
Rapporteur:

I . I

WHAT A PROGRAMMER SHOULD KNOW ABOUT LOGIC

Dr. C.M. Holt
Mrs. M. Koutny

D. Gries

31

What Programmers Don't and Should Know

David Gries

Computer Science Department, Cornell University

prepared for the

Twentieth University of Newcastle upon Tyne International Seminar
on the Teaching of Computing Science at University Level

titled

Logic and its Application to Computing Science

Table of Contents
o. Introduction, 1
I. Logic, 2
2. Writing fonnulas in the logical notation, 4
3. The syntactic proof, 6
4. Developing correct programs, 9
5. The hazards of examples, 10
6. Further comments on notation, 12
7. Conclusions, 13
8. Acknowledgements, 13
9. References, 13

Introduction
I am concerned with tho way algorithms and programs are
developed and presented in the research papers !lUll we
wrire, in the rexts from which we reach. and in 'everyday'
programming. OeneralIy speaking. the level of profes
sionalism is far below what it could be, given the
advances in the stare of the art and science of program
ming over the past ftfteen years.

It is doubtful that older compurer scientists will change
their methods of developing and presenting algorithms.
The development and presentation of an algorithm is often
the secondary concern to them; the primary concern is the
area in which the algorithm is being written, and that is
where most of the 1eaming and research efforts are
placed. (Also, it is difficult. for all of us. to change our

l ?

ways -I cenainly don't want to. As Mark Twain said.
'Nothing SO needs refonning as other people's habits'.)

Thus. it is to the younger generations that we tum for
improvement. If we teach them more effective ways of
thinking, of developing and presenting algorithms, tl,ey in
tum will press for and effect the necessary changes.

But what should we give today's students that they are not
already getting? First, we should be instilling in them

• An appreciation of the need for precision, rigor, and
elegance when dealing with specifications of an algo
rithm, when analyzing the properties of the objects being
manipulated by the algorithm, when developing it . and
when presenting it.

Of course. an appreciation of a need is not enough; one
must be able toflll the need. Basic to this is

• An in-depth experience with the propositional and
predicate calculi. the aim being a proficiency and agility
in fonnal manipulation according to their axioms, infer
ence rules, and theorems.

The emphasis here is not on deep theorems about can·
sistency, completeness, non-standard models, and the like.
Instead. it is on the use of logic as a tool in our everyday
striving for simplicity and elegance. The syntactic proof
as a sequence of fonnal manipulations according to a
logic should assume importance. Through many and

•

l I

varied examples. it should become clear that formal mani
pulation is a \llIeful _Yen indispensable- tool of the
programmer. Oat of this will come

• An ~ of die imponance of suitable. simple
noration that ill JNII'd III formal manipulation and a
lessening of the Med for examples II! a means of convey
ing lUldmranding.

One may argue that these things are already being raught
and practiced. PerhaPS. but far less than they should be.
In the U.S.. \bey are to be conveyed in a discrete
mathematica COID'!Ie, where the student is first introduced
to the pmlical!! calculus. but in !eXIS for these courses the
empllasU is more on facts and knowledge than on method
and appreciation. Rnly is the predicate calculus used
outside the single chapter devoted to it. rnrel y is there a
discussion and comparison of notations. and rnrely are
different proofs or proof methods compared.

FUrther. relalively few articles and texIS on data structures
and algorithms make use of what we know about pr0-

gramming and the description of algorithms. so any appre
ciation aMorbed earlier is not reinforced .

In suml1llllY. more emphasis should be placed on
mathematical tooIa and methods. and in such a way that
an appreciation for their need and for elegance and simpli
city. as well as a geIISe of discrimination. is inculcated in
the scudenL Below. I want to explain in more detail what
I mean. using examples from both mathematics and pr0-

gramming and giving reasons why one method or noration
might be prefenred over others. Formal methods for pr0-

gram COlitCbleSS are of course discussed. but the student
needs to IiI8SIeI' some basic mathematics before these can
be appreciated and applied.

We begin with a brief overview of the propositional and
predical!! calculi.

1. Logic
Two reuonJ for WI a formal system of logic in Our
wmare: .
• To be able ., ... CDiICepII (for example. mathematical
induction) 01' ItIIlIimenIl (fer example. a specification of a
program) cleirly tnd anamb!tuously.

• To be able 10 give Ihorter. simpler. and more elegant
proof. and derivadont and to Increase our powers of rea
soning; the proof. are for humsn, mther than machine
consumption. •

Let us dIlCuu logic briefly in light of these reasons.

33

The propositional calculus

Basic to the propositional calculus is a set of axioms and
inference rules that allow the manipulation of formulas .
A tMor~m is an axiom or a formula that can be generated
from the axioms using the inference rules. [see two gen
eral approaches to such proofs. equational reascning and
nalUra! deduction.

In the equational-reasoning approach. the main inference
rules include substicution of equals for equals. transitivity
of equality. and modus ponens. 1llese rules allow us to
use axioms and theorems like De Morgan's Law
(-,(X v Y) • -X A ~Y) and ~sociativity of Disjunc
tion to translate one formula into sn equivalent one (or
into one that is implied by the first). For example, the fol
lowing proof shows. by the law of transitivity of equality.
that b '" c '" ~c '" ~b:

b '" c
.. ~ v c
!!cv-,b

(Implication)
(Commutativity)
(Double negation)
(Implication)

Each line of the proof foUows from the previous 'lne by a
substicution of equals for equals using the axiom or
theorem of equality given to the right. One often uses
more than one rule in going from one line to the next.
attempting to achieve brevity without sacrificing under
standing.

Remark. Logicians tend to use the symbol ::J for implica
tion. Using X and Y to denote the sets of srates in which x
and y are true. we have x ::J y itT X c Y. which is indeed a
confusing use of symbols. Thus. we prefer a different
symbol for implication. 0
The proof can also be written as follows. where each new
formula may be preceded by a line that describes the rea
son the transformation is valid; this is useful when the rea
son may be more complicated and may take more space.

b '" C
II (Use the Law oflmplication)
~ v C

"'cv~b
II (Deuble negation)

-,--,C v -,b
• -,c :> -,b

In a natural deduction system. introduced by Gerhard
Gentzen in the 1930·s. no formulas are assumed to be
axiomatically valid; there are only rules of inference. To
compensate for the lack of woms. it is permitted to intro
duce any formula as a hypothesis at any stage. Generally.
such a system has two ltinds of inference rules for each
operator, introduction rules and elimination rules. One
kind introduces the opemtor. the other eliminates it For
example. the rules for A are

The fIrst rule indic:allel that, fer any formulas X and Y.
from the assumptions X and Y the formula X A Y can be
inferred. The ocher two indicale lllat from X A Y both X
and Y can be inferred.

As in the equational-theory approach, a proof consists of a
sequence of lines; each is an assumption. an 8J<iom, or an
instance of the result of an inference rule for which the
corresponding instances of the hypotheses appear on pre
vious lines of the proof. To the right is stated the infer
ence rule being used and the numbers of previous lines
containing its assumptions. Here is a proof:

From A

1 pAq
2 P
3 q
4 q"p "-1.3.2

The natural deduction system is thos called because it is
supposed to mimic the way we 'naturally' reason (perhaps
lllat is a good reason for eachewing itl). implying that we
naturally think of introducing and eliminating operators.
Nevertheless. few mathematicians and computing !clen
tists use such inference rule. as a formal tool in their
work. for they are just too cumbersome. However. the
approM:h has been exlJ'elnely useful for studying logic and
is becoming more and more useful in mechanical theorem
proving and, for this reason. the computing scientist
should be familiar with it. And some systems for dOing
fonna1 mathematics on the computer are indeed becoming
very useful tools and could be helpful in teaching students
about formalism and its uses; I refer for example 10
Constable's system PRL [9].

One can introduce the substitution-of-equals-for-equals
rule as a meca-ruJe of a natural-deduction system. thus
merging the equational and natural-deduction approaches.
Therefore. we need not worry about which is more power
ful, eu:. Instead, we should be looking at how infonnal
proofs can be wrillen using a mixture of the two methods
10 arrive at the best proofs. In general. the equational
8pproM:h does tend to lead to shorter. more readable.
proofs.

The above proofs are syntactic in nature, because they are
simply a synl8Ctic: manipulation of formulas without
regard to their meaning. My opinion is that we should be
striving more and more for such syntactic proofs, and I
win have more to say on this later.

A few colleagues have mentioned that formal might be
more appropriate than syrttactic. in the sense I am using it
I prefer SYfllacdc because it emphasizes more the

34

complete abstraction of the meaning of the symbols that
are being manipulated in a proof, an important property
that has to be made clear.

