SPECIFICATION AND VERIFICATION USING HIGHER-ORDER LOGIC:
A CASE STUDY

F.K. Hanna and N. Daeche

Rapporteur: Mr. A.M. Koelmans

107

Specification and Verification using
Higher-Order Logic: A Case Study

F K Hanna and N Daeche

University of Kent
Canterbury, Kent, U.K.

Higher-order logic is an ideal computer hardware description language: it allows the
behaviour of digital devices to be rigorously specified, and it allows the correctness of
digital system designs to be formally verified. The VERITAS approach to specification
and verification is based on the use of higher-order logic. As a case study of this
approach, a behavioural specification for an edge-triggered D-type flipflop is formu-
lated, and a description is given of the stages involved in computationally verifying

the correctness of a commonly used implementation of this kind of flipflop.

1. Introduction

Contemporary computer hardware design languages (CHDL’s) have been designed to achieve
many aims, including the ability to:

e describe the structure of digital systems (possibly hierarchically),

e describe the behaviour of digital systems (possibly at different levels of abstraction),

e simulate the behaviour of assemblages of digital components,

e transform structural or behavioural descriptions into other forms (for example, into wiring

lists, or into waveform diagrams, etc),

e generate fault diagnostic information, etc.
One aim, however, which by and large they have not set out to achieve is that of allowing
reasoning about the properties of structures, the properties of behaviours, or of the interre-
lationship between structures and behaviours. Alternatively stated, little emphasis has been
given to the definition of the semantics of CHDL’s.

In this respect, CHDL’s are similar to many existing programming languages (for example,
FORTRAN, LISP, ADA, etc). These languages, although they are seen as being well suited for
expressing complex sequences of computation, have semantics which (to the extent that they
have been defined at all !) are of immense intricacy. For example, a recent attempt to define

the semantics of ADA ran to some several hundred pages...

108

On the other hand, some recent programming languages (OCCAM being a prime example)
do have a well defined, and relatively simple, semantics. This comes about not by accident, but
because the design of such languages started with semantic considerations, with other aspects
of the languages (eg, syntax, implementation, etc) being attended to only after the semantics
had been rigorously defined. The end result is that it is relatively simple to reason (either
intuitively, or formally) about the properties (correctness, termination, equivalence, etc) of
programs written in such languages.

We believe that a similar approach can usefully be adopted towards the design of CHDL's.
The clarity, simplicity and rigour of definition of the semantics of a CHDL (rather than, for
example, its syntax, or its built-in timing primitives, etc) should be the prime consideration
influencing its design.

Once this point of view has been adopted, the question naturally arises as to what notation
or formalism is best suited for expressing the semantics of a CHDL. It is not difficult to list
the relevant criteria:

e Ideally, the formalism should already exist. This means that it will have been well re-
searched, (independently of our intended use for it) and there will be an existing commu-
nity of ‘experts’ from whom help may be sought in resolving any tricky technical points.

e The formalism should be both powerful and concise. In fact, if we intend to use it to reason
about arbitrary properties of complex hardware designs, it should be powerful enough to
encompass a large part of mathematics itself.

e At the same time, the formalism should be not too far removed from the informal modes
of expression and intuitive reasoning that digital engineers use most of the time.

o It should allow partial descriptions to be expressed and reasoned about. The real world
is both indeterminate and of unbounded complexity; our knowledge of it is therefore
inherently partial. Thus, any total description of it must necessarily be an incorrect one.

e Finally, the formalism should be a strictly formal one. This implies that reasoning in the
formalism can be carried out by formal inferencing (or, alternatively expressed, by symbol
manipulation). In turn, this implies that the logical soundness of any reasoning carried
out in the formalism can be computationally checked.

Taken together, this list of criteria is almost prescriptive in suggesting typed, higher-order
predicate logic [11] as the formalism of choice. As a brief illustration of why higher-order logic,

rather than just first-order logic is appropriate, consider the following sequence of concepts:

The voltage at a port. We can consider a voltage to be a first-order entity.

The waveform at a port. A waveform is a function from time to voltage, and hence it is a

second-order entity.

The behavioural specification of a device. As we shall discuss in §2.3 below, a behavioural

specification is a predicate on a tuple of waveforms. It is, therefore a third-order entity.

The relation ‘better than’, meaning that one behavioural specification is stronger (ie, more

109

restrictive) than another. This is a predicate on pairs of behavioural specifications, and

hence is a fourth-order entity.

o The property ‘is a transitive relation’ (a property that we might wish to assert the above
relation ‘better than’ possesses). This property is a predicate on the above fourth-order
relation, and hence it itself is a fifth-order entity.

Thus, (and this is not a particularly ‘contrived’ example) we find that a fairly intuitive property
— the transitivity of the above relation — is a fifth-order one. By using higher-order logic we
gain the ability to freely introduce and manipulate higher-order entities. In turn, this leads
to an easy and natural correspondence between intuitive, everyday concepts and their precise,
formal expression within the CHDL.

The reason why a ‘typed’ species of logic is used is twofold. Firstly, the (informal) notations
of science and engineering tend to be typed (eg, let w be a waveform, ¢t be an instant of time,
etc) and thus typed logic provides a more concise and natural means of expression than does
untyped logic. Secondly, like the untyped A-calculus, ‘ordinary’ higher-order logic suffers from
being inconsistent; the introduction of types is one way of overcoming this defect.

Relation to other formalisms Another feature we might mention in favour of the use of
typed higher-order logic is that it includes, as proper subsets, two other formalisms which are
also currently being explored as a basis for reasoning about the properties of digital systems.
These are:
e The ‘functional’ subset (essentially Church’s typed A-calculus). Terms in this subset can be
‘evaluated’, and thus behavioural specifications restricted to this subset can be ‘animated’.
e The ‘first-order, Horn clause’ subset (essentially PROLOG). The truth values of (some)
terms expressed in this subset can be mechanically determined, and thus questions posed
about properties of behavioural specifications restricted to this subset can be automatically

answered.

1.1 Background

We have given the name VERITAS to the general approach to specification and verification
of digital systems based on the use of predicate logic. We also use this name variously to
describe the overall methodology, the project under which this approach has been developed,
and the particular species of logic used. Work on the VERITAS project started in 1981, with
the publication [2] of a set of theory presentations characterising, within first-order logic, the
structural and behavioural properties of discrete logic devices, and the first computationally
checked proofs were obtained in 1982. The use of higher-order logic for this purpose was first
proposed in (3].

Relation to other work The use of logic to describe properties of the physical world and
to reason about their interrelation finds its origins with Euclid’s informal axiomatisation of

geometry in ancient times, and with Hilbert’s more formal axiomatisation of the same at the

110

beginning of this century. Since then, propositional logic (Boolean algebra) has underpinned
much of the development of digital logic and computers, and, over the last couple of decades,
both first-order logic and the A-calculus have found extensive use in software verification.
Within the field of hardware verification, approaches relating to the one described here
have been reported by several authors. Eveking [8] has advocated the use of first-order logic and
has developed an approach based on the use of predicate transformers, and has discussed the
way that descriptions at different levels of abstraction may be related. The use of higher-order
logic (with an emphasis towards specification and verification at higher levels of abstraction
than those discussed here) is described (7] by Gordon, and an associated case study by Herbert
is presented in [9]. Finally, we mention that the use of predicate logic to reason about circuits

at the analogue level is described [6] by Shostak.

1.2 Contents

The main aim of this paper is to present a case study, of moderate complexity, demonstrating
the VERITAS approach to the behavioural specification of a digital device, and to the formal
verification of a proposed implementation of it. The remainder of this paper is organised as
follows:

e We begin with a discussion of our approach to partially describing waveforms, and intro-
duce the concept of a ‘wavespec’ — that is, a waveform specification.

e We illustrate (as a simple example) how, using higher-order logic, the behaviour deemed
to characterise a NAND gate can be specified.

e As a more complex example, we specify the behaviour of an edge-triggered, D-type flipflop
(we abbreviate the name of this device to ‘D-flipflop’).

e We describe a proposed implementation, in terms of NAND gates, of a D-flipflop, and
attempt to describe, at an intuitive level, how it works. This turns out not to be easy ...

e We introduce the notions of formal verification, and of computational theorem proving.

e As a case study in formal verification, we describe the various stages involved in com-
putationally constructing a formal proof asserting the correctness of the above proposed
implementation of the D-flipflop.

e Finally, we indicate the practical significance of the above result, and summarise our main
conclusions.

