D-fliptlop (see Fig. 3:l) h:l.s three ports: :.. ' ~trohe' (or clock) po rt (5),:.. 'dat:l. · jn' port (/J) :lud

an 'output' port (Q). It is typically described in textbooks and manufacturer's specification

sheets by ao set of idealised waveform diagrams such as those shown in Fig. 3b. Data (on the D

porl) is strobed o n the rising edge of a strobe pulse and transferred shortly afterwards to the

Q port, where it remains until the next strobe pulse. A manufacturer's data sheet (eg 1101) will

specify certain conditions that have to be satisfied, and certain parameters that are guaranteed_

117

D :[JQ
S

w< / \- ___ --.1
.. ' • -(j-

"'" (~=>-
Fig 3.

(a) Graphical representation of a D-f1ipftop. S is the 'strobe' (or clock) port, D is the 'data'

port, and Q is the 'output' port.

(b) A typical 'idealised.' behavioural description (or a D-f1ipftop.

In the first category will (typically) be found maximum strobe rates and minimum data setup

and hold times, and in the second category will (typically) be fou nd maximum propagation

delays.

3.2 Wavespec diagram description

Now consider a rather more careful description of tbe same device. As before (with the NAND

gate), we emphasise that we are now attempting to formalise a definition of an already existing

concept: the reader must decide an the extent to which be or she thinks we succeed in capturing

the intent of the existing usage of tbis term. In passing, we note that we cou ld (very easily!)

devise a more complicated (or 'tighter fitting') definition than the one we are about to propose

(for instance, we could decide to associate different ti ming parameters with different polarities

of signals, etc). In the interests of keeping the exposi tion clear, however, we have deliberately

cbosen tbe most simple (yet realistic) dE'finition possible. The dennition we propose is of the

form
'Ie : C.

(zs ws) 1\ «zo c) wo) - «zQ e) wQ)

B~fore describing the significance of this expression as a whole, nrst consider its component

wavespecs, Zs, ZD etc. These are shown di:\gramm:\tically in Fig . 4

• Zs is a wavespec on the st robe waveform. It as-se rts that it must be low throughout the

interval of duration ai, and be bigb throughou t an interval of duration of a3 + d (where d

is a duration of arbitrary exten t), and be low throughout an in terval o f duration t (where

e is of arbitrary extent). Elsewhere the strobe wavefonn is unrestricted. Informally, we

would say that this assertion describes a 'rising edge' on the strobe waveform, (with the

118

". .. +"!i. "-, ,(""'-t.I.!,j •
~ - .1.

l, L-- __ ----.J

I'--Q..~I L..-.. W

(J
A

<)

r--'-

(}. CJ ,--
I<- --..I ,

a., ",

r r r r
~ t, . tL t,

Fig 4. Wavespec definition of a D·Ripflop. The timing parameters a correspond (loosely) to

the following:

a, min strobe low time

a, max strobe rise time

a, min strobe bigh time

a, max strobe (all time

a, data setup time

a, data hold time

aT max output propagation delay

a, min output hold time

duration Q2 describing the maximum allowable rise time) followed by (if e is nonzero)

a 'falling edge' (with maximum fall time a ..). Note carefully that the specification says

nothing about the detailed 'sbape' of either transilion .

• (ZD c) is a wavespec on the data waveform. It asserts tha t the data. wavefo rm must be

constant , at value c (where c is either Ct or e,) throughout an interval which overlaps

the Irising edge' of the strobe wavefonn. The two duration a~ and a6 correspond to the

required Isetup' and 'hold' times for the D· RipRop .

• (zQ c) is a wavespec on the output wavefonn. It asserh that the output waveform w Q is

constant, at value C l throughout the interval shown. The two dura.tions a7 and as describe

the (maximum) propagation time and (minimum) hold time of the D·RipRop .

With these definitions I we cau now apprccbte the general form of the flipfl op specification

'Ie: C.

(zs ws) " ((ZD <) WD) ~ ((zQ e) wQ)

In words "For all values of c (namely, either Ct or c,), if W S I the strobe waveform, satisfies

119

wavespec zs, and UJD. the data wave rorm. s:l.tisfies w;:wespec (ZD e), then wQ, the outpu t

wavefonn , will sat isfy waves pee (zQ e)lt.

In passing, we note that, as a specia l case , the duration e may be zero: if this is so, then

the definition will not require there to be a well-defined falling edge on the strobe waveform .

3.3 Formal definition

Now that we have des<:ribed (informally) our understanding of the term "Tbe bebaviour of a

D-(jipfloplt, let us propose a formal defin it ion for it . To this end, we introduce a new symbol

DFF.BEH AV: dur' ~ (wI' ~ bool)

with the intention that

. ((DFLBEH AVa) Ws Wo wQ)

should express the asserl:on: "Tbe three waveforms Ws (th e strobe waveform) , WD (th e da ta

waveform) and wQ (the ou tput waveform) exhibit the behavioural cbaracteristics of a D·fj ipflop

with timing parameters ii It. Formally, we define this symbol by the axiom

f- ((DFLBEH AV a) Ws Wo wQ)

=de l

'Ie: C.

Vt : timt!!, d, e : duro

(zs ws) /\ ((zo c) wo) ~ ((zQ c) wQ)

WHERE

(Zs w) =
((const (I a,) c J) w)/\

((co nst (J t, a3 + d) col w)/\

((canst (J t, c) c J) w)

((zo c) w) =
((const (I t , a, + a, + a.) c) w)

((zQ c) w) =
((const ((6 a, as) i) c) w)

WHERE

i =(J t, a3+d+ a.+ c)

t3 = t'l + a3 + d + a.

WHERE

t l = t +al-a~

t 'l = t + a l + a'l

(Note: The locally defined symbols tl. t'l, t3 and i were indicated in Fig. 4)

As with the definition of NAN D .8 E H AV , we note that this definitio n is moderately complex.

It is, however, just about the simplest possible definition that captures the digital designer's

120

- '

notion of what constitutes the behaviour of a D·ftipfl op. FUrther, we note tnat whilst it

fully specifies it, it does Dot overspeci fy it. This is an important point: overspecification will

in general limit the range of possi ble implementations and therefore unnecessarily increase

implementation costs.