Our use of the propoSitional calculus fIts in nicely with
our notion of computers and states. During execution of a
program. the computer is in a stat~. which contains a
value for each variable. The state is therefore a function
from variables to values. Using s to denote the state. if
variable x has value v in State s. then s.x = v. Thus. the
notion of a mod~1 for the calculus arises naturally. Unfor·
tunately. programmers are usually taught only the model.
in that they are taught how to evaluate Boolean expres·
sions but nO! the rules for manipulating them.

Remark. I use '. ' to denote function application. as an
experiment to see whether its use reduces the number of
parentheses in formulas. thus making manipulation easier.
Function application binds tightest, so f ·x+2 = (f .x)+2.
We write the application of a function of two argumenL'
as g. (x.y) or. using currying. as g.x.y. 0

The predicate calculus
The introduction of predicates allows variables of other
types to be used. and with this we introduce quantifIed
expressions. My discussion here deals mainly with the
notation used for quantifIed expressions and the calculus
of axioms and inference rules to be used.

Typically, mathematicians use a notation Uke 3.t. p. or
perhaps 3.t e X. p. to stand for 'there exists a value x
such that P holds' . Following (but deviating slightly
from) Dijlcstra, I prefer instead the notation

(0) 3(x; R: P)

where R is a predicate specifying the range of values x
under consideration. Actually. (0) can be written in the
more conventional notation as 3.t. R A P, so I need to
substantiate my use of it. There are several reasons for it.

First and foremost. our notation should be geared to our
manipulative needs. Often. in programming and related
fIelds. we manipulate quantifIed expressions in which the
range R remains constant -e.g. it is the subscript range
of an array- while P changes. Malting the range distinct
allows us to show this more clearly. It allows us to intro
duce conventions to eliminate the range, thus reducing
what has to be wrinen. For example, an omitted range is
assumed to be the same as on the previous line, as in

3(x : R: P)
!! 3(x: : P')

Also. we often fInd ourselves splitting a range:

It(i : O$i <11+1: P) •
It(i: 0$ i < n: P) A P! ,

and using fonn (0) inI1IeIId of the form 3x.R " P allows
us to develop inference rules for manipulating the range.
Thus. we II'e ehoolinlllOlltions geared to our manipula
tive needJ and suBP8live of oar problematic concerns.

R.mark OD DOllltioa rot textual subtlituliOll. I am
using R: to denote a copy of R with all free occurrences
of x repllad by t. Many otIw notations are used for tex
tual substitution. including R;. R(;clt) and R(tlx). For
a linear IIOIation R Ix:~ I is • suitable choice because of
the connection betilftll assignment and textual substiru
lion: the assignment _ent axiom would read

(Rlx :~J) x:" e (R)

Next, we require the parentheses in lIle new notation
because of the impotUnce of the scope-introducing con
cept. The beginning of the scope of the newly introduced
variable is usually clear: the end of the scope should be
just as clear.

Finally. let me discuss the use of the quantifier outside the
parenllleses. We can view lIle notation

x: R: P
as simply a sco~-illlroducing mechanism. in which x is
the variable introduced, R is a predicate giving its range,
and P is sorne expression or statement. possible contain
ing free occurrences of x. We can apply operators to the
scope:

O. 3(x: R: P)
I. V' (x: R: P)
2. N (;c: R: P)
3. t(x: R: E)
4. n(x : R: E)
S. MAX (x: R: E)
6. ~(x: R : E)
7. BWCK(x: R: S)
8. for (x: R : S)
9. (x: R: E)

In cases ()'Z. P is of type Boolean. Case 2 denotes the
number of values x In the range R such that P holds. In
C&Se3 3·S. E il inteaet or real-valued; these produce the
sum. the product, and the maximum over values E such
that R holds. c- 611. function that yields the value E~
given an AI'JUIIICIIt 41. c- 7 is an Algol-Uke block that
introduces • new YIriIbJe; C&1e 8 is a loop, executing
statement S for all woes of x in lIle range R. Case 9 is
the set of values E where x ranges over values for which
R is true.

It is the separation of the range R from the expression P
and the explicit Introduction of the fresh variable, the
dummy, that allows us to unify in this fashion.

Operator N (case 2) can be used to simpUfy what might
otherwiae be very awkward. For example. the following
statement says that sequence b is a permutation of

35

sequence e:

V'(v:: N(i: O~i <Hb : b.i=v) =
N(i: O~i <He: e.i=v»

i.e. each value occurs the same number of times in b and
e. Try to express lIlis statement willlout using operator N.

Suitable axioms for quantlncation
The student must learn lIle rules for manipulating quanti
fied expressions. These seem difficult at f1l'St, but practice
quickly leads to internalization. Useful axioms and
theorems of equivalence. geared to our manipulative
needs, appear in [2J and [3J. We list some for lIle quanti
fier V'. We will be using such axioms subsequently.

O.D.Morgan:....,V'(x : P: Q). 3(x : P:,Q)

I. V'(x: false: P)

2. V'(X: P " Q: R). V'(x: P:,Q v R)

3. V'(x: P : R) "" V'(x: P: Q v R)
4. Dummy renaming:

V'(x: P: Q) • w.y: P;: R;)
(where y is a fresh variable)

5. On.-polnt rul.: V'(x: x =E: P) • P!
. (where x is not free in E).

6. Rang •• splittlng: V'(x: P V Q: R) •
V'(x:P:R) " V'(x: Q : R)

2. Writing formulas in the logical notation
The student must begin to feel that logic is useful: he
needs motivation. The presentation of many examples of
lIle formalization of statements and concepts will help.
We give some examples here.

Induction and well-foundedness
First, let us consider lIle concept of complete malllemati
cal induction. Typically, this is stated as follows: Let P.x
be a predicate with argument x, where x ranges over the
nawral numbers. Suppose we prove lIle base case: P.O
holds. Suppose we prove lIle inductive case: for all y > 0,
if P.x holds for all x less lIlan y then P.y holds. Then we
conclude lIlat P.x holds for all natural numbers.

We now generalize and formatize this statement. First, let
U be a set of values and let < be any binary relation over
U. We say that (U. <) admits induction if lIle following
holds. Let P.x be a predicate, with x ranging over U.
Then P..r holds for all x E U iff. for any y, lIle uulll of P.x
for all x less than y implies lIle uuth of P.y. We formal
ize lIlis as follows:

.-

(I) Complete matllelutlcallnduClion:
\1'(.%: .%IU: P..x).
'tCy: y I U: \1'(.% : .% <y : P . .%) '" P.y)

The equivalent formula (2) does not use imptication. To
show that (I) • (2), use the Laws of Implication,
De Morgan, and CommUllltivity of v. In (2) and subse
quent discussions of induction, the range of a quantified
expression is omitted if it is the universe U.
(2) Complete matbematlcallnduclion:

\1'(%: : P..x) •
\l'Cy:: P.y v 3(.% : .% <y: -.1' . .%»

Note that these formulas are equivalences and not impli
cations, although the original informal statement of induc
tion over the natural numbers was couched as an implica- .
tion. TIle stronger and commutative equivalence is pre
ferred over the weaker and non-commutative implication.

Note abo that (I) and (2) do not distinguish between the
base case and the inductive case. In general, avoid case
analysis like the plague: even reducing two cases to one is
a worthwhile simplification.

It has been claimed that induction should be described in
terms of a base cue and an induction case because that's
how we usc it. Before agreeing with this claim, decide
whether our traditional two-case view has been forced on
us by the two-case formulation . Perhaps our formal
proofs using induction won't need two casesl

Let US express the related concept of a well-founded set in
our notation. Let S be a subset of U. An element y in S is
called a millimal e/~nl of S if no element smaller than y
(with respect 10 <) is in S; i.e. if

yl SA \1'(.% : .%<y: .%.S)
(U, <) is well-founded if every nonempty subset of U
contains a minimum element, if for every subset S of U
the following holds:

(3) Well.roundedness: ~mpry (S) •
3Cy:: yeS A '1(.% : .!:<y : .%.S»

Later, we shall return 10 the notions of induction and
well·fOlllldednes5 and prove them equivalent.