Although this paper is largely self-contained, it does not attempt to cover all aspects of the
subject. A different perspective on the use of higher-order logic for specification and verification
will be found in [4], with an emphasis on the formal specification of structures (ie, circuit
diagrams). In addition, in [5] can be found a full and detailed account of the formal logic used
here and a description of the VERITAS Theorem Prover, together with a tutorial exposition on
the latter.

111

1.3 Notation

The mathematical notation used in this account is, with one or two minor exceptions, one of
the notations used by the computational implementation of the system (as described later).

There are only three features that need comment:

e The application of a function f to a set of arguments z,,z3,...,Z, is denoted (in the
‘applicative’ style) by (f =z, z3...z,) rather than by f(z,,z2,...,%n).

e It is often convenient to represent multi-argument functions in higher-order (or ‘curried’)
form; for example ((F z,) z3) instead of (f z, z3).

e The relative indentation of multi-line expressions is used, along with parentheses, to indi-

cate grouping.

2. General Approach

The methodological aspects of the VERITAS approach are a little more fully described in (4];
here we have space to present only a very brief and superficial summary. Overall, the approach
involves defining a theory which characterises the universe of discourse of digital engineering.
A theory is defined by a signature; this is simply a list of the symbols that can occur in terms
and the axioms that can be used in constructing derivations (or ‘proofs’) of theorems within

the theory. The intention is that:
e Each symbol should correspond to some entity in the universe of discourse.

e Each axiom should describe some relation between these entities that is known (or asserted)
to be true.

In practice, it is convenient to define a signature in a structured way, as a series of extensions
of a primitive signature. This therefore gives rise to a corresponding nested series of theories.
In the following subsections, we summarise the principal features of each of these theories and
indicate their intent. The most primitive theory in the sequence is that of pure higher-order
logic. The symbols introduced include the type bool (comprising the two propositional truth
values true and false) together with the logical connectives (A, v, =, etc) and equality (ie,
‘="). The axioms introduced define certain fundamental properties of higher-order logic (for

instance, reflexivity of equality, extensionality, etc).

2.1 Theory of Numbers and of Time

The first important extension of the signature of pure higher-order logic defines the theory of
Natural Numbers, introducing the type nat (of natural numbers), various arithmetic operators

(suce, +, —, etc), and a set of axioms that characterise number theory. As an example, the

112

following axiom describes induction:
FVYP : nat — bool.
(P 0)
>
Vn:nat. (P n)— (P (succ n))

¥n:nat. (P n)

(Note that, since this axiom involves quantification over the set of all properties P, it is an
intrinsically higher-order one.)

One feature of this theory to which we need to draw attention is that the operator ‘-’
denotes natural subtraction (that is, a — b = 0 if b > a). This operator shares only some of
the properties of ‘ordinary’ subtraction (as commonly defined on the integers). As a simple
example, consider the relation (a + b) — ¢ = (a — ¢) + b Whilst this relation is true if b =0 or
if a > ¢, it is not true in general.

The next extension of the signature defines a theory of time. Specifically, it introduces

three data types

time — describing instants of time
dur — describing non-negative durations of time
intul — describing intervals of time

and a collection of functions between them. In particular, the function

I: time x dur — intvl

is used for constructing intervals. The interval (I t d) is defined as the semi-open interval

starting at ¢, and of duration d.

2.2 Theory of Waveforms

The behaviour of a digital system is defined in terms of the waveforms present at its ports.
Although these are often idealised as being perfect, two-valued ‘binary’ waveforms, in reality
they are analogue waveforms that are only in a ‘binary’ state during certain intervals of time.
The general approach followed by the VERITAS axiomatisation is not to pretend that reality is
other than it is, but simply to axiomatise only those properties of it that we actually require.
In the theory of Waveforms, defined by the next extension of the signature, two types are
introduced; these are wf the set of analogue waveforms, and C, a type containing the two
elements ¢y and ¢, representing.the two ‘digital’ constants. (Note: these digital constants,
(pseudonyms 0, 1, or low, high, etc) should not be confused in any way with the propositional

truth values ¢rue, false of type bool introduced above).

Wavespecs One of the foundations upon which the entire VERITAS approach to specifying

behaviours rests is in the use of a particular predicate

const : (intvl x C) — (wf — bool)

113

This predicate (the fact that it is ‘curried’, or higher-order, is unimportant) is defined by the
term
((const i ¢) w)

meaning that throughout an interval of time 1, the analogue waveform w assumes the digital
value c. This is sketched in Fig. l1a. Note the partial nature of const, and in particular, the fact
that it makes no assertion whatsoever concerning the behaviour of w outside the interval i. It
is convenient to introduce a graphical notation, as shown in Fig. 1b, for expressing assertions
of this general form.

-
() / \ /r
| i —~——
P hime
5
CEBS T
P {ime
Fig 1.

(a) Both the assertion ((const i ¢;) w) and the assertion ((const j ¢y) w) are true.

(b) This shows the convention adopted for depicting these assertions graphically.

We call a predicate defined on a waveform (or, more generally, on a collection of waveforms)
a wavespec (for ‘waveform specification’). For example, the term (const 1 c,) is a wavespec.

As we shall see, wavespecs are of fundamental importance in the VERITAS approach.

2.3 Theory of Gate Behaviours

The theory of Gate Behaviours (defined by a further extension of the above signature) contains
the definitions for the behavioural (as distinct from the structural) characteristics implied by
common usage of the terms ‘AND gate’, ‘OR gate’, etc. Insofar ags these are pure definitions, the
reader is free to decide the extent to which they succeed in capturing what is generally meant
by these terms.

We will illustrate the general approach adopted for characterising device behaviours by
taking the behaviour of a 2-input NAND gate as an example: other gate behaviours follow a
similar pattern, as do other device behaviours (e.g. RAM's, ALU'’s, etc).

We begin by-noting that, as a NAND gate has three ports, the general form of the def-
inition will be a predicate on three waveforms (ie, a wavespec on a 3-tuple of waveforms).
Because NAND gates have differing ‘speeds’, the definition must also incorporate some timing

parameters. We choose to use a tuple of four durations to characterise the speed; this allows

114

a much ‘tighter’ definition than is normally used for specifying the characteristics of gates. As
an aside, we note that there is, of course, no reason why a ‘looser’ definition (ie, one with fewer
parameters) should not be used if so desired, but then, because less would be known about
the gate’s behaviour, it would not be possible to infer so much about the properties of systems
employing such gates.

The symbol we use for characterising the behaviour of a NAND gate is

NAND_BEHAV :durt* — (wfa — bool)

As before, it turns out that it is convenient to express it as a higher-order function. The

meaning we wish the term

((NAND-BEHAV d] dg d; d‘) Win, Win, wo“g)

to have is (approximately):
“The three waveforms w;,,,Win, and wyye exhibit the behavioural characteristics of a
NAND gate, with propagation and hold times (for low inputs) of d, and dj; respectively,
and propagation and hold times (for high inputs) of d; and d4 respectively.”

Let us now propose a definition for this predicate. We will first illustrate its intent in terms of

waveform sketches, and then evolve the corresponding formal definition.

L
w- L, r 1
e | T ——
t —
vy
. ; \
w"t i l—;'._.._.l
3
1 >
4 i
w] r |
cat 1 f ' J3]
.
¥ >
— b— | s > l—>
d, dy o, L, oy oL

FPig 2. Illustration of the predicate (NAND_BEHAV d, d; d3 dy) Win, Win, Wout)

Let w;n, and w;,, be the waveforms at the input ports of a NAND gate, and assume (see
Fig 2) that these two waveforms satisfy the various constraints shown in the diagram (e, the
waveform w;,, is in the ¢, (or ‘low’) state throughout the interval i,, etc). Consider what
assertions may be made about the waveform w,,, at the output port of the gate. We would
argue that (to capture the essence of ‘NAND gate behaviour’) this waveform must satisfy the
constraints shown (ie, it must be in the ¢, state throughout an interval j;, which starts d, after
1) starts and finishes d, after 1, finishes, etc).

There are three interesting points about this definition. First, it is a partial definition of

the behaviour: it places bounds on what is required, but it does not artificially overconstrain

115

it. For example, it does not imply idealised rise and fall transients. Secondly, it is non-strict
for ‘low’ inputs: for example, during interval 1, it does not impose any requirements on the
behaviour of waveform w;n,. Thirdly, it does not state what the actual rise and fall times of
the analogue waveforms must be: it simply specifies bounds on them.