Standard Definitions As a final point, we note that, in formulating this definition, several

choices had to exercised, ;).5 anyone starting off to frame such a. definition ab initio will very

soon discover! Thus, whi lst we believe that the proposed definition is a reasonable one, it

is not unique: many subtle variat ions are possible. One might envisage, one day, a forward

looking standards organisation (BSI, IEEE, ISO, etc) taking on the task of formulating a

set of 'standard' definitions for the elements of digital systems, much as Whitworth did for

screw threads, or Bourbaki did for mathematics. In the shorter term, one might envisage

individual companies each evolving their own 'house style', a shared set of definitions that

would be available to anyone in the company who was involved in specification, implementation

or verification. S.ucb a 'database' (which would, in time, include derivations of useful lemmas

as well) would be a valuable resource.

4. Implementation

Now that we have defined the behaviour that (at least in ou r eyes) a D·type flipflop is meant

to exhibit, we will consider a possible implementation of one (there is, of course, an infinity of

means by which such behaviours co uld be realised). The implementation we choose to examine

is shown in Fig. 5. We came across it in the referen ce manual for a ULA manufacturer's cell

library. Prior to that the same circuit may be fou nd in \10] as a 'functional block diagram ' for

a SN7474 integrated circuit.

Q

5

l>

Fig 6. The circuit of a. widely used implementati on of a D· ftipft op.

121

,

4.1 How it appears to work

Before undertaking (in §5) a formal proof that this circuit actually exhibits the behaviour of

a D-flipf!.op, it naturally makes sense to try to gaiD some jntuitive understanding of bow the

circuit operates. We say Itry' because, perhaps surprisingly in view of the apparent simplicity

of the circuit, this is very difficult! It turns out, on analysis, that the modus operandi of this

circuit is {ar from simple: in fact, it is unusually complex, and (so the authors found) difficult

to understand intuitively·.

It turns out that the circuit operation can be understood m os t easily by considering the

circuit as two subcircuits, of which the second can be treated as an ordinary set-reset flipflop

(see Fig. 6a). This then allows the operation of the circuit to be apprec iated in bigher-Ievel

tenns. Lest this manceuvre seem so commonpla.ce as barely to warrant comment, we remark

that the analogous substitution cannot be performed on eit her of the other two cross-coupled

NAND gate pairs. For example, it turns ou t that it is not possible to explain the operation of

tbe circuit in terms o f Fig. 6b. This is because other properties of this particular NAND gate

pair are required, over and above the fact that it behaves as a set-reset flipflop.

Q

(a.) (b)

Fig O.

(a) The circuit shown in Fig 5 split into two subcircuits, the second of which b~ been rep laced

by a sel·resel ftipftop.

(b) An equally plausible, but unsatisfactory substitution.

We will now o ffer a (very abhrevi:lted) expbn;'l.tioo, couched in the inforlllal, everyday

jargon of digital engineering , for the o pera.tion or the ci rcuit shown in F ig. Ga. We start off

• If, like most people, you find this remark difficult to accept at face value, read the rest of

this account, then set it aside, and attempt, within (say) one work ing day, to come up with a

carefully justified acco unt of 'how' the proposed implementation is int ended to fUDction ...

122

with the interesting observ<ltion that the mode of operation of the cI rcuit is essentially different

for each of the two polarities of data input. Understanding how the circuit operates when it

latches a high data input gives little help in the understanding how it operates in latch ing a

low data input. T~e following informal explanation deals only with the fonner case: we leave

the latter case (which turns out to be a little more complex) as an exercise for the interested

reader.

4.2 Informal explanation

[n order to illustrate the following explanation, we have arbitrarily" cbosen certain timing

parameters for the NAND gates, and cert ain timing parameters for the overall flipflop specifica

tion. Using these parameters, we have then constructed (see Fig. 7) a set of wavespecs which

illustrate (for a bigb data input) the opera tion of the circuit. [n the following, highly informal,

account we treat these wavespecs as if they were waveforms. The labelling (a, ... , f) on the

time axis of this diagram corresponds to the follow ing itemisation:

.---------" ,'--------'

"

0. b cd.. f

Fig 7. A set of wavespecs compatible with the circui t shown in Fig 5.

(a) Initially, Ws (the strobe waveform) is low. Thus Wl (the output of gate 2) is high.

** As it happens (see §7.4) the circuit only (unctions 'correctly' for certain combinations of

timing parameters, so it is not an entirely arbitrary choice!

123

(b) Then, WD (the data waveform) becomes bigb. Gates 91 / 9'J latch this state. WI goes low.

(c) Then Ws (the strobe wavefonn) goes bigb. This drive. W3 low. Gates g, /g, latch this

state.

(d) W'J remains hjgh and W3 is low. This sets the output latch 96 / 9tn with wQ higb

(e) WD (the data wavefonn) becomes undefined. WI also becomes undefined. However, W3

remains latched low, and hence maintains W'J bigb. Thus output latch 9~ /ge remains set.

(f) Ws (the strobe waveform) goes low. This change races through 9'J and 93: assuming it is

a sufficiently rapid transition, Wl remains high and thus the output latch 95/96 remains

set, with wQ high. (Most of the other gates go into an undefined state).

Again, we emphasise the highly informal, anu indeed quite unconvincing, nature of this account.

In fact, this example provides an excellent illustration of the raison d'etre for formal verification.

4.3 Formal specification of the implementation

Elsewhere ([41) we have explained how, using higher-order logic, the structure (ie, the circuit

diagram) of a device may be specified, in the form of an axiomatic theory, and how (by formal

inferencing) the corresponding behavioural specification may be obtai~ed from it. Thus, we

will not dwell at all upon this aspect in the present account but rather take as our starting

point a behavioural specification for the circuit.

In order to frame this as a fonnal definition we assume that the wavefonns are named

wS,wDlwq,Wl,W'J,""ws (as shown in Fig. 5). Further, we assume tbat the timing param

eters of the component NAND gates are described by n, a 4-tuple of du rations. Under these

assumptions, we can write down a set of assertions satisfied by these wa'veforms, Each compo

nent NAND gate imposes a relation between various of these wavefonns. For example, gate 91

imposes the relation

((N AN D .BEH AV ;» w, WD wd

and gale g. the relation

((N AN D3.BEH AV ii) w, Ws w, w,)

The relation imposed by all the gates together i! the conjunction of all the component relations.