SpecibtlOlUlill proarlrnmlnll
One __ tor ., • fonnal notation is 10 be able to
make preciIe and clelt whal is ambiguous or confusing.
Consider the following Slatemenc every value of b. (/..j)
that is not in b. (h .. k) is in b. (h oo k) . (Here, b is an array
and b. (/..}) cIenotllII the segment of b consisting of b.i
through b.}.) Such contoned and confusing statements do
appear in informal specifICations of programs. We can
place this in our notation as follows:

(4) \1'(11: 111 b. (I .. }): 11. b. (h oo k) '" 11. b. (hook»

Of course, it may lIIi118elem confusing, but let us now sim
plify it

36

(4)
.. (Law of Implication)

\i(v :: ~\I" b. (hook) v \I' b. (hook»
.. \i(v :: 11' b. (hook) v 11' b. (h oo k»
'" \i(\I :: V. b. (hook»

Thus, the original statemem is equivalent to the much
simpler 'every value in b. (i oo j) is also in b. (h oo k).' For
the record, typically two thirds of the students shown th is
problem are not able 10 deal correctly with (4) unless and
unlil they apply the formal rules of manipulation. Typi
cally, the student says that (4) is equivalent IJJ f alst.

Let me now specify an algorithm. The form and content
of a specification of an algorithm colors -indeed, pro
vides the insight for- algorithmic development So it
makes sense IJJ specify the algorithm precisely and si mpl y
before beginning the development.

Consider an integer array b. (Ooon-l), where n ~O. Con
sider any segment b. (i..j -1) of b; we can compute the
sum of its elements. We want an algorithm that finds the
maximum such sum over all segments of b.

First define the sum of a segment

S;.j =l:(k: iSk<j: b.k)
Next, give the result assertion R of the algorithm:

(5) R: m = MAX(i,j: OSISjSn : S;.)
Difficult this was not. Later, we will see how specifica
tion (5) will guide the algorithmic development But for
now, we can discuss one advantage of having written (5).

What is the maximum sum over all segments of the array
b = (-1,-8,-4)7 Ask your students; if they depend on
the informal specification, half will say -1 and the other
half 0, depending on whether they think of the empty seg
ments as belonging to b. The formal specification makes
clear what is meane empty segments are included, so that
the answer is O.

Note that S;.j does not include the value b.j. For our pur
poses, for our formal manipulations, ranges like i Sk <j
are often preferred over ranges Uke i S k S j. Arguments
concerning this have been put forth by Dijkstta (4). (5).
Here is his argument for inclusion of the lower bound and
exclusion of the upper bound:

Exclusion of the lower bound, as well as inclusion of
the upper bound. would have forced bounds outside
the realm of the natural numbers. I intend IJJ let a
lower bound never exceed an upper bound; then we
have the advantage that two ranges can be joined IJJ
form a single one if the upper bound of the one equals
the lower bound of the other. Finally, the number of
elements in the range equals the difference of the
bounds. It now stands IJJ reason IJJ identify the ele
ments of a sequence of length M -rows of a matrix or
characters of a string- by a subscript in the range

OSsubscrlpt <M,

Let me give one tnare example of a specification of a pr0-

gram, one that Ie8ds dJrecUy to the algorithm. Given is a
nonernpcy sequence b. (0 .. 11 - 1) of integers that, lexic(}o
graphically speaking, Is not the largest (e.g. (8 ,5,3, 3) is
the iarp5t sequence that can be built with the bag
(3,3,5.8)). Write an algorithm that changes the
sequence into the next largest one using the same integers.
This seems lie a diffICult algorithm until we specify more
precisely what the next largest sequence is. First, let j be
the index of the IeflmOSl element of b to change. Since
this element is to become larger and is replaced by some
thing to its right, } is the largest value satisfying

b.j<b.(j+I) A

b. (j+1..II-I) is a non-increasing sequence.

or J = MAX (Ir. : Ie < II-I: b.A: < b. (k+I»

Next, one must specify which value b.i of b. (j + 1..11 - I)
is to be placed in b.j. Since the next largest pennullltion
of b is to be crealed, b.l should be the smallest value of
b. (j+I..II-I) that is &miter than bI Since
b. (j + 1..11 - 1) is non-incteasing.

i=MAX(k. : 1e<1I: b.j<b.k).
By the definition of I. and since b. (j + 1..11 - I) is non
increasing. the sequence b.(j+I..i-I) - b.j -
b. (1+1 .. 11-1) is also non-increasing. Since the result
desired is the smallest pennuwion of b that is larger than
the initial b. we can specify the algorithm as implement
ing the assignment

b:= b(O .. }-I) • b.1 •
revem(b.(j+I..i-I) - b.j - b. (/+I..II-I»

where j and I are defmed above.

In this instance, refining or detailing the speciflC8tion has
led to • specification in which the algorithm to use is more
apparent,

This ends our short excursion into the propositional and
pmiicate calculi and notations to be used in formuw.
We have attempted to show dlat formalizing informal
statements can lead 10 simpler. clearer, and more precise
statements, thua mcre.inl our underslllnding. Further,
the formaJ IlCltIIdoM we use win be a factor in how simple
our fonnallzatidnl 1iIl1 be, 110 they must be chosen care
fully. They Ihou1d be geared to our manipulative needs,
which meaJII that they and the manipulation rules we use
should be designed 10 minimize the text we must write.

The manipulation of formulas, of coone, is aimed at prov
ing piope.1ies of the objects being dealt with. Let us now
turn to a di9Cussion of such proofs.

37

3, The syntactic proof
We mentioned earlier the notion of a syntactic proof: a
sequence of symbolic transformations according to gi ven
rules. The notion of such a proof has been around for
some time, having been championed by David Hilbert.
one of the greatest mathematicians of all time. In fact.
Hilbert's program was to formalize all of mathematics as
a set of axioms (or axiom schema) and inference rules.

Students may be taught about an axiom-in ference-rule
system, but rarely are they shown its real power: rarely is
it used for anything interesting. Students are simply not
taught to consider it a useful tool. More and more, I view
the syntactic proof as a necessity. as a way of forcin g
myself to achieve a rigor and simplicity and understand
ing that I would not otherwise achieve. Especially in pro
gramming, with the myriad of details that have to be
manipulated and understoOd, it essential to attempt to
strive for the rigor and precision that the syntactic proof
requires.

Some question the use of the syntactic proof, feeling that
it is cumbersome, complex, and difficult exactly in pro
gramming. where there are so many details. lt.1equires
symbol manipulation, and that is a task best len to the
computer. for humans are bad at iL I disagree with this
viewpoint. and r generally fmd that the woric needed to
produce a syntactic proof can lead to simpler proofs and
better understanding.

Let me quote Hilbert, from his famous lecture at the
Second International Congress of Mathematicians in Paris
in 1900, in which he outlined his famous 10 problems (23
in the manuscript, but only 10 mentioned in the lecture):

It remains to discuss briefly what general requirementS
may be justly laid down for a solution of a mathemati
cal problem. I should say first of all, this: that it be
possible to establish the correctness of the solution by
means of a finite number of steps based upon a finite
number of hypotheses that are implied in the statement
of the problem and that must be exacty formulated .
This requirement of logical deduction by means of a
finite number of processes is simply the requirement
of rigor in reasoning. Indeed, the requirement of rigor.
which has become a byword in mathematics.
corresponds to a universal philosophical necessity of
our understanding ... only by satisfying this require
ment do the thought content and the suggestiveness of
the problem attain their full value

It is an error to believe that rigor in the proof is the
enemy of simpliCity. On the contrary. we find it con
ftmled in numerous examples that the rigorous method
is at the same time the simpler and the more easily
comprehended. The very effort for rigor forees us to
discover simpler methods of proof. It also frequentl y
leads the way to methods that are more capable of

deveJopment tIIIII the old melhods of less rigor

Whereyer 11WhIInatlcaI ideas come up, ... , lite prob
lem IriJeI fer rnadlaIIatIc:ians to investigate lite princi
ples l1JIderIyin. ~ ideu and so to establish litem
upon a simple IIId canple1e system of axioms ...
(Quoled from Hilbert, by Constance Reid, Springer
Verlag, New York, 1983.)

During hit time, Hilbert's program for formalizing
mathematics received its share of criticism, willt some
malltematicians objecting to his 'reducing lite science to a
meaningless game played with meaningless maries on
paper' . However, it is precisely the shuffling of meaning
less symbols according to given rules lItat provides confi
dencel Couched in terms of English and informal
mathematics, an argument may be difficult to understand
and ambiguous. Once we agree on lite formulation of lite
problem in a fomtal notation, then checking a well-written
formal proof requires only checking lItat each rule was
ca-rectly applied.

Criticisms are similarly made about the use of formalism
in programming, In the past, lItese criticisms were par
tially valid, in !hal we had difficulty ourselves in using lite
formalism ourselves. However, advances are such lItat it
is clear from the lita1lture that formalism can be used to
gmtt IdvanllgO in developing algorilltms. At litis point, it
is only lack of education that is hindering progress.