Now let us make this definition precise. First, it is useful to introduce, as a subsidiary

definition, a function A : dur? — (intvl — intvl) that ‘propagates’ intervals. The interval
((A di da) 1)

is defined to be the interval which starts d, later that i, starts and finishes d, later than
i finishes (it is, in fact, the interval j, of Fig(2)). Using this function, we can define the
‘low-mode’ aspects of the NAND_BEH AV predicate, as follows:

Vi :intul,
((const & c;y) win,) V ((const & c¢y) win,)

-

((const ((A dy dp) 1)) wou)

or, in narrative form:
“Por any interval 1, if waveform w;,, is in state ¢; throughout i, or waveform w;,, is
in state ¢y throughout 1, then waveform w,,, will be in state ¢, throughout the interval
starting d, after 1 and finishing d; after 1.”
The corresponding ‘high-mode’ aspects is identical, save only that the roles of ¢; and ¢; are
interchanged, that dj,d4 appear in place of d,d;, and that v (disjunction) is replaced by A
(conjunction).
We can now present the actual definition of the behavioural predicate NAND_.BEH AV ;

it is
(NAND.BEHAV d, dy dy dy) Win, Win, Wout)
=d!!
Vi :intul
((const 1 ¢;) win,)V ((const 1 cy) win,)
((const ((A dy da2) 1) c) wout)
A

((const 1 ¢) win,)A((const § ¢) win,)

((const ((A di dyg) 1) cf) Wour)
In narrative form, this reads (approximately) as:
“The predicate NAND_BEH AV (that is deemed to characterise the behaviour of a NAND
gate) applied to a 4-tuple of durations d,,d;,d3,d4 (representing the timing parameters

of the gate), in turn applied to a 3-tuple of waveforms win,, Win,, Wy (representing the

116

waveforms at the ports of the gate) is defined as meaning that for any interval of time,

1, the two following assertions hold

(1) if input waveform wy,, is in state c; throughout i, or input waveform w;,, is in
state ¢y throughout i, then output waveform w,,, will be in state ¢, throughout the
interval starting d; after i starts, and finishing d; after i finishes, and

(2) if input waveform w,,, is in state ¢; throughout {, and input waveform w;,, is in
state ¢, throughout 1, then output waveform w,,, will be in state ¢, throughout the
interval starting dj after i starts, and finishing d4 after 1 finishes.

There are a number of points to make in connection with this definition.

e It is quite a complicated definition (although, with familiarity, it is readily comprehensible).
However, we would maintain that this complexity is intrinsic to the digital designers notion
of the behaviour of a NAND gate.

e One point we have deliberately glossed over is the partial nature of A, the ‘propagate’
function. In particular, we would not wish to be able to apply A to a null interval and

have it yield a non-null interval. For example, we would not wish the interval defined by

(6 2 5 (It o)

to be the interval (J ¢+ 2 3). In the present context, such behaviour (corresponding to
‘pulse-stretching’ a null pulse into a non-null one) would be distinctly non-physical! The
axiomatic definition of A has been carefully contrived to avoid such a meaning. (In this
respect, it differs from the definition of A as used in [4], in which (because all intervals
were defined as being closed rather than semi-open, as here) it was necessary to ‘guard’
explicitly against such a possibility at every usage of A, a feature which gave behavioural
definitions a somewhat clumsy appearance.)

3. Specification of a D-flipflop

In this section we will first describe, in informal terms, how (we believe) an ‘edge-triggered, D-
type flipflop’ (or, in short, a D-flipflop) is meant to behave. We will then make this description
more precise by recasting it as a collection of wavespec diagrams. Finally, we will formulate it

as a wavespec definition.

3.1 Informal description

A D-flipflop (see Fig. 3a) has three ports: a ‘strobe’ (or clock) port (§), a ‘data-in’ port (1)) and
an ‘output’ port (Q). It is typically described in textbooks and manufacturer’s specification
sheets by a'set of idealised waveform diagrams such as those shown in Fig. 3b. Data (on the D
port) is strobed on the rising edge of a strobe pulse and transferred shortly afterwards to the
Q port, where it remains until the next strobe pulse. A manufacturer's data sheet (eg [10]) will
specify certain conditions that have to be satisfied, and certain parameters that are guaranteed.

117

S ——

“«] DR SRR

(R L TO—-

Fig 3.

(a) Graphical representation of a D-flipflop. S is the ‘strobe’ (or clock) port, D is the ‘data’
port, and Q is the ‘output’ port.

(b) A typical ‘idealised’ behavioural description for a D-flipflop.

In the first category will (typically) be found maximum strobe rates and minimum data setup
and hold times, and in the second category will (typically) be found maximum propagation

delays.

3.2 Wavespec diagram description

Now consider a rather more careful description of the same device. As before (with the NAND
gate), we emphasise that we are now attempting to formalise a definition of an already existing
concept: the reader must decide an the extent to which he or she thinks we succeed in capturing
the intent of the existing usage of this term. In passing, we note that we could (very easily!)
devise a more complicated (or ‘tighter fitting’) definition than the one we are about to propose
(for instance, we could decide to associate different timing parameters with different polarities
of signals, etc). In the interests of keeping the exposition clear, however, we have deliberately
chosen the most simple (yet realistic) definition possible. The definition we propose is of the

form
Ye:C.

(zs ws)A((zp ¢) wp)—((2q ¢) wgq)
Before describing the significance of this expression as a whole, first consider its component
wavespecs, zs, zp etc. These are shown diagrammatically in Fig. 4
e 25 is a wavespec on the strobe waveform. It asserts that it must be low throughout the
interval of duration a,, and be high throughout an interval of duration of a3 + d (where d
is a duration of arbitrary extent), and be low throughout an interval of duration e (where
e is of arbitrary extent). Elsewhere the strobe waveform is unrestricted. Informally, we

would say that this assertion describes a ‘rising edge’ on the strobe waveform, (with the

118

¥ —) L S)
’ .
PR | VL
(}‘ C) == J

— — k—sl

a, ay
tor i} T
t tl tz_ t.!

Fig 4. Wavespec definition of a D-flipflop. The timing parameters @ correspond (loosely) to
the following:

ay min strobe low time

as max strobe rise time

az min strobe high time

a4 max strobe fall time

as data setup time

ag data hold time

az max output propagation delay
ag min output hold time

duration ag describing the maximum allowable rise time) followed by (if e is nonzero)
a ‘falling edge’ (with maximum fall time a4). Note carefully that the specification says
nothing about the detailed ‘shape’ of either transition.

e (zp c) is a wavespec on the data waveform. It asserts that the data waveform must be
constant, at value ¢ (where c is either ¢, or ¢;) throughout an interval which overlaps
the ‘rising edge’ of the strobe waveform. The two duration as and ags correspond to the
required ‘setup’ and ‘hold’ times for the D-flipflop.

e (zq ¢)is a wavespec on the output waveform. It asserts that the output waveform wgq is
constant, at value ¢, throughout the interval shown. The two durations a; and ag describe
the (maximum) propagation time and (minimum) hold time of the D-flipflop.

With these definitions, we can now appreciate the general form of the flipflop specification
Ve:C.
(zs ws)A((zp ¢) wp)—((2q ¢) wq)

In words “For all values of ¢ (namely, either ¢; or ¢y), if wgs, the strobe waveform, satisfies

119

wavespec zs, and wp, the data waveform, satisfies wavespec (zp c¢), then wg, the output
waveform, will satisfy wavespec (zq ¢)".

In passing, we note that, as a special case, the duration e may be zero: if this is so, then
the definition will not require there to be a well-defined falling edge on the strobe waveform.

3.3 Formal definition

Now that we have described (informally) our understanding of the term “The behaviour of a

D-flipflop”, let us propose a formal definition for it. To this end, we introduce a new symbol

DFF_BEHAV :dur® — (wf® — bool)

with the intention that

A((DFF-BEHAV CT) Ws Wp WQ)

should express the assertion: “The three waveforms wgs (the strobe waveform), wp (the data
waveform) and wq (the output waveform) exhibit the behavioural characteristics of a D-flipflop

with timing parameters @ ”. Formally, we define this symbol by the axiom

F ((DFF.BEHAV &) ws wp wg)
=def
Ve: C.
Yt :time, d,e: dur,
(zs ws)A((zo ©) wp)—((zq ¢ waq)
WHERE
(2s w) =
((const (I t ay) cy) w)A
((const (I t; az+d) o) w)A
((const (I t3 e) c7) w)
(0) w) =
((const (I t; as+ax+as) c) w)
((z¢ ¢) w) =
((const ((A a7 ag) 1) ¢) w)
WHERE
1= (] t; az+d+aq+e)
ty =l +a3+d+ay
WHERE
ty =t+a, —as

fg=t+al+dq

(Note: The locally defined symbols ¢y, ¢, t3 and 1 were indicated in Fig. 4)

As with the definition of NAND_BEH AV, we note that this definition is moderately complex.
It is, however, just about the simplest possible definition that captures the digital designer’s

120

notion of what constitutes the behaviour of a D-flipflop. Further, we note that whilst it
fully specifies it, it does not overspecify it. This is an important point: overspecification will
in general limit the range of possible implementations and therefore unnecessarily increase

implementation costs.