At this point we introduce a new symbol to denote the wavespec (or, more precisely,

the weakest wevespec) satisfied by the wavefonns. Because the component wavespecs are

parameterised by "I 80 also tbis overall wavespec will be. Thus, we introduce the symbol

IMPL.BEHAV dur' ~ (w f' ~ bool)

124

- , :-::;

(a parameterised waves pee for the beh:wiour of the implemen tat ion) with d efi nition

((IMPL .B E HAV ii) Ws WD wQ WI W, W, w, W,)

= 4(/

((N AN D .B E H AV ii) W, WD W.)

1\

((N AN D3.BEHAV ii) w, Ws WI w,)

1\

((N AN D .BEH AV n) w, Ws w,)

1\

((N AND.BEH AV n) WI W, w.)

1\

((NAND.BEHAV n) wQ w, w,)

1\

((N AN D .B E H AV n) w, w, wQ)

T he waveforms associated with tbe ci rcui t sbown in Fig, S (ie , the p roposed implementation of

a D-ft ipft op) will tberefo re (assuming the tuple of timin g parameters of eacb of t be component

NAND ga tes is ti) sa tisfy the waves pee

(I M PL. BEHA V n) w/S _ bool

The above definit ion wi ll be used in tbe next sect ion

5. Formal verification

We now move onto the second majo r theme of th is paper , that of the 'form al verificatio n ' of

t he correctness of t be proposed implementation of tbe D- fl ipflop . In pr inciple, tbe task is a

ve ry simple one .

• On t he one band, we have (for an arb it rary 8-tup le a of du rations) a wavespec

(DFF.BEH AV 0) wf' ~ boo t

which describes the re b t ion th a t we require to be satis fi ed betwee n the t riple of wavefo mls

ws , WD, w Q at the ports of a D-ftipfto p .

• On the other hand, we have (for an arbitrary 4-t uple ti of d urat ions) a waves pec

(IMPL.BEHAV n) : wf'~ boo l

which d escribes the re lation th:l.t we know to he s:l tisfied betwee n t he 8-tuple of w:lvcfonlls

Ws , WD, wq, W I , • • • I W!I at t he ports (' internal' and 'exte rn al') of the proposed implemen

tatio n.

Wh at we need to do , in ord er to 'verify t he design' (that is to prove its cor rec tness w.r .t. th e

behav ioral definition for a D-fti pfto p) is (roughly s ta t ed) to establish tha t any set of wavefo n n s

wh ich sa t isfies the second of these wavespecs al so sa tisfies the first.

125

Stated a little more carefully, as a fonnula , th is wou ld be :

VWS,WD,WQ ,WI,W2,W3,W4,WS: wf.

«(lMPL_BEHAV ii) Ws WD wQ WI W, W, w, w,)

«DFF-BEH AV 0) Ws WD wQ)

Of course, this formula is not going to be true for arbitrary values· of ii (the a-tuple of timing

parameters of the flipfl op) and n (the 4· tu ple of timing parameters of the component NAND

gates). Thus, we will postulate a relatio o.

R dur8 x dur4 _ bool

that will define the necessary relationship be tween ii and n if the above formula is to be true.

We shall call R the 'timing relation'. Usio.g R , we can now state the aetual theorem that we

wish to establish

Vii: dur8 ,n: dur4.

(R 0 ii)

VW S ,WD,WQ,WL,W2,W3,W4,WS : wf.

«IMPLBEHAV ii) Ws W D WQ WI W, W, w, w,)

«DFF_BEH AV 0) Ws WD w Q)

We shall call this (as yet unproven) theorem th e D-fljpt1 op implementation theorem. In words, it

states: "For any a-tuple Q and 4-tuple n of durat ions, if they satisfy the cond it ion (R a TiL
then any set of waveforms that occur at the nodes of t he proposed implementatioo. (whose

NAND gates have timing parameters n) will meet th e specification of a D-fl ipftop (with timing

parameters ii)."

General Aims The example we have just described is ent ire ly typiC3l of hardware veri-

lication. Looking at it, we see that we have, in f3et, two distin ct but interrelated problems

to solve. One is evidently to prove (Connally or informally, as the circumstao.ces wa rrao.t) the

above theorem. The other (not 80 evident) task, however, is to find a definiti on for the timing

relation R. (Notice carefully that we do not imply that such a relat io n is unique, nor do we

imply that a non-trivial one exists .) Althou gh one might imagi ne tha.t p roposing a suit a hle

relation is an easy task, experience cont r<l.dicts this . It t urns out that de terlllining il Csui table '

value for R is <\S diffi cult a tilsk as proving the above theorem. In our experience, Cintu itive'

attempts at deciding a value for R are invariably wro ng!

• For example, it is intuitively obvious that a cfast' flipflop canno t be reali sed in terms of

'slow' NAND gates.

126

The best way that we have found to detennine R is to begin by leaving it undefined, and

then to attempt to prove the desired theorem. During the course of this proof, one will be

forced to make certain 'a.ssumptions' in order to carry through the proof. Then, when the

(conditional) proof has been achieved, one can gather up all the assumptions (ie, rela tions

between timing parameters) and ch ose a relation R which is

• sufficiently strong to imply all the required assumptions, yet

• sufficiently simple to be of practical use (no one is going to be in terested in a relation that

takes a couple of pages to express!).

The proof can then be reworked with this definition of R present as an axiom.

6. Computational Inferencing ·

In this section, we review the means by which we carry tbrough the two interrelated aims

described above, namely:

• Detennining a 'suita.ble ' definition for the timing criterion R, and

• Proving the D· HipHop implementation theorem.

As we shall see, this involves construct ing a large and complex proof. We undertake t his task

'computationally ', in order both to ensure the correctness of our inferencing (by eliminat ing the

possibility of 'slips', wishful thinking, etc) and to be able to automate the lower· level aspects

of it .

The approach we use originally der ives from a. method pioneered in the Edinburgh ML / LCF

project 111. In th is account, we only have space to gi ve a most cursory overview. The approach

is very fully described in 151 (which includes an extensive t utoria l exposition).

Genera l Principles A deriva tjon (or 'p roof ') is a tree. The nodes of the tree a re labelled

with the primitive rules o f inference of the logic (for example, m odus ponens, generalise, spe

ciaJjse, are some of the ru les of inference of the VERITA S logic). The arcs of the tree are labelled

with th eorems. The tips of the tree are labelled with axioms. A deriva tion is Dot a free·standi ng

entity, but rather it exists only with respec t to a signa ture. A signature (sometimes called a

'theory presentation') is essentially a sequence of declarat ions of the symbols and axioms that

may occur in a derivation.