Students -«lId anyone not experienced willt symbol
manipulalion- have great difficulty at first in applying
formal methods, Once they have made a texwal substitu
tion, say, they no longer 'understand what the fomtula
means' and are hesitant to make further manipulations for
fear of making misrakes. And because of litis, they equate
rigor with rigor mortis, willt a stiffening of their abilities.

I have given COW"!eS in which I had actually to guide a
student's hand as the student made its first textual substi
tution in connec:tion willt using the assignment statement
axioml This was depressing, for symbol manipulation is
what programming is all about. Such courses, expected to
be on the development of progIUIS, had to spend far toO
much time on the predlcase calculus and symbol manipu
lation, And tbeae _ not dumb or inexperienced stu
dents; they simply hIdn't received a proper education.

The Clft for this II • IIIIdy of the use of logic as a toOl in
our work, with m .. y examples chosen to illustrate lite
effectiveness of the IjJjJiOllCh; enthusiasm on lite pan of
the inS1NC1Or; a c:oncentration on improving penmanship,
for it is vecy impolWlt in reducing careless mistakes; and
lots qfpractice.

Let me now turn to an extended, important, example of
the syntactic proof.

38

Induction and well-toundednHS Igaln

We now tum to the proof of equivalence of malltematical
induction over a partially ordered set (U, <) and the
weU-foWldedness of (U, <). (I am indebted to Edsger W.
Dijksua for lite proof.) We have already given form al
definitions of malltematicaJ induction (1) and well ·
foundedness (3). To prove their equivalence, we need
only show how to uansform one into the ollter using sub·
stitution of equals for equalS. This is done in Fig. 0 on the
next page -what a simple proof!

The result itself is particularly noteworthy because it
shows that malltematical induction has a formal basis;
induction can be applied whenever (and only lIten) Ihe
universe upon which it is to be applied is well-founded .
The result is completely general; one doesn't need a dif·
ferent argument to allow induction on natural num bers.
trees, lexically ordered pairs, lengllts of derivalions in a
grammer, etc; one need only know lItat lite set under con·
sideration is well-founded.

Finally lite result shows the student lItat malltematical
induction has a firm basis; we know precisely lite condi ·
tions under which it can be used.

In light of all lItese advantages, it is disheartening to note
that few of the current texts in discrete mathematics con·
tain any proof about when induction can be used, much
less litis one. Most of lite texts simply state the principle
of malltematical induction as a Grand Principle lItat Ihe
student should believe and absorb willtout questioning its
validity. And arguments concerning induction over ollter
sets are left to the imagination of the reader.

Interestingly enough, some computer scientists dislike this
syntactic proof, feeling lItat it does not convey the 'intui'
tion ' behind induction. (Some also do not like formula·
tion (2) because it does not separate the base case from
lite other cases, or do not like writing (2) as an equality
instead of as an implication; that is a different story.)

I asked one such colleague to give me his proof of
equivalence; it is shown in Fig. 1 -I have changed nota
tion and rewritten a bit, but not much. The proof relies on
the finite-chain property, which we now explain. A
dureasi"8 chai" is a sequence xo' X I, X 2, ... of elements
of U such lItat 'i(i: 05: i : Xi+1 <Xi). The finite·chain
property states lItat all decreasing chains have fmite
length:

(6) Finite-chain property: 'iCy:: DCF.y)

where function DCF is defined as

DCF.y = 'Every decreasing chain beginning
with y is finite '

, ,
\

-.empty(S). 3(y:: ye SA 'V(X: x <y: x<lS» (This is (3»

• (Complement both sides, use Law of Negation and DeMorgan's Law J
empty(S) .. 'V(y:: y.S v 3(x: x<y: xeS»

• (Define a pnmc:ate P: P..x = (x. S) and replace occurrences of S by PJ
'V(x:: P.x)='V(y:: P.y v 3(x: x<y : -.P..x» (This is (2))

Flpre 0, Syntactic proor of induction and well-roundedness

Lemma. (U, <) is well-founded iff the finite-chain propeny holds (see (6».
Proof. The proof of this lemma is trivial.

Theorem. (U, <) admits induction iff iC it is well-founded.

Proof. We prove the two directions separately. Fint, assume that (U. <) is well· founded. We shall prove that

(1.0) 'V(y:: P.y v 3(x: x <y: -.P..x» .. 'V(x:: Px)

Let P be a predjcaIt on U that satisfies the antecedent of the implication in (1.0). Consider the set S defmed as (x I ..,P.x J.
If we eslablish that S is empty, we shall have proved one direction of the theorem.

Suppose that S is non-empty. Since (U, <) is well-founded, S hI!.! a minimal element u (say). We show a contradiction.
which proves that the assumption that S is not empty is false. Since u is a minimal element of S, every element of U that is
less than u cannot be in S; i.e. every such element satisfies P. Then, by our assumption about P, it follows that u satisfies P.
In other words, u is IlOl in S, which is the desired contradition.

For the other direction, we assume that (U, <) admits induction (Le. (1.0) holds for all P) and show that it is well-founded.
We _ (without formal proof) that the following is a U1utology: either DCF.y holds or there exists an x such that x < y
and -.DCF..x holds:

(1.1) 'V(y:: DCF.y v 3(.%: x < y: -.DCF.x»

Using the induction principle, we conclude by mathematical induction that 'V(x:: DCF..x) holds. By the lemma, (U, <) is
well-founded.

Figure 1. Alternative proor or induction and well-roundedness

My colleague's proof is given in Fig. I, and I invite you to
compare it with the proof in Fig. O. Note that both use the
trick of equating a piOpeily with the set of values that do
not satiaCy iL But one proof is five times the length of the
other. One requires two separate proofs; the other
doem'L One requires the fact that a well-founded set
satisfies die fmite--chain PiOperty; the other doesn'L One
requires a proof by conuadiction; the other doesn'L

More time spent c:ompering proofs in this fashion would
give die stndent .. lPIftICiation for simple proofs, as well
I!.! a _ of dllcrimination when reading others' proofs.

The proof that weII-foundedness is equivalent to the
rmite-cllain property is interesting in its own righL Fig. 2
conl8ins a version of the proof given by Dijkstra in (5).
This proof is not c:ompletely formal, because the property
DCF.% his not been formalized. Formalizing DCF isn't
necessary -CId indeed would just introduce unnecessary
clutter. It is this ~h for the right blend of forrnalism
and informalism that makes mathematics, as well as pr0-

gramming, lUI art I!.! well I!.! a science.

39

We prove

(2.0) '(U, <) well-founded' _ 'V(y:: DCF.y)

Assume the lefthand side is ttue. Since (U, <) is well·
founded, it admits induction and the righthand side is
equivalent 10

'V(y:: DCF.y v 3(x: x <y: -'oCF.x)

which is evidently true.

Now assume the lefthand side of (2.0) is false. Then
there exists a nonempty set S with no minimal elemen~
Le.

'V(y: yES: 3(x: x<y: xeS»)

Hence, for all y, y in the nonempty set S, -.DCF.y
holds, and the righthand side of (2.0) is false.

Figure 2. Proor or equivalence of induction
and the nnite-chain property

4. Developing correct programs
This topic 11M receiftd much attention in the past ten
yean or 110. The IIICIIhods seem worthwhile and are
spmIding, 110 I WOl!'t expIIIn mIlCh here. I am speaking
of the nocions of de¥eIOpinc a program hand-in-hand with
it! proof of correctnell8, which has its roots in Hoare's
work [61, was cre8Ied by Dijlatra in the middle 1970s [71,
was further publiciud by myself [81, and is becoming
traditional enough for other text! to discuss it (e.g. [3]).
Martin Rem's column on algorithms in Science of Com
puter Programming is a good place to tum to for more
examples and discussions of the methods_ Much of our
requests for more rigor and for an agility with the predi
cate calculus stem from the kinds of formal manipulations
one does when developing program and proof hand-in
hand.

The methods for developing proof and program hand-in
hand are usually attacked claiming that the amount of
detail in a large program makes fonnalization infeasible:
'You CIJ/I" expect us to prove every single subroutine and
interface correct.'

The reply to thilJ 11M several pieces. First, as Hoare has
said, within every big program is a little program trying to
get out, and the methods piOposed onen let this little pro
gnun ouL Thus, the big programs tum out to be smaller
than we thought Second, the attempts at formalization
often lead to simplifICation, genenllization, and better
understanding, giving a cleaner product that reduces signi
ficantly the time required in debugging and validation.
Therefore, extra time spent in the initial design and pr0-

gram ming may well be saved at a later period of the pr0-

ject Third, suitable use of abstraction will reduce the
amount of detail that has to be considered at anyone time.
Fourth, it is not the case that everything must be formal
ized. Look at the proof in Fig. 2; the definition of DCF ..x
has not been formalized -indeed, its formalization would
have been counterproductive_ In the same way, in a pr0-

gram and Its proof we must learn to formalize exactly the
right parts, and no more. It is this necessity to fmd the
right balance between formality and precise informality
that makes prognmming 11\ art as well as a science.