Standard Definitions As a final point, we note that, in formulating this definition, several
choices had to exercised, as anyone starting off to frame such a definition ab initio will very
soon discover! Thus, whilst we believe that the proposed definition is a reasonable one, it
is not unique: many subtle variations are possible. One might envisage, one day, a forward
looking standards organisation (BSI, IEEE, ISO, etc) taking on the task of formulating a
set of ‘standard’ definitions for the elements of digital systems, much as Whitworth did for
screw threads, or Bourbaki did for mathematics. In the shorter term, one might envisage
individual companies each evolving their own ‘house style’, a shared set of definitions that
would be available to anyone in the company who was involved in specification, implementation
or verification. Such a ‘database’ (which would, in time, include derivations of useful lemmas

as well) would be a valuable resource.

4. Implementation

Now that we have defined the behaviour that (at least in our eyes) a D-type flipflop is meant
to exhibit, we will consider a possible implementation of one (there is, of course, an infinity of
means by which such behaviours could be realised). The implementation we choose to examine
is shown in Fig. 5. We came across it in the reference manual for a ULA manufacturer’s cell
library. Prior to that the same circuit may be found in [10] as a ‘functional block diagram’ for
a SN7474 integrated circuit.

Fig 5. The circuit of a widely used implementation of a D-flipflop.

121

4.1 How it appears to work

Before undertaking (in §5) a formal proof that this circuit actually exhibits the behaviour of
a D-flipflop, it naturally makes sense to try to gain some intuitive understanding of how the
circuit operates. We say ‘try’ because, perhaps surprisingly in view of the apparent simplicity
of the circuit, this is very difficult! It turns out, on analysis, that the modus operandi of this
circuit is far from simple: in fact, it is unusually complex, and (so the authors found) difficult
to understand intuitively*.

It turns out that the circuit operation can be understood most easily by considering the
circuit as two subcircuits, of which the second can be treated as an ordinary set-reset flipflop
(see Fig. 6a). This then allows the operation of the circuit to be appreciated in higher-level
terms. Lest this manceuvre seem so commonplace as barely to warrant comment, we remark
that the analogous substitution cannot be performed on either of the other two cross-coupled
NAND gate pairs. For example, it turns out that it is not possible to explain the operation of
the circuit in terms of Fig. 6b. This is because other properties of this particular NAND gate

pair are required, over and above the fact that it behaves as a set-reset flipflop.

LT

S s > °_J
Doeme—) D
(a) : (b)
Fig 6.

(a) The circuit shown in Fig 5 split into two subcircuits, the second of which has been replaced
by a set-reset flipflop.
(b) An equally plausible, but unsatisfactory substitution.

We will now offer a (very abbreviated) explanation, couched in the informal, everyday

jargon of digital engineering, for the operation of the circuit shown in Fig. Ga. We start off

* If, like most people, you find this remark difficult to accept at face value, read the rest of
this account, then set it aside, and attempt, within (say) one working day, to come up with a

carefully justified account of ‘how’ the proposed implementation is intended to function ...

122

with the interesting observation that the mode of operation of the circuit is essentially different
for each of the two polarities of data input. Understanding how the circuit operates when it
latches a high data input gives little help in the understanding how it operates in latching a
low data input. The following informal explanation deals only with the former case: we leave
the latter case (which turns out to be a little more complex) as an exercise for the interested

reader.

4.2 Informal explanation

In order to illustrate the following explanation, we have arbitrarily** chosen certain timing
parameters for the NAND gates, and certain timing parameters for the overall flipflop specifica-
tion. Using these parameters, we have then constructed (see Fig. 7) a set of wavespecs which
illustrate (for a high data input) the operation of the circuit. In the following, highly informal,
account we treat these wavespecs as if they were waveforms. The labelling (a,..., f) on the

time axis of this diagram corresponds to the following itemisation:

¥» ' !
3, L |
5, : !
k L— '
3, !)
¥, J 1
a b c d e F

Fig 7. A set of wavespecs compatible with the circuit shown in Fig 5.

(a) Initially, ws (the strobe waveform) is low. Thus w; (the output of gate 2) is high.

** As it happens (see §7.4) the circuit only functions ‘correctly’ for certain combinations of

timing parameters, so it is not an entirely arbitrary choice!

123

(b) Then, wp (the data waveform) becomes high. Gates g, /g3 latch this state. w, goes low.

(c) Then ws (the strobe waveform) goes high. This drives wy low. Gates g3/g4 latch this
state.

(d) w; remains high and wj is low. This sets the output latch gs/gs, with wq high

(e) wp (the data waveform) becomes undefined. w; also becomes undefined. However, w;
remains latched low, and hence maintains wg high. Thus output latch gs/ge remains set.

(f) ws (the strobe waveform) goes low. This change races through g; and ga: assuming it is
a sufficiently rapid transition, w, remains high and thus the output latch gs/gs remains
set, with wg high. (Most of the other gates go into an undefined state).

Again, we emphasise the highly informal, and indeed quite unconvincing, nature of this account.

In fact, this example provides an excellent illustration of the raison d’etre for formal verification.

4.3 Formal specification of the implementation

Elsewhere ([4]) we have explained how, using higher-order logic, the structure (ie, the circuit
diagram) of a device may be specified, in the form of an axiomatic theory, and how (by formal
inferencing) the corresponding behavioural specification may be obtained from it. Thus, we
will not dwell at all upon this aspect in the present account but rather take as our starting
point a behavioural specification for the circuit.

In order to frame this as a formal definition we assume that the waveforms are named
Ws,Wp,WqQ, Wy, Wa,...,ws (as shown in Fig. 5). Further, we assume that the timing param-
eters of the component NAND gates are described by f, a 4-tuple of durations. Under these
assumptions, we can write down a set of assertions satisfied by these waveforms. Each compo-
nent NAND gate imposes a relation between various of these waveforms. For example, gate g,

imposes the relation

((NAND.BEHAV /) w; wp w)
and gate gy the relation

((INAND3.BEHAV 1) wy ws w; wg)

The relation imposed by all the gates together is the conjunction of all the component relations.

AL this point we introduce a new symbol to denote the wavespec (or, more precisely,
the weakest wavespec) satisfied by the waveforms. Because the component wavespecs are

parameterised by 11, so also this overall wavespec will be. Thus, we introduce the symbol

IMPL.BEHAV : dur®— (wf® — bool)

124

(a parameterised wavespec for the behaviour of the implementation) with definition

(IMPLBEHAV) ws wp wg w, w; wy Wg Ws)

=4y
(NAND.BEHAV 1) w; wp w)
A
((NAND3_BEHAV 1) wy ws w w;)
A
(NAND.BEHAV 1) wy ws w;)
A
(NAND.BEHAV 7)) w, w; wy)
A
((NAND_BEHAV 7) wg w; ws)
A

(NAND.BEHAV #) w; ws wq)

The waveforms associated with the circuit shown in Fig. 5 (ie, the proposed implementation of
a D-flipflop) will therefore (assuming the tuple of timing parameters of each of the component
NAND gates is 1) satisfy the wavespec

(IMPL.BEHAV #) : wf® — bool

The above definition will be used in the next section

5. Formal verification

We now move onto the second major theme of this paper, that of the ‘formal verification’ of
the correctness of the proposed implementation of the D-flipflop. In principle, the task is a
very simple one.

e On the one hand, we have (for an arbitrary 8-tuple @ of durations) a wavespec

(DFF.BEHAV &) : wf® — bool

which describes the relation that we require to be satisfied between the triple of waveforms
ws, wp, wq at the ports of a D-flipflop.

e On the other hand, we have (for an arbitrary 4-tuple fi of durations) a wavespec

(IMPL.BEHAV &) :wf®— bool

which describes the relation that we know to be satisfied between the 8-tuple of waveforms
Ws,Wp, Wq, Wy,...,ws at the ports (‘internal’ and ‘external’) of the proposed implemen-
tation.
What we need to do, in order to ‘verify the design’ (that is to prove its correctness w.r.t. the
behavioral definition for a D-flipflop) is (roughly stated) to establish that any set of waveforms

which satisfies the second of these wavespecs also satisfies the first.