The VERtTAS logic is computationally implemented within a programming language MY

(for 'META· VERlTAS'). This is an interactive, typed, purely functi onal programming language.

The implemen tation of this language includes (amongs t others) <lbstract data types (ADT's)

for s ignatures, terms and derivations. Associated with these ADT's are fun ctions for const ruct·

ing, manipu,la t ing and displaying values of each type. These functions, which have been very

carefully defined and implemented, are such as to guarantee the syntactic correct ness and the

logical soundness of a. ny entity constructed. For exa.mple, consider the MY function

s pec : de ri v x term - deriv

127

which implements the 'specialise' rule of inference. The function takes two arguments; a deriva

tion and a term. The intention is that the first argument should be a derivil.tion of a theorem

of tbe form
~ 'tix: $. tm

and the second a. term trn/ of type s. In this event, then the value returned by tbis function

call will be a derivation of a theorem of the fonn

I- tmftm' /.1

(ie, the term tm with all free occurrences of the symbol x replaced by the term trn', under

the 3!sumption that no captu re occu rs). Incor porated within the implementation of the ADT

function $pee (and completely out of sight to the user) is a rigorous set of cbecks (on the types

and values of the two arguments) that ensures that, unless the resultant derivation would be

correct in every respect, an error condition arises. Similar checks are built into eil.cb of the

other primitive constructor functions.

6.1 High-level Inferencing

Whilst it is, in principle, possible to cons truct il. derivil.tion of any theorem simply in terms of

the primitive ADT tenn and derivation constructors described above, it would be unimaginably

tedious to do so. There are three techniques that may be used to reduce the effort required by

a user:

• Fundions which implement dedved inference r ules may be written in th e meta-language.

The body of such a functi on is a complex expreS! ion which, each time an application of

the function is evaluated, results in the application of many primitive term and derivation

constructors. As an illustration, a very simple example of a derived inference rule wo uld

be a function which, given a derivation of a theorem of the form I- 'tix. 'tiy. 'V z. p z.y.:

yields a derivation of the theorem I- 'Vx, y, z. Pz .!I.: , that is, it tupJes a nested sequence of

quantifieI'3 .

• A 'database' of useful lemmas (ie, subsidiary theorems) may be built up. In general, the

axiot118 that are chosen to characterise a tbeory will be both very simple and few in number

(the two factoI'3 helping to ensure that the truth of the axioms is beyond reasonable doubt).

Because they are simple and few in number, they cannot encompass the many arithmetic,

algebraic a.nd digital engineering relations that we would like to be able to take for granted .

Thus, it is desi rable to build up a database of a rew hundred generally useful lemmas. To

give a simple example, the foll owing lemma

!- 'Va, 6, c : nat .

(0 ~ b) 1\ (b > c) ~ (0 > c)

is ref: .l tive of the couple o f d oor.en lemmas concerning arithmetic ordering relations.

128

• The third technique we mention is that of goal-directed inferenclog , The idea is a very

simple one, It relies upon the fact that if one knows, in advance, the theorem on e is

endevouring to prove (ie, the goal) it is often easy to obtain from it a collection of subgoa/s

with the properties (a) that, ind ividually, they are easier to prove than was the original

goal, and (b) that, once they themselves have been established as theorems,the original

goal may itself (by the use of a derived inference rule) be established as a theorem. The

functions that are used for this purpose are known as tactics, A typical example of a tact ic

is one for proving theorems by the use of induct ion. For instance, given a goal of the form

Vn : nat. p ..

(where p .. is some formula in which n occurs freeL the tactic will yield two subgoals

namely
Pn[O / nJ and Pn[(SUCC n) / nJ

and, once these subgoals have been established as theorems, will use an appropriate derived

inference rule to infer the original goal.

We describe the system with which the use r interacts in constructin'g a derivation as a proof

assjstant . Basically, it is a program (written in MY) which allows the user to speci fy the top·

level goal, to examine any subgoal (and the declarations of symbols and axioms on its associated

signature), and to speci fy the tactic to be used to achieve each of the subgoals.

It is often useful, especially when undertaking new proofs of an unfamiliar kind, to be

able to display, in graphical form, the derivation (or completed part thereof), Thus, t he proof

assistant program provides the means for doing this; as an illustration of this sort of disp lay,

Fig 8 shows a typical derivation (in fact, it is a de riva tion of t he NAND,PAIR lemma that will

be used in §7.2 below) .

This concludes ou r very brief look at the logic and the techniques used in its computat ional

implementation. For the remainder of this paper, we will limit ou rselves to a relative ly informal,

high·level description of the goal·directed inferencing process we have used to prove the D·

ftipftop theorem and obtain the timing criterion R .

1. Proving the D-flipflop Implementation Theorem

So far, we have proposed definitions for the behaviour of a NAND gate and for a D-RipR op, we

have illustrated one commonly used implementation of a D-RipRop, we have written down the

theorem we would like to establish, and we have ou tlined the approach we use in computational

theorem proving. In this section we shall draw all these threads together and describe how

we actually went about computationally proving the theorem and determining the timing

relation R .

We have already noted that, even at an intuitive level, the mode of operation of the

proposed implementation is (ar from obvious, It will scarcely corne as a surprise , therefore,

129

,
1 , , ,
6 ,
6 ,
6 ,
6 ,
6 ,
6 ,
6 ,
t. ,
• ,

r-_________ h __________ ~,
i

" ___ A ___ -, t. ,
h

r-
A

r- ---,
t. , , ,
h f-,- -,

U ,
r , r , , , , h , , ,

f- f- , f-,
,
h , , , , , , ,
f-

--, ,
r

, ,
/, ,
c , , ,
, ,
f-

, , ,
h ,
f-

c ,
h

c ,

, ,
f-

r--- A __ --"

,
r- ---,

, "
I r- ---, I
h r r h
I r-,- I ---r--1 I I
~ ~ h h h ~ , "

f- f- f-

, ,
c h , ,
h ,

, ,

, ,
f-

,

, ,
r

Fig 8. Graphical display of a typical derivation .

A
r ,

r -, , , , , , h , ,
f-

, , , ,
h ,

, , , ,
f-

, ,
f-

-,
f-

that a formal derivation of the D·ftipflip implementation theorem is quite complicated. Thus,

we are only able to give a genera.l, high-level accou nt of the way we go about constructing

this derivation . We mention, however, for anyone who may interested in examining the actual

proof, that we are in the process of preparing an annotated step·by ·step transcript of it, in the

(onn of a C.A:1 interactive docume nt.