Please don't mlll'l'IINItaIId me; I am not saying that every
large prognun '*' cully be proved correct Indeed, we
have little experience with the methods on large pr0-

grams, and relatively few people apply formal proof
methods in developing even small programs. And I am
not saying that / have complete control over my own pr0-

gramming habit!. Nevertheless, enough experience has
been gained that those who know the method weU feel
that it belonp in the tooIldt of every professional pr0-
grammer_

I give here • pertiaI development of an algorithm speci
fied earliea' because it illustrates 110 nicely the use of

40

formal syntactic manipulation in developing and present
ing an algorithm. If you have difficulty with it, ask your
self whether the difficulty is with your unfamiliarity with
the methods and notation or with presentation itself.

Recall the specification of the program for finding the
sum of IIUIl<imurn-sum !legment of an array. Given is an
array b. (O .. n -I), where II <! O. Desired is an algorithm
that stores a value in m to establish

R: m = MAX(i,j: OS/SjSn: Si.j)

where Si.j is defmed by

Si.j = r(k: iSk <j: b.k)
Assuming that a loop will be used, we develop a first cut
PO A P I at a loop invariant by replacing variable n in R
by a fresh variable k:

PO: OSkSn
PI: m = MAX(i,j : OS/SjSk : Si.j)

Using the bound function II-k. we arrive at the loop

k,m:= 0,0;
do k"l1 ~

od

Establish P 1 [k :=A:+l];
k:= k+1

It remains to determine how to eslBblish P 1 [k :=k+ I]
given PO, P I, and k "II. To do this, we rewrite
P l[k:=k+l] so that it has a term that resembles PI .
using a range-splitting rule:

P l[k :=k+I]

" m = MAX(i,j : OSiSjSk+l: Si.j)

.. (Split the range O~i Sj Sk+l]
m = MAX(i,j: O~iSj$k : Si.i)

max MAX(i,j: O$iSj=k+l: Si. j)

.. (Eliminate bound variable j in the second term]
m = MAX(i,j: OSiSjSk: Si.j)

max MAX(i: OSiSk+l : Si.k+l)

Because P I is initially true, this can be established by

m:=m maxMAX(i: OSiSk+l: Si.k+t).

However, the second operand of the infIX max operntor
takes time 0 (k) to evaluate, and we look for ways of
strengthening the loop invariant to make this calculation
more efficient Introduce a new variable c with definition

P2: c =MAX(i: OS/Sk: Sik)

The range of i is OS is k instead of OS i S k+1 so that III
and c are defined in terms of the same segment of array b.
Some further jUSl-as-simple calculations, which we leave
to the reader, lead to the algorithm

k. III. e ::(). O. 0;
(Invariant: PO API A P2)
do btll -+

od

Esl8blilh (P 1 A P2)[k:=k+I):
e :. (e+b.k) 1IItU 0;
m:. m max c;

k:= k+1

A beautiful. linear in II. algorithm results. Unfonunately.
presenting this algorithm a/ways has the difficulty that the
audience i3 not familiar with the rules used to manipulate
the formulu; they have not internalized them. and there
fore cannot follow the presentation easily and cannot
believe that someone could use such a method. Lack of
education hinders their understanding.

5. Tbe bazards of examples
An elW11ple can certainly be worthwhile, for instance if it
is used u a redundant piece of information to help build
the reader's confidence in his understanding of a concept,
definition. Iheomn, algorithm, etc. And the younger the
student (Intellectually spealcing) the more examples may
be needed to build this confidence and expertise. How
ever, too often the example i3 used as the major method of
explanation, euentially as a crutch by the writer to elim
inate the need (so (s)he thinks) for a clear, rigorous,
explanation. Thus, an example i! used as a substitute for
the specification, or an example of 'stepping through '
execution of a loop is given as the only explanation pr0-

vided for a loop, or • complete algorithm i! explained
only in terms of an example.

A brief illustration will suffice to show tile state of our
teXtbooks. A major text in data SII'oCtures, which i3 good
in many ways. glveI the (ollowing sentence as the ollly
explanation of a certain algorithm: 'The reader should try
this algorithm out on 11 leasI 3 examples: the empty list,
and lists of length I and 2, 10 convince himself that he
understandlthe mechanism.'

This teXt _ 1IIin •• leduIique that I call 'programming
by example'! die reIIInce on an example (or two) for
insight ""hen de,eIGpIuJ ai presenting an a1goritllm. This
practice islell pIe¥IIInt IOday than ten yean ago, but it is
still osed Car !DO on..
Let me lift IIIIOdIer iDusndon of thi3 practice from the
literature. Ank:le [0] deleribes a neat a1goritllm for find
ing the minimum number of editing operations needed to
change • liva! sequence of characterS A into a liven
sequence of charKen B. Two ldnds of operations are
allowed: deIeIe a chanIcter from A and insert into A a
characlet from B. The parap/Jrued description begins
with (I have changed variable names):

41

Let III . (i,}) be the edit distance between A. (O .. i-l)
and B. (O .. }-I). m. (i,}) rnaes sense even when i or
} is zero; These values are arranged as a matrix
with I +IIA rows and I +liB columns. For example, if
A =abcabba and B =cbabac, the matrix of edit dis
tances is

0 I 2 3 4 5 6
I 2 3 2 3 4 5 a
2 3 2 3 2 3 4 b

(7) 3 2 3 4 3 4 3 c
4 3 4 3 4 3 4 a
5 4 3 4 3 4 5 b
6 5 4 5 4 5 6 b
7 6 5 4 5 4 5 a

c b a b a c

In this example, the entry m.S.4, which lies at the
intersection of rows 5 and column 4 (row and column
numbers start with 0) is the edit distance between
abcab and cbab. The value in that position is 3
because abeab can be tranfonned into cbab by delet
ing the leading a and e from the rUllt stringllnd then
inserting a c at the front, but there is no shorter edit
script for the transformation.

The paper proceeeds to describe properties of such edit
matrices m so/tly with reference to this example. In fact.
the whole description of the algorithm is based example
(7). Nowhere is there a proof of the properties of m; they
must be inferred from (7). There is a 'proof of correct
ness' of the algorithm at the end of the paper, but it is
couched in vague terms, without a definition of m, and is
opaque.

Can you conceive of a mathematics paper that deals with
concepts presented solely by example? Why do we have
to put up with it in computer science? When will editors
and referees institute publication standards that eliminate
this practice?

Actually, the definition of m and proofs of its properties
are rather simple. I maintain that the minimum number
m .r.c of editing operations to transform A (O .. r-I) into
B (O .. e-I) is given by m .I.} defined by

(8) m.r.e =
If r=O -Ie
Oe=O -Ir
o r>O A e >0 A A(r-I)=B(e-l)

-I m(r-I,e-I)
o r>O A e >0 A A (r-I) .. B(e-l)

-I I +min (m (r-I, c), m (r, c-I»
n

Let us discuss this dermition carefully; once we agree that
it does indeed define the minimum number of editing
oper1Itions we can forget about its interpretation and work

.-

solely willi 1M MfINdo,., dlus placing the description of
the a1gaithm on • rIsorous and precise foundation . It is
(almost) always l*Ier to translate the informal ideas as
soon possible inIo • preciac, fonnal form and thereafter to
forget about the informal ideas and worlc: solely with their
formal definition.

The first two lines are obvious: to transform A (0 .. -1)
into 8 (O .. c-I) requires inserting the first c chanlCtelS of
8 (that's c editing operations), and to transform
A (O .. r-l) into 8 (0 .. - 1) requires deleting all characters
of A (O .. r-l) (r editing opentions).

Now consider m(r,C) for r, c ,eO. If A (r-I) =8 (c-I),
aansforming A (O .. r-l) into 8 (O .. c-I) is the same as
transforming A (0 .. r-2) into 8 (O .. c - 2), as defined on
the dtird line of definition (8). If A (r - I) ,e8 (c -I), then
one can dill«

lransfonn A (0 .. r-2) into 8 (O .. c -I) and
delete A (r-I), or

lransfonn A (O .. r-I) Into 8 (0 .. c - 2) and
append8(c - l).

In eilll« case, the nombel' of editing steps is thus given as
on the fOunh line of definition (8).

One of the ptopea tiel of m that the reader is supposed to
glean !rom example m Is that adjacent values differ by at
most I and that diagonals are non-decreasing and increase
by at most 2. The proof of this property, done using syn
tactic proof methods, givel far more confidence in the
plOpetly than does example m (see [I]).