125 .

Stated a little more carefully, as a formula, this would be:

Vw.Slele:wl:w?lelwth:wf'
(IMPL.BEHAV f) ws wp wq w, w; w; Wg Ws)

—

(DFF.BEHAV &) ws wp wg)

Of course, this formula is not going to be true for arbitrary values* of @ (the 8-tuple of timing
parameters of the flipflop) and A (the 4-tuple of timing parameters of the component NAND
gates). Thus, we will postulate a relation

R : dur® x durt — bool

that will define the necessary relationship between @ and 1 if the above formula is to be true.
We shall call R the ‘timing relation’. Using R, we can now state the actual theorem that we
wish to establish

V@ : dur®, fi:durt,
(R @ n)
Vws,wp, Wq, W, Ws, W3, Wy, Ws : wf.
(IMPL.BEHAV R) ws wp wg w, w; wy wy Wws)

(DFF.BEHAV &) ws wp wg)

We shall call this (as yet unproven) theorem the D-flipflop implementation theorem. In words, it
states: “For any 8-tuple @ and 4-tuple 71 of durations, if they satisfy the condition (R a@ #),
then any set of waveforms that occur at the nodes of the proposed implementation (whose
NAND gates have timing parameters i) will meet the specification of a D-flipflop (with timing

parameters @).”

General Aims The example we have just described is entirely typical of hardware veri-
fication. Looking at it, we see that we have, in fact, two distinct but interrelated problems
to solve. One is evidently to prove (formally or informally, as the circumstances warrant) the
above theorem. The other (not so evident) task, however, is to find a definition for the timing
relation R. (Notice carefully that we do not imply that such a relation is unique, nor do we
imply that a non-trivial one exists.) Although one might imagine that proposing a suitable
relation is an easy task, experience contradicts this. It turns out that determining a ‘suitable’
value for R is as difficult a task as proving the above theorem. In our experience, ‘intuitive’

attempts at deciding a value for R are invariably wrong!

* For example, it is intuitively obvious that a ‘fast’ flipflop cannot be realised in terms of
‘slow’ NAND gates.

126

The best way that we have found to determine R is to begin by leaving it undefined, and
then to attempt to prove the desired theorem. During the course of this proof, one will be
forced to make certain ‘assumptions’ in order to carry through the proof. Then, when the
(conditional) proof has been achieved, one can gather up all the assumptions (ie, relations
between timing parameters) and chose a relation R which is

o sufficiently strong to imply all the required assumptions, yet
o sufficiently simple to be of practical use (no one is going to be interested in a relation that
takes a couple of pages to express!).

The proof can then be reworked with this definition of R present as an axiom.

6. Computational Inferencing

In this section, we review the means by which we carry through the two interrelated aims
described above, namely:

e Determining a ‘suitable’ definition for the timing criterion R, and

e Proving the D-flipflop implementation theorem.
As we shall see, this involves constructing a large and complex proof. We undertake this task
‘computationally’, in order both to ensure the correctness of our inferencing (by eliminating the
possibility of ‘slips’, wishful thinking, etc) and to be able to automate the lower-level aspects
of it.
The approach we use originally derives from a method pioneered in the Edinburgh ML/LCF
project [1]. In this account, we only have space to give a most cursory overview. The approach

is very fully described in [5] (which includes an extensive tutorial exposition).

General Principles A derivation (or ‘proof’) is a tree. The nodes of the tree are labelled
with the primitive rules of inference of the logic (for example, modus ponens, generalise, spe-
cialise, are some of the rules of inference of the VERITAS logic). The arcs of the tree are labelled
with theorems. The tipsof the tree are labelled with axioms. A derivation is not a free-standing
entity, but rather it exists only with respect to a signature. A signature (sometimes called a
‘theory presentation’) is essentially a sequence of declarations of the symbols and axjoms that
may occur in a derivation.

The VERITAS logic is computationally implemented within a programming language MV
(for ‘META- VERITAS’). This is an interactive, typed, purely functional programming language.
The implementation of this language includes (amongst others) abstract data types (ADT’s)
for signatures, terms and derivations. Associated with these ADT’s are functions for construct-
ing, manipulating and displaying values of each type. These functions, which have been very
carefully defined and implemented, are such as to guarantee the syntactic correctness and the

logical soundness of any entity constructed. For example, consider the MV function

spec : deriv x term — deriv

12y

which implements the ‘specialise’ rule of inference. The function takes two arguments; a deriva-
tion and a term. The intention is that the first argument should be a derivation of a theorem

of the form
FV¥z:s. tm

and the second a term tm’ of type s. In this event, then the value returned by this function
call will be a derivation of a theorem of the form

F tmltm’ [z

(ie, the term tm with all free occurrences of the symbol z replaced by the term tm’, under
the assumption that no capture occurs). Incorporated within the implementation of the ADT
function spec (and completely out of sight to the user) is a rigorous set of checks (on the types
and values of the two arguments) that ensures that, unless the resultant derivation would be
correct in every respect, an error condition arises. Similar checks are built into each of the

other primitive constructor functions.

6.1 High-level Inferencing

Whilst it is, in principle, possible to construct a derivation of any theorem simply in terms of
the primitive ADT term and derivation constructors described above, it would be unimaginably
tedious to do so. There are three techniques that may be used to reduce the effort required by
a user:

e Functions which implement derived inference rules may be written in the meta-language.
The body of such a function is a complex expression which, each time an application of
the function is evaluated, results in the application of many primitive term and derivation
constructors. As an illustration, a very simple example of a derived inference rule would
be a function which, given a derivation of a theorem of the form + Vz. Vy. ¥z. Pr ..
yields a derivation of the theorem F Vz,y,2z. P. , ., that is, it tuples a nested sequence of
quantifiers.

e A ‘database’ of useful lemmas (ie, subsidiary theorems) may be built up. In general, the
axioms that are chosen to characterise a theory will be both very simple and few in number
(the two factors helping to ensure that the truth of the axioms is beyond reasonable doubt).
Because they are simple and few in number, they cannot encompass the many arithmetic,
algebraic and digital engineering relations that we would like to be able to take for granted.
Thus, it is desirable to build up a database of a few hundred generally useful lemmmas. To

give a simple example, the following lemma

-

F Va,b, ¢ : nat.
(az2b)A(b>c)— (a>c)

is rep itive of the couple of dozen lemmas concerning arithmetic ordering relations.

128

e The third technique we mention is that of goal-directed inferencing. The idea is a very
simple one. It relies upon the fact that if one knows, in advance, the theorem one is
endevouring to prove (ie, the goal) it is often easy to obtain from it a collection of subgoals
with the properties (a) that, individually, they are easier to prove than was the original
goal, and (b) that, once they themselves have been established as theorems,the original
goal may itself (by the use of a derived inference rule) be established as a theorem. The
functions that are used for this purpose are known as tactics. A typical example of a tactic

is one for proving theorems by the use of induction. For instance, given a goal of the form

VYn : nat, P,

(where P, is some formula in which n occurs free), the tactic will yield two subgoals

namely
P.l0/n] and (Pn] Py|(suce n)/n|

and, once these subgoals have been established as theorems, will use an appropriate derived

inference rule to infer the original goal.

We describe the system with which the user interacts in constructing a derivation as a proof
assistant. Basically, it is a program (written in MV) which allows the user to specify the top-
level goal, to examine any subgoal (and the declarations of symbols and axioms on its associated
signature), and to specify the tactic to be used to achieve each of the subgoals.

It is often useful, especially when undertaking new proofs of an unfamiliar kind, to be
able to display, in graphical form, the derivation (or completed part thereof). Thus, the proof
assistant program provides the means for doing this; as an illustration of this sort of display,
Fig 8 shows a typical derivation (in fact, it is a derivation of the NAND-PAIR lemma that will
be used in §7.2 below).

This concludes our very brief look at the logic and the techniques used in its computational
implementation. For the remainder of this paper, we will limit ourselves to a relatively informal,
high-level description of the goal-directed inferencing process we have used to prove the D-
flipflop theorem and obtain the timing criterion R.

7. Proving the D-flipflop Implementation Theorem

So far, we have proposed definitions for the behaviour of a NAND gate and for a D-flipflop, we
have illustrated one commonly used implementation of a D-flipflop, we have written down the
theorem we would like to establish, and we have outlined the approach we use in computational
theorem proving. In this section we shall draw all these threads together and describe how
we actually went about computationally proving the theorem and determining the timing
relation R.