Let us start this account of the proof by restating , a.s ou r 'goal', the formula we are

130

, 1

intending to prove:

'r/ ii : dur8 , n: dur".

(R il n)

'V WS, wD, WO , WI , W2, W3, W 4, Ws : wi
((IMPL _BEHAV Ii) Ws Wo wQ WI W, W3 w, W,)

((DFLBEH AV il) Ws Wo wQ)

As we have explained such a goal is not a free·standing entity, but rather has associated with

it a signature. The signatu re decla res all the symbols and axioms that are, in effect, 'within

scope' , that is, that may be used in constructing a derivation of the theorem. The 'earlier' pa.rts

of this signature in troduce symbols and axioms associa ted wi th propositional logic, arithmetic,

instants of time, durations, intervals and waveforms (as briefly desc ribed in §2 above). The

' later' (and thus more problem specific) parts of the signatu re include declarations for the

symbols NAND _BEHAV , DFLBEHAV and IMPLBEHAV, and their defining axioms

(precisely as we ha.ve defined them in §2.3 of this accou nt). The signature also includes a

declaration for the timing condition R, but, as yet, no axiom defining it.

7_1 First Part of the Proof

We now give an itemised account of the main stages gone through in constructing (in goal·

directed mode) a. derivation of the D·ftipnop implementation theorem . In presenting the fol·

lowing account, we explain that it is highly abbreviated, and hence gives a somewh at idealised

view.

(1) The first step, before even calling the proof assistant, is to const ruct the signature (or,

alternately stated, to define the theory presentation) with respect ~o which inferencing will

take place. This is simply done by lextending' an existing (standard) signature with the

definitions (as given earlier) for the symbols IMP _BEH AV , and DF LBE H AV and a

declaration (but no defining axiom) for the symbol R.

(2) The 'proof assistant' function (in the meta· language) is then called, with the goal (defined

w.r.t the above signature) as its argument.

(3) T he fi rst couple of steps are concerned with "stripping·off" (by the use of the appropriate

tactics) the universally quantified symbols and the hypothesis par t of the outer implication.

This results in the su bgoal

V ws, WD, wo, WI, W2, WJ, W4, W5 : wi
((IMPL _BE HAV n) Ws Wo wQ WI W, W, w, w,)

((D FL BEH AV il) Ws Wo wQ)

The signature associated with this subgoaJ now includes declarations fo r the symbols ii

and n as Iconstants', and for (R ii n) as an axiom or 'assumption'.

131

(3) The universally quantified variables Ws, .. ,w:, are likewise stripped·off, and then the sym

bol IMP L.BEH AV is replaced by the RHS of its definition (remember that, in eventually

constructing the derivation, exactly the opposite of aU these moves takes place). This then

yields a subgoal of the (onn

((NAND_BEHAV n) w, Wo w.J
1\

1\

((N AN D _BEH AV n) w, w. wQ)

-
((DFLBEH AV a) Ws Wo wQ)

(5) Again, the hypothesis part of this formula is stripped-of!, so that the six NAN D_BEH AV

clauses appear as axioms in the signature . Then DFF.BEH AV is replaced by its defini

tion. This yields the subgoal

" c : C_
V t : time, d,e: duro

(zs ws) 1\ ((zo c) wo) - ((zQ c) wQ)
WHERE

(zs w) =

WHERE

tt t + a, - as

t2 = t+at+a1

(6) Case analysis o n c is carried out: this yields two subgoals. One is for Ct and the other for c,
(ie, for high and fo r low data inputs respectively). Here, we will consider on ly the former

ca.se. The ca.se analysis is followed by stripping-off the universally quantified variables,

replacing the terms (zs ws) and ((zo eel wo) by their definitions and then stripping

these off (so that they too become axioms). This results in the subgoal

((con.t ((~ aT a.) i) eel wQ)

WHERE I = (I t, a,+d+a.+e)

WHERE t, = I+a, + a,

This concludes the first part of the proof strategy: we now have as o ur goal the above assertion

involving the 'output' waveform wQ, and a. whole set of assumptio ns (present as axioms in the

signature of the goalL including wavespecs on the 'strobe' and 'data' waveforms, W s a.nd WD .

132

7.2 Specialised Techniques

Before continuing with the second part of this proof, we pause to describe some techniques

that we have introduced to facilitate proving goals of tbis general kind. These techniques are:

• the notion of Ipropagating assertions through gates',

• tactics that allow this type of operation to be carried out in a goal-directed manner,

• tactics for performing ' cutting and stitching operations' on intervals,

• a technique (or retrospectively deciding what the timing criterion R should be.

We deal with each of these in turn .

Propagating assertions through gates A technique that we use extensively is, ex-

pressed informally, that of propagating asserti oDs through gates. We illustrate the idea with

a simple example. Suppose that WI and w') are the waveforms at the input ports of a NAND

gate and that W3 is the waveform at its output port. Further, suppose that the assertion

((con,!

has been established, that is, the WI input waveform is known to be in the low state during

an interval i . Let us (meta-linguistically) name this assertion 0'1 (the subscript 'I' infor·

mally indicating that it relates to waveform WI). Then, by using the (axiomatic) definition of

NAN D.BEH AV, we can infer (essentially by specialisation followed by modus ponens) the

assertion
((cons! ((6 d, d,) i) c,) w,)

This assertion (name it 0'3) relates to W3, the output waveform. Intuitively, we can think of

assertion 0'3 as being obtained by "propagating assertion 0'1 through gate 9".

Tactics for 'propagating assertions' In order to be able to use the intuitively a.ppealing

style of reasoning described above in a goal-directed manner, we must be able to express it as a

tactic. At first sight, this may seem difficult because goal-directed reasoning inherently proceeds

in a 'backwards' direction, whereas the above style of reasoning is inherently <forwards'. As

the rollowing example shows, however, these two confiicting requirements can be reconciled.

Suppose that, for the simple circuit shown in Fig 9, we wish to es tablish a goal or the form

0'0 - 0" (where 0'0,··· I On. are assertions on waveforms Wo, ... , Wn. respectively).

"' .
....

Fig 0 A simple circuit. 0'0,"" On are assertions involv ing the wavefomls Wo, ... I Wn. respec

tively.