AJ mentioned above, a valid use of the example is to pre
vide a redundancy so that die inexperienced reader can
gain a measure of confidence In his undel1l1anding. How
ever, the inexperienced reader Is often likely to use the
example u the major basis for understanding, and this is a
dangerous pncdce. AJ an illustration of this, I offer the
following.

In a COlIne on data SlruCtures, Huffman's algorithm for
con~g a binary tree widl certain properties from a
list of (at least one) real numbers was being discussed.
Consider each real number to be a tree with a single node
whose value ia the rea1 number; the initial set S of trees is
iteratively changed into a lei containing only one tree by
the algorithm below, liven in my notation. I don ' t state
precisely the task of the algorithm, except to build a tree,
for that Is not germane to this discussion.

Conventional lei noIation Is used, with #S denoting the
sUe of let S. A tree is considered to be a triple (rool
vaJ/U!, left Sllblrtt, rl,1u sllbtree), with $.rOOI being used
to refer to the fllSt coiliponent of tree $ -{he value of the
root node. Function MIN.S yields the tree in S that has
the minimum root value.

42

do itS > 1 ~ var x := MIN.S; S:= S - (x);
var y:= MIN.S ; S := S- (y} ;
S := S u (x.root+y.rool.x .y)}

od .
Thus, at each iteration two trees are removed from S and a
new tree (with the two removed trees as subtrees) is
inserted. The algorithm was not presented as concisel y as
this in the text being used: it took eleven lines of Pascal·
English.

In Older to help the student understand the algorithm. an
example like the following was presented in the texc

.12 .15 .OS .25
abc d

Initial

.35

/\
.12 .08 .15 .25
a c b d
Merge a, c with b

.20

.I{)S .15 .25
a c b d

Merge a and c

.60

. 5

.(\
.I{\ .15 . 5
a c b d

Merge a , c ,b with d

Now, a not-inconsequential number of students looked at
the example mther than the algorithm and felt they under
stood the algorithm , especially since the instructor used
exactly the same example while discussing the algorithm
in class. However, the example gave the wrong impres·
sion because it did not treat a general~ough case. Given
the task of executing the algorithm on other data, their
trees always had the shape shown in the above example (a
right subtree is always a leal), and this simply isn't the
case with this algorithm.

A combination of things led to this situation: the students
were too lazy or hadn't been taught to study the algorithm
itself, the text presented an unfortunate example, and the
instructor reinforced the lack of understanding by present
ing the same example in class.

The lesson to be learned is that examples can indeed be
the cause of a problem. The student should be warned
about the dangers of examples and forced to study an
algorithm in tenns of its proof and not in !enns of exam·
pies of its execution sequences. Teach the student to use
the example as a redundant piece of infonnation to lend
assurance, but not as a replacement for a full understand·
ing by way of proof.

6, Further comments on notation
I have made ftriOIII comments on notation throughout
this Iechft -00 tile _ of :> for implication, on notations
for expreain, quIIItIficIIion, and the like. I don ' t think it
is realized SII'OIIJIY eJIOagh how the notation we use colon
our thoughg and habig, Of coone, we have heard that
~1ricting oneself 10 older versions of Fortran severely
~1rictl the possibilities of algorithmic ex~sion, and
we believe that a programmer should know several pr0-

gramming languages simply 10 expand his notational and
conceptual horizonII. Nevertheless, even the most
innocoous-iooiting choice of notation can have severe
consequences.

Last year, I had the chance to work with a computing
scientist whose field was algorithms, a really top-notch
penon. When stetching segments of algorithms in Pas
cal, he would illVllriably use a repeat loop inste8d of a
willie loop, and IImost as invariably there would be a mis
take -die ~t wouId not work properly for the
empty segment of an may or some similar thing. After a
while, I asked him why he continued to use the repeat
loop when it so often led 10 emJn and when its proof rule
was so much more cornplicaled than that of the while
loop. He Alplieci, I'1Ithet sheepishly, that, yes, he knew the
whilo kiop was typIctily a better choice, but the while
loop always required a begin and end while the repeat
loop did not (since the keywords repeat and until act as
delimilm 0(the loop). Furthennore, the prettyprinter that
he used ya put the keywords on different lines:

whileS do
bqln

body
end ,

thus malting his programs ever so much longer. And on a
worbtation IICI'OeII his effectiveness in reading a program
depended on how many lines he could see at one time.

Thus, a seemingly innocuous decision about syntax in
PucaI, 10gether with • rather stupid decision by the pret
typrinler deIipIer 10 make programs appear as long as
possible, seveely hindeftd thia scientist's work.

It behooveI III 10 mate IllldenIS awan: of the impact on
I1OI8tion, right from tho beJinning.

7, Coneluslollll
I have touched on • number of topics that I believe com
puler IICience IllldenIS should be learning but are not
These topics have their factual part (e.g. the predicate cal
culus. • calculus for die derivation of programs), but far
more than • bunch of facts is involved The student
should acquire a sense 0(the use of method, notation, and
prooC, • _ of lISle, and die ability to discriminate on

43

technical grounds. This requires a different approach in
Ottr texts and in our reaching.

I don't mean to imply that computer scientists don't have
discrimination and taste. I do believe that they don' t fee l
these qualities are as important as I do. And I do believe
that they don ' t realize the effect their reaching pmcLiccs
have on students.

1 also don't want to leave the impression that 1 feel 1 have
all the answers on the problem of teaching programmers.
Programming -and the teaching- is a difficult intellec
tual task, and 1 feel I am just beginning to learn enough LO
do it weU. Nevertheless, 1 hope that my arguments and
examples will help persuade the field that change is
needed.

8, Acknowledgements
My debt to Edsger W. Dijkstra and his ideas will be obvi
ous to all who are familiar with his work; his influence
can be seen throughout this manuscript Thanks go to
Prakash Panangaden and Fred Schneider for many com
ments on various drafts of this manuscript

9, References
[0) MiUer, W., and E.W. Myers_ A file comparison algo

rithm. SoflWar~ractice and Experience 15 (II)
(November 1985), 1025-1040.

[I] Gries, D., and W. Burkhardt A more rigorous
description of an algorithm for finding the minimum
edit distance between two sequences. Tech. Rpt,.
August 1987, Computer Science Department, Cornell
University .

[2] Dijkstra. E.W., and Feijen, W .HJ. Een Methode van
Progr~re1l. Academic Service. Gravenhage, The
Netherlands, 1984. (Also translated into Gennan
under the title Metltodik des Preogrammieren.r,
Addison-Wesley, Gennany, 1985.

[3] Backhouse, RC. Program COflStructio1l and Verifi
cati01l. Prentice Hallintemational, London, 1986.

[4) Dijkstra, E.W. Largely on nomenclature. EWD 768,
March 1981.

[5J Mathematical induction and computing science.
EWD819, April 1982.

[6) Hoare, CAR An axiomatic basis for computer pro
gramming. CACM 12 (October 1969),576-580,583.

[7J Dijkstra, E.W . A Disciplint of Programmi1lg. Pren
tice Hall, New Jersey, 1916.

[8) Gries, D. The SC~1Ice of Programming. Springer
Verlag, New York, 1981.

[9J Constable, R, et aI. Impltmelll/1IB MatMmtJlics with
tM Nuprl Proof Develop~lIl System. Prentice Hall.
Englewood Cliffs, New Jersey, 1986.

DISCUSSION (during first lecture)

Dr. Schneider wanted to clarify whether or not the distinction between
Hilbert-style and e~uation-style proofs is that one requires that each line follows
from the previous hne and the other does not. Dr. Gries replied that it doesn't
matter; it is easy to devise a system for introducing new rules either way.

Professor Hoare asked if it was being suggested that e9,ualities between
expressions always have values. He noted that cases such as division by 0 must
be considered.

Dr. Gries indicated that he was not worried about partial functions ;
Professor Hoare concurred. Dr. Gries indicated that if one side of an equation is
undefined then so is the other; but ifthere are no free occurrences of Undefined in
the expression then the result is all right even if the range is Bottom.
Professor Backhouse's opinion was solicited; he indicated that he saw no
difficulties in this area, but vis a vis terminology he noted that what was being
called range splitting he would call range disjunction.

Professor van Westrhenen queried the formal basis of induction as
described, noting that it depends upon the kind of ordering in the set. Dr. Gries
responded that he had not indicated when the rule is valid, but agreed that it is
certainly desirable to make the ordering explicit and to state when it is well
founded.