We have already noted that, even at an intuitive level, the mode of operation of the

proposed implementation is far from obvious. It will scarcely come as a surprise, therefore,

129

e === N = O = O Y =} —

>

f
A
| [1
h A A
Amt e r == s |
A r r r rF_F
== =1 F 7 . 1 F ™
? AR e B Tl it B r P r o F
1 1 1 r— == ¥ 't A
h F £ h r h r rh r h
== I 'k N ey B Y
u r A R N T S T T R S
r 3 59 I] | R R U [| r A
rr r r h ¢ rfF r¥F F c ¢
i siperipuid) I | R Ui
r ¢ r h ¢ h r r r h
T [|] I | I i1
F & r bk r c c h r ¢
1 | I | I | H
2 r r h ¢ For
1 | | | |]
h r r ¢ r e
] I | 1 I I
e F r r r F
1 | 1 |
r r r
! 1 |
r r +
! 1
F +

Fig 8. Graphical display of a typical derivation.

that a formal derivation of the D-flipflip implementation theorem is quite complicated. Thus,
we are only able to give a general, high-level account of the way we go about constructing
this derivation. We mention, however, for anyone who may interested in examining the actual
proof, that we are in the process of preparing an annotated step-by-step transcript of it, in the

form of a C.A1 interactive document.

Let us start this account of the proof by restating, as our ‘goal’, the formula we are

130

intending to prove:
Y a:dur®, fi:durt,
(R a@ A)
4
Y ws,wp,wq, W, Wy, w3, Wy, Ws : wf
(IMPL.BEHAV /) ws wp wq w, wy wy Wy Ws)
=5
((DFF.BEHAV &) ws wp wgq)
As we have explained such a goal is not a free-standing entity, but rather has associated with
it a signature. The signature declares all the symbols and axioms that are, in effect, ‘within
scope’, that is, that may be used in constructing a derivation of the theorem. The ‘earlier’ parts
of this signature introduce symbols and axioms associated with propositional logic, arithmetic,
instants of time, durations, intervals and waveforms (as briefly described in §2 above). The
‘later’ (and thus more problem specific) parts of the signature include declarations for the
symbols NAND BEHAV, DFF_BEHAV and IMPL_BEH AV, and their defining axioms
(precisely as we have defined them in §2.3 of this account). The signature also includes a

declaration for the timing condition R, but, as yet, no axiom defining it.

7.1 First Part of the Proof

We now give an itemised account of the main stages gone through in constructing (in goal-
directed mode) a derivation of the D-flipflop implementation theorem. In presenting the fol-
lowing account, we explain that it is highly abbreviated, and hence gives a somewhat idealised
view.

(1) The first step, before even calling the proof assistant, is to construct the signature (or,
alternately stated, to define the theory presentation) with respect to which inferencing will
take place. This is simply done by ‘extending’ an existing (standard) signature with the
definitions (as given earlier) for the symbols IMP_BEH AV, and DFF_BEHAV and a
declaration (but no defining axiom) for the symbol R.

(2) The ‘proof assistant’ function (in the meta-language) is then called, with the goal (defined
w.r.t the above signature) as its argument.

(3) The first couple of steps are concerned with “stripping-off” (by the use of the appropriate
tactics) the universally quantified symbols and the hypothesis part of the outer implication.
This results in the subgoal ‘

YV ws,wp,wy,w,ws, w3, wy, ws : wf
(IMPL.BEHAV 1) ws wp wg w, w; w; wy ws)
((DFF.BEHAV d) ws wp wgq)
The signature associated with this subgoal now includes declarations for the symbols @

and i as ‘constants’, and for (R 4) as an axiom or ‘assumption’.

131

(3) The universally quantified variables ws,.. ,ws are likewise stripped-off, and then the sym-
bol IMPL_BEH AV is replaced by the RHS of its definition (remember that, in eventually
constructing the derivation, exactly the opposite of all these moves takes place). This then

yields a subgoal of the form

(NAND.BEHAV 7) w, wp wi)
A

A
(NAND_BEHAV /) wy ws wg)

—

(DFF.BEHAV &) ws wp wg)

(5) Again, the hypothesis part of this formula is stripped-off, so that the six NAND_BEH AV
clauses appear as axioms in the signature. Then DFF_BEH AV is replaced by its defini-
tion. This yields the subgoal

Veug.
V t:time, d,e: dur.

(ze ws)A((zp ¢) wp)—((zg ¢) wg)

WHERE

(z2s w) =
WHERE

tl == t+a[— as
tg = t+al +ﬂ'z

(6) Case analysis on ¢ is carried out: this yields two subgoals. One is for ¢; and the other for ¢,
(ie, for high and for low data inputs respectively). Here, we will consider only the former
case. The case analysis is followed by stripping-off the universally quantified variables,
replacing the terms (zs wg) and ((zp «¢) wp) by their definitions and then stripping
these off (so that they too become axioms). This results in the subgoal

((const ((A a7 as) 1) o) wq)
WHERE i = (I t3 az+d+aq+e)
WHERE tq = t+(11+ag

This concludes the first part of the proof strategy: we now have as our goal the above assertion
involving the ‘Output’ waveform wg, and a whole set of assumptions (present as axioms in the

signature of the goal), including wavespecs on the ‘strobe’ and ‘data’ waveforms, ws and wp.

132

7.2 Specialised Techniques

Before continuing with the second part of this proof, we pause to describe some techniques
that we have introduced to facilitate proving goals of this general kind. These techniques are:
o the notion of ‘propagating assertions through gates’,
e tactics that allow this type of operation to be carried out in a goal-directed manner,
e tactics for performing ‘cutting and stitching operations’ on intervals,
e a technique for retrospectively deciding what the timing criterion R should be.

We deal with each of these in turn.

Propagating assertions through gates A technique that we use extensively is, ex-
pressed informally, that of propagating assertions through gates. We illustrate the idea with
a simple example. Suppose that w, and w; are the waveforms at the input ports of a NAND

gate and that w;, is the waveform at its output port. Further, suppose that the assertion

((const § ¢f) wy)

has been established, that is, the w; input waveform is known to Be in the low state during
an interval i, Let us (meta-linguistically) name this assertion a; (the subscript ‘1’ infor-
mally indicating that it relates to waveform w;). Then, by using the (axiomatic) definition of

NAND_BEHAV, we can infer (essentially by specialisation followed by modus ponens) the

assertion
((const ((A dy da) 1) c) ws)

This assertion (name it aj) relates to ws, the output waveform. Intuitively, we can think of

assertion a3 as being obtained by “propagating assertion a; through gate g”.

Tactics for ‘propagating assertions’ In order to be able to use the intuitively appealing
style of reasoning described above in a goal-directed manner, we must be able to express it as a
tactic. At first sight, this may seem difficult because goal-directed reasoning inherently proceeds
in a ‘backwards’ direction, whereas the above style of reasoning is inherently ‘forwards’. As
the following example shows, however, these two conflicting requirements can be reconciled.
Suppose that, for the simple circuit shown in Fig 9, we wish to establish a goal of the form

ap — ap (where ag,...,a, are assertions on waveforms wy, ..., w, respectively).

- w, w, “n
e D DU S) R g S
., =<, oy L

Fig 9 A simple circuit. aq,...,a, are assertions involving the waveforms wy, ..., w, respec-
tively.

133

The tactic that we use to achieve this operates as follows. First of all, it takes the assertion
ap and ‘propagates’ it through gate g;, thus obtaining a new assertion, a; , and a theorem
of the form F ao — a; . The tactic then generates a subgoal of the form a; — a, . Once
this subgoal (which is one step ‘easier’ to achieve than the original goal) has eventually been
achieved (by further subgoaling, etc), it is then a trivial matter for the tactic to infer (essentially
by using modus ponens and the above theorem) the original goal as a theorem.

This mechanism is, of course, entirely encapsulated within the body of the ‘propagate’
tactic (or, more precisely, set of such tactics, since there is one for each kind of gate), and so, to
a user, the effect is simply as if he was propagating assertions through the circuit in the same

manner that a digital engineer is used to thinking of signals as propagating through a circuit.

Tactics for manipulating intervals There is another specialised group of tactics that
we also employ extensively: these are used for ‘cutting and stitching’ the intervals on which
wavespecs are defined. For example (see Fig. 10), given a pair of wavespecs z, and 2; (of the
same polarity, and assumed to be qualifying the same waveform) one might wish to assume
that the intervals on which they are defined overlap, and hence, taken together, imply the

wavespec z defined over the union of the two intervals.