133

The tactic that we use to achieve tbis operates as follows. First of all, it takes tbe asse rtion

.0'0 and Ipropagates l it through gate gl, tbus obtaining a new assertion, 0'1 , and a tbeorem

of the fonn I- 0'0 - 0'1 . The tactic then generates a subgoal of the form 0'1 - On . Once

this subgoal (which is one step 'easie r' to achieve tban the or iginal goal) has eventually been

achieved (by further subgoaling, etc), it is then a trivial matter for the tactic to infer (essentially

by using modus ponens and the above theorem) the original goal as a theorem.

This mechanism is, of course, entirely encapsulated within the body of the 'propagate'

tactic (or, more precisely, set of such tactics, since there is one for each kind of gate), and so, to

a user, the effect is simply as if he was propagating assertions through the circuit in the same

manner that a digital engineer is used to thinking of signals as propagating through a circuit.

Tactics for manipulating intervale There is another specialised group of tactics that

we also employ extensively: these are used for 'cutting and stitching' the intervals on which

wavespecs are defined. For example (see Fig. 10), given a pair of wavespecs z(and Z'l (of the

same polarity, and assumed to be qualifying the same waveform) one might wish to assume

that the intervals on which they are defined overlap, and hence, taken together, imply the

wavespec z defined over the union of the two inte rvals.

}

Fig 10 Merging two assertions.

In order to justify this assumption (ie, that the intervals overlap), the proof assistant

will generate, as an additional goal, a relation (generally a conjunction of inequalities) that

must bold between the two intervals. Because of the number of ways in which intervals may

overlap or fail to overlap (including cases where one or other or both intervals are empty), these

relations may be unexpectedly complex.

The NAND-rAin lemma In addition to these specialised tactics, we also make use of a

collection of behavioral lemmas. A representative example is one we have named the NAND

PAIR lemma (see Fig. 11). It essentially asserts that a pair of cross-coupled NAND gates behaves

like a set-reset 8ipflop, that is to say, it will 'latcb' a. low pulse 00 one of its ioputs, and stay

in this state for as loog as the ot her input remains higb.

In more dlitail, it asserts that (provided the timing parameters jj of the flipflop are a.ppro

priately related to those of the consti tuent NAND ga.tes), if the assertions Oil! a.nd Or~.~! hold,

then assertion O'Qut will also hold. 10 passing, we remark that there are several closely related

variants of this lemma.

134

'" .~.

F ig 11 The NAND-PAIR lemma. Assertio ns QuI and O',uct imply assertion O'out·

D efini tion of th e reJa tion R The net effect of using the various tactics and lemmas we

have just been describing is that, as the goal-directed construction of the proof tree proceeds,

subsidiary subgoals involving relations between the timing parameters are generated. In gen

eral, we do not attempt to satisfy these subgoals immediately, but rather leave them as 'stubs'

(ie, as unfinished branches of the goal tree). Then, when all other parts of the goal-tree have

been filled in, we gather together the entire set (call it E) of such relations and determine a

'suitable' definition for the relation R. Obvio usly, ODe possi ble definitio n for R would simply

be the conjunction of a ll the rebtions in B, but (because E is quite brge) such a definit ion

would be fa r too complex to be of any practical interest. Instead, what we do is to examine E

carefully and cboose a definition for R which is bo th reasonably simple and sufficiently strong

(ie, strong enough to logically imply each of the relations in R). This takes a degree of skill

and judgement. With R chosen, we tben incorpo rate its defining axiom in the signature, and

revisi t the stubs (ie , u nfinished branches) of the goal tree and complete them.

T h is concludes our sum mary of the general techniqucs we use during the sccond balf o f

the proof. We will now continue the account of the construction of tbe D-flipflop theorem.

1.3 Second Part of the Proof

The second part of t he proof is entirely concer ned with 'propagating assertions' through t he

p roposed implementation of the D-flipflop. The overall aim is, briefly stated, to demonstrate

tha t the implementation does, in fact, succeed in 'btching' the input signal. (Recollect that, of

the two possible polarities of input signal, only the Cc case is presently under co osideratio ni the

ci case is t~e subject of a separate proof, oot desc ri bed here .) Stated in a little more detail,

the aim is to demonstrate (by goal -directed infercn cing) that

under the aS8umption t h at the stro be waveform Ws satisfies the strobe wavespec Zs .

135

=

and the data-in waveform Wo satisfies the data-in wavespec (zo CI), then the output

waveform WQ will satisfy the output wavespec (zQ cd,
Call these three assertions (or, more precisely, tbe expanded form of these three assertions,

as defined in §7_1 above) Os, 00 and 0Q respectively. The a3sertion 0Q is tLe current goal,

namely
((co ns! ((6

WHERE

i)

and the assertions Os and ao are present as axioms (ie, 'hypotheses') in the signature of the

goal.

The outline of this par t of the proof, which involves the detailed consideration of a series

of related wavespecs, is easy to follow if presented in graphical fonn (see Fig. 12) , Essentially,

we will be propagating assertions as and ao through the proposed implementation of the

D·ftipftop (as shown in Fig 5). and demonstrating that they imply assertion aQ_

In the following desc ription, we use the Dotation a{ to deno te the ph assertion relating to

wavefonn w"
as This assertion specifies the strobe waveform, ws, It is an assumptioD, that is, it is an

axiom present in the signature associated with th e cu rrent goal.

ao Similarly, this assertion specifies the data waveform, Wo . Again, it is an assumption.

a~ This assertion is simply the first conjunct of assertion as,

a~ This assertion (the first one relating to W2, the waveform on the output of gate 92) results

from propagating assertion 0.1 through NAND gate 91. (Note: Less colloquially, we would

say that assertion ai may be infer red Crom asse r tion a 1 and the axiomatic definition of

tbe wavespec NAN D _BEH AV .)

a~ This assertion is simply the assertion a~ restricted to a subinterval whose start has been

chosen to coincide with the start of the interval associated with assert ion aD.

a~ This assertion is established. using assertions 0.0 and a~, together with a variant of the

NAND·PAIR lemma described. above. The two gJ.tes which in th is case form the pai r are

9, aDd 9,·

a: This assertion results (rom propagating the two <LSsertions aD and a~ through NAND gate

g1. (Compa.re this with the earlier case where a single assertion WJ.S propagated through a

NAND gate_ In the present elSe, the input assertions are high ones, and hence an asse rtion

is needed for eacb o(the (two) inputs to the gate. In the earlier case, which involved a

low assertion, only a single such one was required, This difference is due to the fact that

the defining axiom for the wavespec NAN D .BEH AV (see §2 .3, earlier) has disjunctive

hypotheses for low input assertions but conjunctive ones for bigb input assertions.)