DISCUSSION (at end of first lecture)

It was noted that the problem specification as presented did not indicate
whether or not the empty sequence was allowed. Dr. Gerhard observed that a
specification could only be clarified by going back to the foundations, set theory
etc.; and that this is not usually done. Furthermore, the presentation relied on
equality, assuming that if one side is defined then the other side is. This is not
always true. Dr. Gries felt that logicians do not understand Undefined.

Professor Backhouse commented on the syntax, suggesting as a principle
that when choosing notations in terms of their properties, those properties that
are most important should become invisible ; e.g. parentheses can be omitted
given an associative operation. A strong advantage of the notation chosen here is
that both associativity and symmetry are invisible.

Dr. Clarke inquired as to how the making and discharging of assumptions
fit in. Dr. Gries accepted that it was not done here, but suggested that it could be
done informally. Dr. Schneider worried that this would involve the unnecessary
introduction of semantics, as the point of a syntactic proof is to avoid needing a
model. Hwe get to the point that we say that "N is even" is an assumption, then
we have already thought far too much; cases should be avoided as far as possible.
Dr. Clarke noted that assumptions could be described in terms of implications.
Professor Pnueli thought that it was simply a question of economy in writing.

Professor Pnueli also took issue with an earlier statement that no one had
done a large natural deduction proof, stating that it had been done, and seemed a
bit shorter than the alternative. Professor Randell found it distressing that it
was still necessary to debate notation, given the present state of the field. Dr.
Gries agreed, saying that if natural deduction IS shorter then that is okay.

44

•

Professor Randell wanted to standardize the notations "so that everyone could
understand it." Dr. Gries suggested forcing mathematicians to use computers;
this was received with laughter.

Professor van Rijsbergen emphasized the context of the discussion, asking
whether the formal methods being described here were for professional computer
scientists or for undergraduates. Dr. Gries wanted the goal to be to give this to
undergraduates as the next generation of professionals, since none of these ideas
are yet taught.

Professor Randell noted that in the ideal world, a programmer can isolate
the programming task from the real world, but that in practice they don't
formalize to that degree and use semantics all the time. Dr. Gries thought that a
balance had to be found between formalizations and common sense, but that
common sense had been overemphasized in the past.

Professor Whitfield affirmed the goal of attempting to make notation
simple, but observed that mathematicians don't study notations. He thought
students should be educated in how to choose simpler notations. Dr. Gries agreed
that students should study notation, recalling that Dijkstra thinks that computer
science will pay back its debt to mathematics in that way. Dr. Schneider felt that
computer sCience is the first time that logic has been used in substance, but that
theory is inadequate for selecting between notations. He considered empirical
results necessary for such choices. Dr. Gries noted that the issue is not new, as
Hilbert had brought it up. Dr. Schneider rejoined that Hilbert didn't care how it
was done, to which Dr. Gries responded that Hilbert did want clarity and
conciseness.

45

Why use. L 09\ c ~

• To be. o..ble to express
conce..pts or stCltements
c.lea..rly a..nd uY'la.mbi<juously.

• To be. a. b I e. to q i v e. s h 0 r t e G

simpler) more. eleCjQ),t proof.s
a. 'lid d e r i va.. T jon s; +0 1 n c 'f e. a.. S e
our powers of rea..soning,
(proofs o..re. for humo..n) ('lot

compute.s consumpTion) ,

46

I

. ,

• An a..ppreciQ.tioYl of the -need

for prec.is iOh) il'gor) elesa.nce .

• An in-depth e.xperience with
the pro p 0 sit (0 n a.! a. 11 d pre d \' c a.. t e
ca.levU -proficie'l1cy Ct.nd
o...<jility In forrna.1 ma.n; pv Ia.tion .

• Apprec.ia..tion of the importa..nce

of SUita.ble) simple flota.tioh

gea.red to formed 'Yrla.nipu/a.tion.

• Lessening of the need for
e.')(a.mples a.s a. mea.ns of
conve'fi119 under.sto..ndin9,

. 47

c Q1IIple±e. 'hi Q th, I'Y) d u c,-r,'oY\

0)') (U)<J

VeX: XEU: p.x) -

V(y: 'lEU: vex: x<y:p.x).=9 PyJ

or -

vex:: p.x}

V('I:: p .j \! -i ('X: X < 't,' -, P. x)

Cl ~ b
:' b v.,et -

. 48

(u)~) we.ll- fCl!J),dEcl: every

flonemp+y subset con-ta-i)'\S a...

l'Y1inima../ elemEnt:

leYnpty(S) -

j (y: ~ ! E ~-~ 1\ y(x: X < y: X 1: S-))

49

=

- b+3a.

-- - b

• sub s tit u t ,. 0 n 0 f e ~ tJ a.. I 5 fo r e ~ u a.. I s, .

• Addition of sa..me. 9 u o..nt,'+y
to both sides •

50

-.

b~ c.
- ,b v c (I I'np II'ca. tiol)") --
- C v ,b (c omm uta.. i'; v;fy)

- -,., c. V ,b (double. n€Cj.) --
- ,e. =9 .6 (I mp I, c. a. t-ion) --

Svbstitvtl'OI1 C)f e'tua../s
for e~ua.!s.

/rrodvs ponens

t-ro .. :n S if/v;-ry of --

51

, A'h. a..side. on Nota... -rio)'\
LOCficio.:ns use,

:=>

for imp'ico..+I'oY\:

Ct. ":) b

Le..t A a:nd B be. the. se..+s of
sto..tes in 'vVhich a... o...YlcL b
a.. r e + r v e., Th e "n

a :> b Ac.13

Co.."fu S i Y\~ !

52

I -
I '
,

--

b ~ c

~ Let\.;.) of Impl) CO/nTI1 , ~

C V ., b

[double 'he:J~

,lC v,b

[L o.vv of .I rnp 11
Ie ====; -,6

E~uQ..t;onct.f reClSO"hlnq

53

Na. turCL I d ed uc+ion

I\-I

A-£ 'XA,'Y XI\Y
)<) Y

From /\ ihfer ~0L
1 P A CO Ass umpT ion 1

2 -p 1\- E 1
)

3 ~ ,,- E 1
.>

~ ~I\f A -I) '3) 2

54

, .
. ,

Eve. r y va..l u e of b [,: " j 1 I h a. tis· 'h 0 t
in b[h .. I<] is in bLh .. I<.l

V(V-: 1J E b[(' .. jl " V- ¢.. bCh"k]:
1.rE. b[h .. 1<.1) .

rt(v: ve b[c.: .. j1:
v¢.6 [n" 1<] ~ V E b [h .. I<l)

~x

v X ---

'rI (1J: 1.;- E b[i .. j]: V E b Fh" k))

Every value in b[i"j] is
eLlso in b[h,.kJ.

. . ss

De Mor~ a. n :
o· -, V('X: p: Q) =: "3 ('X: 'P: -, a)

1· '-\Ie x: fa..ls~: p)

2.. \Ie x: P 1\ Q: 'R ') = y(x: 'P: .., Q v1()

'3. v (x: p: R") -=9 Y (x ~ P : Q v R)

Ll. 1) V1"Y\'my 'fe'Y\ ~"'" j-n9: Y CL f re s h va.. y;

V('X: P: Q) =- \/('1 ~ ?~ : 'R~)

s: One pOihf rvl e : X 'Ylot free ("h E:

\:i(Y..: x::.t: p') = 'P;
~ I R a. 'r\ 9 e S ~ I ; #- i v. J : dis j v" ,,1-; 0 ~

V'('X: P v Q: R) -

V (-x.: p: 'R') 1\ Vex: Q: RJ

. 56

3XEX.P

:lex: 'x~X: -p')

3C'><: K: -p)

Ne.ed /1ota.-rion geQred to
mo..--nipu/a-tive needs

"3 (X: 'R: 'P)

::: j (X :: --p)

V(i..: 05:: C < h+l: P')

-= V(i ' : 0 ~ c.~ <. h: f) /\

57

f):: R: E\
j(X: 'R: p) - v\ [x.:'R: f}

'vICX: R: p) ~ /I \ f:t:'R: P}

N ()('. R: 'P) - + "" f x', R 1\ P: 11

~ (X:'R:b) - +\ lX: R:Ej

rr (x: R: E-) - ~ '" f x.: 1<,: E ~

MAX(x.:R:E-) : '"h1ov<'.t x :R:E\

"8L OCk(X', R', s)

f...Qr (x: R: S)

~ (x.~ 'R \ Eo)

. 58

•

.,

5e1ue')'\ce C ;S Q permuta..t,'O'h

of S'eoue)')ce b:

V (1.l' : : N (c:: 0 ~ c; < #b.. b, i :: v-) =
N (i: 0 ~ i < 1/ c: e,G' = v-))

S9

S ("nce ...u.... is Q 1'Y\jrlima.1 element

of 5) eve rye I e)'y, en t 0 f U + h ~,:t \.s

less +ha.lI ..-u., ca.."n-not be in S ·

~i,e., every such element sa...+isfies
'P. rhel'\ by our a.. ssvmpTioY'l o....bout
p) ; t f 0 /I 0 w s + h cd A...<.. S ct. t (sf i e s
p, In ot-her 'No rd S AA- r's /lot In

)

<5) which is the des-ired contro..-
d ,'c1-i on,

For- rhe. othe.r direction •..