Fig 10 Merging two assertions.

In order to justify this assumption (ie, that the intervals overlap), the proof assistant
will generate, as an additional goal, a relation (generally a conjunction of inequalities) that
must hold between the two intervals. Because of the number of ways in which intervals may
overlap or fail to overlap (including cases where one or other or both intervals are empty), these

relations may be unexpectedly complex.

The NAND-PAIR lemma In addition to these specialised tactics, we also make use of a
collection of behavioral lemmas. A representative example is one we have named the NAND-
PAIR lemma (see Fig. 11). It essentially asserts that a pair of cross-coupled NAND gates behaves
like a set-reset flipflop, that is to say, it will ‘latch’ a Jow pulse on one of its inputs, and stay
in this state for as long as the other input remains high.

In more detail, it asserts that (provided the timing parameters b of the flipflop are appro-
priately related to those of the constituent NAND gates), if the assertions a,,; and @,.se¢ hold,
then assertion o,y will also hold. In passing, we remark that there are several closely related

variants of this lemma.

134

Fig 11 The NAND-PAIR lemma. Assertions a,.; and a,.,. imply assertion a,ut.

Definition of the relation R The net effect of using the various tactics and lemmas we
have just been describing is that, as the goal-directed construction of the proof tree proceeds,
subsidiary subgoals involving relations between the timing parameters are generated. In gen-
eral, we do not attempt to satisfy these subgoals immediately, but rather leave them as ‘stubs’
(ie, as unfinished branches of the goal tree). Then, when all other parts of the goal-tree have
been filled in, we gather together the entire set (call it I) of such relations and determine a
‘suitable’ definition for the relation R. Obviously, one possible definition for R would simply
be the conjunction of all the relations in £, but (because L is quite large) such a definition
would be far too complex to be of any practical interest. Instead, what we do is to examine E
carefully and choose a definition for R which is both reasonably simple and sufficiently strong
(ie, strong enough to logically imply each of the relations in R). This takes a degree of skill
and judgement. With R chosen, we then incorporate its defining axiom in the signature, and
revisit the stubs (ie, unfinished branches) of the goal tree and complete them.

This concludes our summary of the general techniques we use during the second half of

the proof. We will now continue the account of the construction of the D-flipflop theorem.

7.3 Second Part of the Proof

The second part of the proof is entirely concerned with ‘propagating assertions’ through the
proposed implementation of the D-flipflop. The overall aim is, briefly stated, to demonstrate
that the implementation does, in fact, succeed in ‘latching’ the input signal. (Recollect that, of
the two possible polarities of input signal, only the ¢, case is presently under consideration; the
cs case is the subject of a separate proof, not described here.) Stated in a little more detail,
the aim is to demonstrate (by goal-directed inferencing) that

under the assumption that the strobe waveform ws satisfies the strobe wavespec zs,

135

and the data-in waveform wp satisfies the data-in wavespec (zp <), then the output

waveform wg will satisfy the output wavespec (29 ¢).

Call these three assertions (or, more precisely, the expanded form of these three assertions,

as defined in §7.1 above) ag, ap and aq respectively. The assertion agq is the current goal,

namely
((const ((A a7 as) 1) c) wg)
WHERE 1 =

and the assertions as and ap are present as axioms (ie, ‘hypotheses’) in the signature of the

goal.

The outline of this part of the proof, which involves the detailed consideration of a series
of related wavespecs, is easy to follow if presented in graphical form (see Fig. 12). Essentially,
we will be propagating assertions ag and ap through the proposed implementation of the
D-flipflop (as shown in Fig 5), and demonstrating that they imply assertion ag.

In the following description, we use the notation 0';!. to denote the j** assertion relating to
waveform w;.
as This assertion specifies the strobe waveform, ws. It is an assumption, that is, it is an

axiom present in the signature associated with the current goal.

ap Similarly, this assertion specifies the data waveform, wp. Again, it is an assumption.

al This assertion is simply the first conjunct of assertion as.

a} This assertion (the first one relating to ws, the waveform on the output of gate g2) results
from propagating assertion a} through NAND gate g;. (Note: Less colloquially, we would
say that assertion o} may be inferred from assertion ak and the axiomatic definition of
the wavespec NAND_BEHAV.)

a? This assertion is simply the assertion a) restricted to a subinterval whose start has been
chosen to coincide with the start of the interval associated with assertion ap.

o3 This assertion is established using assertions ap and a2, together with a variant of the
NAND-PAIR lemma described above. The two gates which in this case form the pair are
91 and g3.

a} This assertion results from propagating the two assertions ap and o through NAND gate

g1 (Compare this with the earlier case where a single assertion was propagated through a
NAND gate. In the present case, the input assertions are high ones, and hence an assertion
is needed for each of the (two) inputs to the gate. In the earlier case, which involved a
low assertion, only a single such one was required. This difference is due to the fact that
the defining axiom for the wavespec NAND_BEH AV (see §2.3, earlier) has disjunctive
hypotheses for low input assertions but conjunctive ones for high input assertions.)

a3 This assertiod results from propagating the low assertion a} through gate g,.

aj This assertion results from ‘joining together’ assertions a} and ai. Note: We are able to
join them together because

(a) The two assertions relate to the same waveform, namely w,,

136

‘wa102y) uorgejuawajdun doydiy-q 2q3 Sutacid uwi pasn suolytassy ZT Sig

Sa.a,e
Y ¥ ¥y

SN md s
¥ ¥ ¥ ¥ ¥

+ Beeluinisar-m
¥ XYYV Y

~dAma =
¥ ¥ v ¥

I
¥ ¥ ¥

{i\

137

(b) Both assertions have the same polarity (in this case, both being high), and

(c) The intervals on which the two assertions are defined overlap (or, more precisely, we
require them to overlap, and, as a result, generate (as further subgoals) constraints
on the timing relation, R).

oy This assertion results from propagating assertion a} through gate g4.

as This assertion is simply the second conjunct of assertion as (one of the hypotheses) on
the strobe waveform.

a? This assertion is a weakened version of a}, obtained by restricting the interval over which
the latter is defined to a subinterval. This subinterval is chosen so that its start coincides
with the start of the interval over which a?% is defined.

ay This assertion is established using a variant of the NAND-PAIR lemma (this time, with
gates g3, g4), together with assertions a% and al.

a3 This assertion results from propagating the high assertions a% and a3 through gate g.

Whilst we could proceed to describe the remainder of the wavespec diagram in these term, it
would be tedious to do so. Indeed, the reader may already have perceived that we are using,
in a stereotyped fashion, a relatively small number of techniques (ie, tactics). Thus, we can
express these operations rather more succinctly. Here (using a notation which is reasonably

self-evident) is the remainder of this sequence of assertions.

@y = propagate czé ga

a} = join af af

ol = 3% conjunct as

a3 = propagate ok gz

ay = join aj ab

aj’ = weaken o}

af = nandpair' al ai® g5 ge
ag = weaken o:é

This final assertion, o is the one we require; it is identical with ag, the assertion on the output
waveform of the D-flipflop that figured in the original goal.

Thus, (subject only to satisfactorily defining the relation R) we have shown that the
proposed implementation does indeed function as a D-flipflop for signals of polarity ¢,. We
remark that the corresponding proof, for signals of polarity ¢y, is broadly similar, but a little

more complex.

7.4 The Timing Relation

As already described, the end result of undertaking the goal-directed proof construction exercise

is not only to prove the D-flipflop theorem, but also to assist in determining a suitable value

138

for R, the timing relation. The uctual value that was chosen (and proven correct) for R was

(R @) = a; >2n; +2n4
a, 2 as +n
ay > 2n; + 2n;3
ng+ng 2 ag+n
a5>2r1.+n3
ag > ny +nj3
ar 2 ny + 2n;
ng +ng 2 a4 + ag
ng >0

By way of illustration, we present below a typical ‘model’ of this relation (ie, a set of values
satisfying it). The values we have chosen are representative of a state-of-the-art CM0S gate-
array technology.
Timing Parameters for the NAND gate

ny = 300 ps low-to-high propagation delay

ny = 200 ps high-to-low hold time

ny = 300 ps high-to-low propagation delay

ng = 200 ps low-to-high hold time

Timing Parameters for the D-flipflop

]

a; 1400 ps min strobe low time
az = 300 ps max strobe rise time
a3 = 1300 ps min strobe high time
aqy = 100 ps max strobe fall time
as = 1000 ps data setup time
ag = 700 ps data hold time
a; = 900 ps max output propagation delay
ag = 300 ps min output hold time
It is of interest to note that
e The ‘strobe rise time' parameter, aq, is (in the definition of R) completely unconstrained:
thus, the D-flipflop turns out not really to be ‘edge triggered’ at all!
e But, conversely, the ‘strobe fall time’ parameter, ay4, is very strongly constrained; thus,
the ability of the D-flipflop to retain data is critically dependent upon the rapidity of the
trailing edge of the strobe waveform.