Q~ This assertion resu lts from propagating the low assertion a~ through gate 92.

Q~ This assertion results from Ijoin ing together' assertions aj and Q~. Note: We are able to

join them together because

(a) The two assertions relate to the sallle waveform, namely W2,

136

J

[

l
" -(

137

I

a' ,
a}

a~

a' ,

oj

(b) Both assertions have the same polarity (in this case, both being blgb), aDd

(c) The intervals on which the two assertions are defined overlap (Of, more precisely, we

require them to overlap, and, as a result, generate (as further subgoals) const rai nts

on the timing relation, R) .

This assertion results from propagating assertion al through gate g".

This assertion is simply the second conjunct of assert ion Qs (one of the bypotheses) on

the strobe waveform.

This assertion is a weakened version of aL obtained by rest rict ing the interval over which

the latter is defined to a subinterval. This subinterval is chosen so tbat its start coincides

with the start of the interval over which a} is defined .

This assertion is established using a variant o(the N AND-PAIR lemma (this time, with

gates 93, 9,,), together with assertions a} and a~.

This assertion results from propagating tbe bigb asser tions er} and a~ through gate 93.

Whilst we could proceed to describe the remainder of the wavespec diagram in these term, it

wou ld be tedious to do so. Indeed, the reader may al read y have perceived that we a.re using,

in a stereotyped fashi on, a relatively small number of techniques (ie, tactics). Thus, we can

express these operat ions ra ther more succinctly. Here (using a notation which is reasonably

self-evident) is the remainde r of this sequence of assertions .

a' , propagate oj g,

07 , = join a; 03
a' s = 3,.d conjunct as

al = propagate a~ g,

a' , = join 7 a, a' ,
olD , = IJJea ken a' ,
ai = nand_pairl a' , 04° g. g,

a' , = weaken a' ,

This final assertion, er; is the one we req uirej it is identical wi th erQ, the assertion on the output

waveform of the D-ftipftop that figured in the original goal.

Thus, (subject only to satisfactorily defining the relation R) we have shown that the

propoeed implementation does indeed functi on as a D-fti pfi op (or signals of polarity Ct. We

remark that the corresponding proof, for signals of polarity c" is broadly similar, but a lit tle

more complex.

7.4 The Timing Relation

As already described, the end result of undertaking the goal-d irected proof construction exercise

is not only to prove the D-fiipAop theorem, but also to assist in determining a suitable value

138

for R, the timing relation. The ~ctual value that was chosen (and proven correct) for R was

(R il ii) ~ aJ > 2nJ +2n,
a, ~ a.$ + nl
aJ > 2nl + 2nJ
n4 + "l ;::: a4 + nl
a.$ > 2nl +n3
a6 > n l + n3

aT ~ ", + 2nJ
"4 + "l ;::: a4 + a.
nl > 0

By way of illustra tion, we present below a lypical 'model' of this relation (ie, a se t of values

sa t isfying it). The values we have cbosen are representative of a state-of-the-art CMOS gate

array technology.

Timing Parameters for the NAND gate

n, 300 ps low-to-high propagation delay

200 ps

300 ps

200 ps

high-to. low bold time

high.to.low propagation delay

low.to·high hold time

Timing Parameters for the D ·flipflop

aJ ~ 1400 ps min strobe low time

a, ~ 300 ps max strobe rise time

a, ~ 1300 ps min strobe high time

a. ~ 100 ps max strobe fall time

a, 1000 ps data se t up time

a, ~ 700 ps dala hold lime

a, ~ 900 ps max output propagation delay

a, 300 ps min outpu t hold time

It is of interest to note that

• The 'strobe rise time' parameter, al, is (i n t he definition of R) completely unconstrained:

t hus, the D·ftipftop turns out not really to be 'edge triggered' at all!

• But, conversely, the 'st robe fall time' parameter, a4, is very strongly const ra ined; thus,

t he ability of the D-ft ipftop to retain data is criticaJJy dependent upon the rapidity of the

trailing edge of the st robe waveform.

So far as we know, this latter fact has no t been previously remarked. upon.

Func tion.a ! re lation8hip Altbough generally there are advantages in describing (as we

have done bere) t he relation between ii and fi reJationally, ior some pu rposes there are advan

tages in strengthening this relation to a functional one. Th is may take either the form

n ~ (F il) or ii ~ (G n)

139

The first form specifies the parameters required of the NAND gates in order to re",lise a D

flipflop with given parameters, whilst the second specifies the parameters of the D-flipflop in

tenns of those of its component NAND gates (corresponding to, respectively, a top-down versus

a bottom-up approach)_ In general, neither F nor G will be total functions.

7.S Some Statistics

In order to allow the reader to gain an appreciation of the size of the proof of the above theorem,

and of the time taken in its creation, we provide' a brief summary of the main statistics:

• The overall proof involves about 1600 'h igh level' inferences (ie, applications of derived

inference rules) each corresponding to the selection by the user of a particular tactic.

• These high-level inferences are mapped into a.bou t 5000 applications of the 'primitive'

inference rules.

• The construction of this proof took abou t one week of concentra.ted work by a. practiced

user.

Note that these figure. apply to the proof of the D-ftipft op theore m itself; they do not include

the proofs of the various lemm38 used .

8. Conclusion

The conclusions we draw from the VERITAS project are severalfold; we group them together

under various headings. Firstly, a3 concerns the use of typed, bigher-order logic a3 a computer

hardware description language:

• The fact that it allows predicates to be introduced means that partial (as distinct from

total) descriptions may be expressed.

• The fact that it allows higher-order entities to be introduced means that concepts such as,

for example, functional composition or induction, may be expressed in a natural, intuitive

.tyle.

• The fact that it has an associated deductive calculus means that reasoning ('formal infer

encing') can be carried out.

• The fact that bigher-order logic is powerful enough to describe m<l-them3tics itself means

that this reasoning can encompass uot just the 'low-level' aspects of the bch3v iollr of

digital systems, but also abstract aspects of their behaviour. For example, the properties

of number· theoretic transforms based on finite-field arithmetic cOllld be verified.

• Finally, we Dote that bigher-order logic includes as proper subsets both the applicative

programming languages and also PROLOG . Both of these formalisms have been used for

describing aspects of digital systems.