60

•

I . I

1) CF. Y A every deere a.. s i-ng chao i",

be9in'h 111q wifh y ;s finife,

Prov~

(U) <) w~ll-fou)",ded :: \:ICy:: 1)CF,y)

If LH S is true) (U)<) a..dmifs iY'lduct.
0- 'Y\ c:L. R If S ::

\I ('I :: 'D C F. Y V j (x: X <. y: ., 1) C F,)()).

-
r.f LH S fo..l~e, The"'r\ +here -e.XIS+..s
-no'YI€mpty S with ,,",0 ml-nimo.,[

e!eW\eY\1-) i.e .

\:;fey: y~S! j(x: x<y: X ~S))
., ,I

,

t-ie'Y'lc-()' for Cl./I y i~ 11oY\e'Y'f\pi-y S,;
, 1) c. F. y hoI d s

' 61

lel"lma. (U).c() IS well founded ,ff
the finite cha.il1 property holds
(eve r y dec I' e a.. s "" 9 c. h 0.")') is f i -n i +e)

?roof: trivia..\

Suppose (U;<) IS well-founded. We
prove tha.+

V('I t: P y V 3 (X: x < y ~ ""' p x))

=9 \/('1-:: 'Pox)

Let -p be Cl. pre die a. te t h C\., t s cd. s
f f e s th e a. "rl te c e d e n+. Co 11 S ,. d e r
S ~ r x I ., p. x '\. If Sis e Ynpty;
+he. t"heore"r"f' follows.

S vppo s,e Sis ')jot empty. S i-nce
(U)<) is well-founded; S ha..s a..
)"n i~imOwI element.A...<., (s o.y) . \.;V'e.

show a.. cOYltro.. d ,'ct-,·o h) wh ich

proves tho..t t-he Q.s$ump+io"'n +hoJ
S ,. S "not etn pty I'S fa...1 s e .

. . ' 62

III III

III III

••

••

· 63

III

... . .

... ..

<
LU

" 'r< ,I ,

. .

••

• •

,
-h o
C
:j
0-
rb
0..

{Try this algorithm for the eYnpty

stri"nt1 a:nd for strin9s of 1

a:nd +wo cha..ra..cte.rs To be

sure 'Iou u'ndersta.'l'"'Id it:

f ronl CL Inodern te.xi
011 data. structures .

. 64

.-

'Butld 0.. free for a.. ~iven set

of numbers) with th e

I1VY'Y\bers a.s +he. lea.ves

Eq.

.'J.

/\
• 1 • 1

Le. t S 'b e.

.9
/

/

• 1
\

.5

eO. ch \AI i +h OY\ e. f1 0 de. a:Yl d

co)'\ta..l-ni'f\9 One.. of t-he. ori~i'rlCl..I
ilV'IY\hers CL.5 rcol v~lvE:,

65

11 tree eirher is empty or
cons ists of 0. triple. (v:; ~)A . .)
vvhere. tr is the loot va.lue
a..n d 1) A a..re tree s.

Fot" tree. t:: (v 1. ./t.)
)) I

-t. root -= V"

For S a. set of tree-sol le.t

M r N. S denote -I-he. tre e t in S

wi th In i 11; lnU In VO-Ive -to I~ool'.

66

, . .

· ,

do # S > 1 -+ -

od -

lJ"a.r x:= MIrv. 5.> s:= S - fx.~)

u-a.r y:: MIN'. S) S~= S - fy1~

S : = S u [(root. x + root. y) Xl Y)1

Ih. te.)(t) Ql9orithhl.. writTeh
j'f\.. E'h9Iish-Po..scC\.l) ih.. 11 li'he5/

Q Y\d o..t wrO"h9 level of
a.bstro..ctioh (poi},ter-imr1e)))
eY\ta..T~)\. of tr'PE s),

67

.1~ .IS' .0'8 .:t5
().. b c. cJ

.:to ./',
./~ .08 ,15' . ~5"

a.. C

• '35'
./' "'-
·~O ,IS

/"-
dd- ,O~

CL c b

. bO
/'"

.;J. 5

d

-35 ,~5"

/"
,~o ./5

/'\
,I~ ,OS'

a.. c b cI

68

D..c.
)

fh el-9 e 0..) C) b

with d

1 1;0,-

B -

o 1

1 -:t

~ '3

~

-'

3 :J,

:::(. 3

c b

'- f

'-I

b

--'
' t

-.'
L/

--,
.)

. L I

, '~ , -
I I

C\...

. .

, Ji
~

~ a.... -

'1 b

3 C

L-j Q

S b
{., b

5 0-

C

-m.[r)c.j = rn.t'ft /lo. of ed iti1l9 Opef'C\..tl'Ol1S

To turY'l A [0 .. r - 1] il\i'o 'B [O .. C- l}

I'h. [I) 0 J :. r
'i"Y\.[O)C] - C

~[r)c] -:-

A[r-l) : 13[c-l] -7 rn..[r- 1) c- l]

A [\'"-11 t 13 [C-1] -7

I +rnin(TY\-[r-\cJ) rn.[r;C-1J)

69

=

b[o .. n-l]

Find the sum of the s€sment
(of a..dja.cent va.lue.s) whose
sum is a met x i mum.

Answer is 11.

5,.. -= 2. (h : c ~ h < j: b. h)
.... d

b ~ (-:t -{ -4)
))

Answer is

70

pre.: 0 $ "h-

Post: X = MAX (G)j: 0 ~ i fj ~ h..: S',.)
"JJ

f>o: 0 $ -It ~ fl,

P 1: X = N A X (L') j: 0 ~ i ~ j ~ Ji :)i,)

p ~ : c.::. M A X «(' : 0 f: i. ~.ji ! S',->q)

bd-: !L-~

~) X : = 0) 0 j c::: OJ

do ..J.~/1.. ~ - C : -::. (c. + l',q) '») \ ,.. I~ 0 ~

ad -

71

=

DISCUSSION (during second lecture)

Professor Backhouse observed the use of a natural induction style proof,
which he thou~ht that Dr. Gries had said was suited more to machines than to
people. Dr. Gnes replied that one should not be restricted to any single method;
natural induction should not be banned, but many times it is not suitable.

Dr. Gries stated that many examples are badly chosen, and that examples
should only be chosen that promote understanding. Professor Wheeler wanted to
know what principles could be used to select a minimal set of good examples. Dr.
Gries said that students should be able to develop an algorithm by themselves
with its proof; examples cannot be chosen that are good enough to teach this.
Examples are only good for increasing redundancy. He remembered that he had
been reading a paper and found an error; because there was no redundant
information he could go no further. Professor Hoare stressed the value of
counterexamples; he felt that in learning a new theory you use basic principles, as
for example in group theory. These are useful in developing theorems. However,
when given a doubtful statement you try to find counterexamples, that can end up
motivating complexity.

DISCUSSION (at end of second lecture)

Professor Joseph inquired as to whether Dr. Gries knew of any algorithms
that could not be developed in the way presented in the lecture. Dr. Gries thought
that the approach in itself was often not enough; many times a key idea was
needed as well.

Dr. Clarke noted that in the example recursion was avoided, and wondered
if there were any strong reason for this. Dr. Gries replied that the approach used
was chosen because he was familiar with it; he was sure that the problem could
also be solved with recursion.

Professor Backhouse referred to Dr. Gries's statement that examples are for
those intellectually young, who cannot learn immediately from a statement of
principles. He observed that the algorithms are both examples of distributivity,
so that + distributes over Max in the summing and over Min in the editing. If
operations are costed, and addition of costs is defined as multi~lication, so that it
no longer distributes, then the approach fails. He hypotheSized that for these
examples perhaps this is internalized and we look for distributivity.

Professor Rogers worried that success seemed to depend on the choice of
invariant (as with Bentley), and wanted to know how such choices can be made.
Dr. Gries noted that each array element had to be examined at least once; this
suggests a linear approach in one direction or the other. Then, try the simplest
thing first.

Dr. Holt queried the potential of the approach in giving any insight into
finding parallel algorithms. Dr. Gries agreed that its usefulness in that regard
was not Immediately obvious.

72