So far as we know, this latter fact has not been previously remarked upon.

Functional relationship Although generally there are advantages in describing (as we
have done here) the relation between @ and i relationally, {or some purposes there are advan-

tages in strengthening this relation to a functional one. This may iake either the form

n = (F a) or a = (G n)

139

The first form specifies the parameters required of the NAND gates in order to realise a D-
fliplop with given parameters, whilst the second specifies the parameters of the D-flipflop in
terms of those of its component NAND gates (corresponding to, respectively, a top-down versus
a bottom-up approach). In general, neither F nor G will be total functions.

7.5 Some Statistics

In order to allow the reader to gain an appreciation of the size of the proof of the above theorem,
and of the time taken in its creation, we provide a brief summary of the main statistics:
e The overall proof involves about 1600 ‘high level’ inferences (ie, applications of derived
inference rules) each corresponding to the selection by the user of a particular tactic.
e These high-level inferences are mapped into about 5000 applications of the ‘primitive’
inference rules.
e The construction of this proof took about one week of concentrated work by a practiced

user.

Note that these figures apply to the proof of the D-flipflop theorem itself; they do not include
the proofs of the various lemmas used.

8. Conclusion

The conclusions we draw from the VERITAS project are severalfold; we group them together
under various headings. Firstly, as concerns the use of typed, higher-order logic as a computer
hardware description language:

o The fact that it allows predicates to be introduced means that partial (as distinct from
total) descriptions may be expressed.

e The fact that it allows higher-order entities to be introduced means that concepts such as,
for example, functional composition or induction, may be expressed in a natural, intuitive
style.

e The fact that it has an associated deductive calculus means that reasoning (‘formal infer-
encing’) can be carried out.

e The fact that higher-order logic is powerful enough to describe mathematics itself means
that this reasoning can encompass not just the ‘low-level’ aspects of the behaviour of
digital systems, but also abstract aspects of their behaviour. For example, the properties
of number-theoretic transforms based on finite-field arithmetic could be verified.

o Finally, we note that higher-order logic includes as proper subsets both the applicative
programming languages and also PROLOG. Both of these formalisms have been used for
describing aspects of digital systems.

Overall, we would claim that typed, higher-order logic (and syntactic variants thereof) is the
natural computer hardware description language.

Next, we offer some comments on the nature of low-level digital behavioural specifications.

140

e These should always be partial rather than total. This is because the physical world
is inherently indeterminate and our knowledge of it is necessarily imprecise. Any exact
description must therefore be a wrong one!

e It turns out that the ‘temporal’ and the ‘functional’ aspects of low-level behavioural spec-
ifications are inextricably bound together.

e The predicate const, that asserts of an analogue waveform that, over a given interval of
time, it is constant at a given digital state, is of fundamental importance in specifying the
behaviour of digital devices.

Our general conclusions on using higher-order logic for formal verification are as follows.

e ‘Formal verification’, in this context, essentially involves deriving (by the use of formal
inferencing, from a set of axioms) a theorem that asserts that the waveforms at the ports
of a system satisfly a given property (the behavioural specification of the overall circuit)
provided that the waveforms at the ports of each component device of the system satisfy
the behavioural specification of that device.

e The process of ‘formally verifying’ a design is much harder work than is the ‘simulation’ of
the operation of the same device. Unlike simulation, however, the solution obtained from
formal verification is valid for all possible waveforins and for all po.ssib.le timing parameters.

e Because of this, the theorems expressing the results of formal verificaticn are ‘reuseable’
items. In particular, this allows the verification of hierarchically structured systems to be
undertaken in a structured manner.

e In practice, it is necessary to use computational assistance for formal verification in order
to eliminate the possibility of wishful thinking, to automate routine patterns of inferencing,
and to maintain a secure database of lemmas. :

e We have found that an approach to theorem proving derived from the Edinburgh ML /LCF
project, in which terms, derivations and signatures are represented as values of secure data
abstractions, to be ideal in all respects.

Finally, the conclusions we draw from the particular case study presented here (ie, the specifi-
cation and verification of a D-flipflop), are as follows:

e When examined in detail, the operation of the proposed implementation of the D-flipflop
(which, at first sight appears to be a relatively simple circuit) turns out to be surprisingly
complicated.

o The practicability of formally verifying such a circuit has, however, been demonstrated, as
also has the practicability (we should rather say the neccessity !) of carrying out this task
computationally. .

e As we‘have shown, the timing relation R, which relates the timing parameters of the
component devices to the timing parameters of the overall circuit, can best be determined
by attempting to construct a proof of the verification theorem, gathering together all the

‘dangling’ subgoals that remain, and then choosing a value of R that is both strong enough

141

to enable the proof to be completed and yet simple enough to be of practical utility.

o Finally, in comparing this case study with the many accounts that have appeared in the
literature concerning the verification of digital systems, particular note should be taken of
the fact that in the approach we have demonstrated:

- the specifications of both the D-flipflop and its component NAND gates are partial
ones, and
~ the timing parameters of the component NAND gates have been taken as variables,
rather than as arbitrary numerical values (eg, unit delays).
Whilst both these consideration do, of course, greatly complicate the exercise, they are,
we believe, the only means by which results of practical use can be obtained.
In overall conclusion, we believe that higher-order logic has been demonstrated to provide an
effective basis both for specifying the intended behaviour of digital systems and for formally

verifying the correctness of proposed implementations.

Acknowledgment The VERITAS project on digital specification and verification is cur-
rently supported under grant GR/C/2287.5 from the UK Science and Engineering Research

Council.

9. References

[1] Gordon, M., Milner, R., and Wadsworth, C., “Edinburgh LCF”, Springer-Verlag, 1979.

[2] Hanna, F.K., “VERITAS: The Axioms”, Internal Report, University of Kent, 1981.

i3] Hanna, F.K., “Overview of the Veritas Project”, Internal Report, University of Kent, 1983.

[4) Hanna, F.K., and Daeche, N. “Specification and Verification using Higher-Order Logic”,
p418, Proc CHDL 1985.

[5] Hanna, F.K., and Daeche, N. “The VERITAS Theorem Prover and its Formal Specifica-
tion”, Internal Report, University of Kent, 1084/5.

[6] Shostak, R.E., “Formal Verification of Circuit Design”, p13, Proc CIHIDL, 1983.

|7] Gordon, M., “Why higher-order logic is a good formalism for specifying and verifying
hardware”, Internal Report no 77, University of Cambridge, 1985.

(8] Eveking, H., “The Application of CHDL's to the Abstract Specification of Hardware”,
pl67, Proc CHDL 1985.

[9] Herbert, J., “The Application of Formal Specification and Verification to a Hardware
Design”, p434, Proc CHDL 1985.

[10] Texas Instruments, “Semiconductor Components, Data Book Two?,

(11} Enderton, H.B., “A Mathematical Introduction to Logic”, Academic Press, 1972.

142

DISCUSSION

Dr. Schneider questioned the use of the work ‘higher-order-logic'. Dr.
Hanna answered, that he had met very few logicians who complain. Dr.
Schneider responded , “I am not a logician!

Professor Randell remarked that he thought it odd that it could be possible
to ally the notion of ‘absolute correctness' (a very precise notion) so that of ‘small
and simple system' (a not very precise notion).

Dr. Hanna was asked, whether he could be sure that the circuit is not
oscillating? Dr. Hanna answered, that we know that the physical circuit works.
We are using weak assertions and those satisfy our axioms.

Professor Randell asked, Dr. Hanna whether in his efforts to prove existing
designs, had he been able to find errors in them? Dr. Hanna answered, that he
had not tried many examples but that he imagined if we did we would. Most
designs he had seen were under-specified if one takes a close look.

Professor Lewin said that he knew of flip-flop designs with race conditions
that cause both outputs to go high simultaneously. Could Dr. Hanna pick that
up? Dr. Hanna answered, that in this case the theorem proven could not come up
with an answer.

143