Overall, we would claim that typed, bigher-order logic (and syntactic variants tbereof) is the

natural computer hardware description language.

Next, we offer some comments on the nature of low-level digital bebavioural specifications.

140

• These should a/ways be partial rather than total. This is because the physical world

is inbereotly iodetenninate aDd our knowledge of it is oecessarily imprecise. Aoy exact

descr ipt ion must therefore be a wrong one!

• It turns out tbat tbe 't emporal' aDd the ' functiooal' aspects of low· level behavioural spec·

ifications are inextricably bound togetber.

• The predicate ccnst , that asserts of an aoalogue waveform that, over a given interval of

time, it is constant at a given digital state, is of fundamental importance in specifying the

behaviour of digital devices.

Our general conclusions on using higher·o rde r logic for formal verification are as foHows.

• 'Formal verification', in th is context, essentially involves deriving (by the use of formal

inferencing, from a set of axioms) a theorem that asserts that the waveforms at the ports

of a system satis fy a given property (the beh avioural specificat ion of the overall circuit)

provided that the waveforms at the ports of each component device of t he system satisfy

the behavioural specification of that device.

• The process of ' formally ve rifying' a design is much harder work than is the 's imu lation' of

the operation of th e same device. Unl ike s imula tion, however , the solution obtained from

formal ve rifi cation is valid for all possible waveforms and for all possible timing paramete rs.

• Because of this, the theorems expressing th e results of formal ve ri ficati on are 'reuseable'

items. In particular, this allows the verification of hierarchically structured systems to be

undertaken in a structu red manner.

• In practice, it is necessary to use computational ass ist ance for formal verificat ion in order

t o eliminate the possibility of wishful thinking, to automate routine patterns of inferencing,

and to maintain a secure database of lemm as.

• We have found that aD approach to theorem proving de rived from the Edinburgh ML / LCF

projec t, in which tenns, derivations aod signatures are represented as values of secure dat a

abstractions, to be ideal in all respects.

Finally, the conclusions we draw from the partic ular case study presented here (ie , the specifi ·

cation and verification of a D·ftipRop) , are as follows:

• When examined in detai l, the ope ra tion of the proposed implementation of the D·Ripftop

(which, at first sight appears to be a relatively simple circ uit) turns out to be surprisingly

complicated.

• The practicability of fo rmally verifying such a ci rcuit has, however, been demonst ra ted, as

also h:ls the pract ic:lbili ty (we should rather say the necessity!) of c:lrrying out this task

com put ation ally.

• As we have shown, the timing relation R, which relates the liming pa ramet ers of the

component devices to the t iming parameters of the overall circuit, caD best be dete rmined

by attempting to construct a proof of tbe verification theorem, gathering together all the

'dangling ' subgoals tbat remai n, and then choosing a value of R t hat is both strong enough

141

...

to enable the proof to be completed <l.nd ye t s Imple enough to be of pr<l.cticai utility .

• Fin ally, in comraring this case study with the m<l.ny accounts that have appeared in the

literature concerning the ve rification of digital systems, particular note should be taken of

the fad that in the approach we have demonstra ted:

- the specificatioDs of both the D-RipRop and its component NAND gates are partial

ones, and

- the timing parameters of the component NAND gates have been taken as variables,

rather than as arbitrary nume rical values (eg , unit delays) .

Whilst both these cODsidera tion do, of course, greatly complicate the exercise, they are ,

we believe, the only means by which results of practical use can be obtained .

In overall conclusion, we believe th<l.t higher- order logic has been demonstra ted to provide an

effective basis both for specifying the intended behaviour of digital systems and for forma lly

verifying the correctness of proposed implementations.

Acknowledgment Th e YERITAS project on d igital specification and verification is cur

rently supported under grant GR/C/2287.5 from the UK Science and Engineering Research

Council.

9. References

III Gordon, M., Milner, R. , and Wadsworth, C., "Edinburgh LC F", Springer-Verlag, 1979.

121 Hanna, F.K., "YER ITA S: The Axioms", Internal Report, University of Kent, 1981.

j3j Hanna, F.K., "Overview of the Veritas P roject", Internal Report, University of Kent, 1983.

141 Hanna, r .K., and Daecbe, N. "Specification and Verification using Higher·O rde r Logic",

p4 18 , Proe CHDL 1985.

151 Hanna, F .K., and Daeche, N. "The VER ITA S Th eorem Prove r and its Formal Spccific;\

tion", Internal Report, Un ive rsity or Ke ut, 1984/ 5.

161 Shostak , R.E., "Formal Verification or Circui t Design", p 13, Proc enOL, 1983.

[71 Gordo D, M., "Why higher· order logic is a good forma lism for specifying and verifyiug

hardware", In te rn al Report no 77, University of Cambridge, 1985.

181 Eveking, H., "The Application of CHoL's to the Abstract Specific:1.tion of Hardware" ,

p167, Proe CHDL 1985.

191 Herbert, J ., "The Appl ication of Formal Specific::l.tion and Verification to a Hardware

Design", p434, Proe CHDL 1985.

1101 Texas Instruments, "Semiconductor Components, Data Book Two" ,

1111 Enderton , H.B., "A Ma the illat ical l o.troduction to Logic", Academ ic Press, 1972 .

142

I

DISCUSSION

Dr. Schneider questioned the use of the work 'higher-order-Iogic'. Dr.
Hanna answered, that he had met ve!1 few logicians who complain. Dr.
Schneider responded, '1 am not a logician!'

Professor Randell remarked that he thought it odd that it could be possible
to ally the notion of 'absolute correctness' (a very precise notion) so that of 'small
and simple system' (a not very precise notion).

Dr. Hanna was asked, whether he could be sure that the circuit is not
oscillatinlf? Dr. Hanna answered, that we know that the physical circuit works.
We are usmg weak assertions and those satisfy our axioms.

Professor Randell asked, Dr. Hanna whether in his efforts to prove existing
designs, had he been able to find errors in them? Dr. Hanna answered, that he
had not tried many examples but that he imagined if we did we would. Most
designs he had seen were under-specified if one takes a close look.

Professor Lewin said that he knew of flip-flop designs with race conditions
that cause both outputs to go high simultaneously. Could Dr. Hanna pick that
up? Dr. Hanna answered, that in this case the theorem proven could not come up
with an answer.

143

-.

I

I

