
LOGIC PROGRAMMING ARCHITECTURES

H.Benker

Rapporteur: Dr. R.P. Hopkins

-. 1, ;;1

1

1. The Programming Language Prolog

Today logic programming is mainly represented by the programmmg language Prolog

IClock.in 84, Bratko 86, Sterling 861l and its many dialects and implementations. Therefore

this paper concentrates on the implementation of Prolog as the most important representative of

logic programming languages.

The procedural interpretation 'of 5. Prolog program allows its execution on current computers.

In order to analyse Prolog as a procedural language it is necessary to relate important terms of

logic to their corresponding terms describing procedural programs:

• predicate -- procedure

• head of a clause -- procedure declaration

• goal -. procedure call

2. The Problems of Symbolic Computation

Conventional procedural languages are much easier to implement than Prolog. In order to

implement Prolog more efficiently it is therefore necessary to anlalyse what is new in Prolog. It

actually tUrns out that these new features of Prolog are problems of symbolic computation in

general. Prolog shares many of its implementation problems with other symbolic languages, such

as e.g. Lisp.

2.1. Prolog is a non-typed Language

The Prolog programmer never specifies the type of a variable. Therefore Prolog procedures

(predicate.) can be called with any kind of object. as argument •. The type of an object is not

known at compile-time. The type of object. h ... to be determined dynamically, i.e. at run-time.

An arithmetic operation for example fll'llt has to te.t if it. arguments are integers, reals or any

other kind of object. Only after this te.t can the corresponding operation be performed.

Typical type. of object. that have to be treated by a symbolic language are:

• Numbers ~ either integers or floating point

• Atoms - symbolic con.tant. created by the user or the program itself. In Prolog

they are represented as strings starting with a lower~case letter. Examples: robert,

at2096, this is an atom

• Structure. - compound terms denned by their functor and arity and the given

argument •. Examples: structure(argumentl,a), foo(a,b,c)

2

• Lists • Lists a.re a specific kind of structure. They a.re however so important to

symbolic processing that a special syntax and implementation is used. Using lists

chains of objects can be created. A list consists of two pe.rts: the head (also called

CAR) and the tail (also called CDR). The head holds the ftrst element of the list,

the tail the remaining list. The empty list is represented by the atom nil (Prolog

syntax: I]). Examples: [a,b,c J, [[c,dJ,e[

• Variables· Va.riables in Prolog a.re represen ted by a string beginning with a capital

letter or a ." _". They are scrcalled "logic variables". To understand their natur.e it is

necessary to know about unification. Therefore logic variables will be fully introduced

in a later section. Examples: X, This_is_a_ variable, x25

2.2. Unification

Unification is the basic procedure calling and argument passmg mechanism in Prolog. It

checks if two terms a.re equal or can be made equal by binding variables. For more detail on

unification the reader is referred to a textbook on Prolog (e.g. [Clocksin 84, Bratko 86, Sterling

86]).

2.3. The Logic Variable

The character of a logic va.riable is defined by unification. A value ca.n be assigned to a logic

va.riable only by unification.

Logic variables can be bound or not, i.e. they have a free or unbound state. Once a variable

is bound to a value, unification does not differentiate between a consta.nt and the bound

variabl •. Th.r.for. it .imply fails if a variable is bound to a term which doe. not match. It

ca.nnot unbind a variable. Logic v&riables a.re therefore single assignment variables.

Thia ia in contrast to variables in conventional procedural languages. They always have a

value and can change this value several times in their lifetime.

Anoth.r ch act.ristic of logic variabl •• i. that th.y can be bound to .ach oth.r. Exampl.: if

two unbound variables X &D.d Y are unified, none of them gets bound to a value. If however

now one of th.m get. bound to a v&!u., the other on. &!so will be bound to that .ame v&!u •.

2.4. I/O Modes

Proc.dur. d.cl ation. in conv.ntion&! proc.dur&! language. deftn. which of the gum.nts to

the procedure input and which are output. This is not .0 in Prolog. A Prolog procedure can

be call.d with any gum.nt in.tantiat.d or not.

3

2.5. Recursion

Recursion is the only language construct in Prolog which allows repetetive execution of parts

of 8. program. The programmer cannot specify that it is possible to solve a problem iteratively.

An efficient compiler therefore needs to transform the recursively specified problem into a

program using iteration.

2.6. Non-determinism

A Prolog predicate consists of several alternative clauses. The clauses lU'e tried in textual

order.

Before a clause is tried, the current state of the computation has to be saved. A ·pointer to

the next alternative has to be memorized .

2.7. Further Features of Symbolic Languages

Symbolic languages usually do not differentiate between code and date. All data can be

treated as program and executed.

There are no global variable. in Prolog. (In Lisp they were introduced for efficiency, although

they are outside the concept of the language.)

The dynamic allocation of memory makes it necessary to introduce garbage collection

mechanisms.

In the near future we expect active data structures (e.g. to implement constraint networks) to

become more and more important. They are not yet very popular and today only a few .ystems

implement some kind of active data structures.

Very powerful and comfortable programming environment. became popular with Lisp. Future

implementations of symbolic language. also need to give this kind of .upport to the us.r. This

implieo that it is necessary to implement mixed execution of compiled and interpreted code ...

well &8 incremental compilation.

3. Introduction to existing Prolog Systems - The W AM

Most Prolog compilers offered today u.e an intermediate level of compilation. Nearly all

compilers use an intermediate language which is ba.sed on the dermition of an abstract machine

by D. H. D. Warren IWarren 8SI. This Warren's Abstract Machine, or WAM for short, is also

the basis for mo.t experiment. implementing Prolog in hardware. It is necessary to know its

ba.sic mechanisms in order to understand how architectural chlUlgea to proeeaaol'8 ca.n boost

Prolog performance.

4

3.1. Data Formats

Data objects in the W AM hold two field.: the tag and the value field •. Both field. are kept

in one machine word if possible. This is 8. very compact and efficient representation of Prolog

object •.

3.2. Memory Organisation

Memory areas:

• code - compiled progra.m

• global stack - lists and structures created during execution

• local stack - environment and choice point stack

• trail staclt - pointers to variable. that need to be unbound on backtracking

Special registers:

• P and CP for the code area

• Hand HB for the global .tack

• E, CE, and B for the environment .tack

• TR for the trail .tack

• Ax, argument registers for parameter passing

3.3. Abstract Instruction Set

PUT lnatructlons: put arguments to a procedure into the argument reg;"ters

Procedural instructions: procedure call and return instruction.; allocation of environments

(u .. of TRO)

lndexlng inatructiona: Selection of dau.e. and creation of choice points. The branch on

the type of the fll'St argument avoids the creation of unneceaaary choice point..

(,wit.,..instructions)

Unification instructions: get and unify instruction.

5

3.4. Possible Optimizations

Creating environments as late as possible avoids unnecessary work In case of failure.

Using shallow backtracking, the next alternative can be tried without restoration of all

reg~sters if the unification of the head fails.

The creation of a choice point can be delayed until the call of the first goal in a clau.e. It

might sometimes not be necessary at all.

4. Hardware for Prolog Execution

Advanced features of modern general purpose processors &re most useful for the execution of ,
Prolog. A sped&! processor can only be better than It, general purpose processor if it can wo !.

execute basic instructions as fast as the general purpose processor. The top level organisation of

a Prolog processor looks much like a modern general purpose processor.

A large physical memory with high throughput is required. The treatment of symbolic

programs is very memory consuming.

The abstract machine defines many state registen to manage the different memory areas.

Ideally all the.e abstract registers are implemented as fast hardware registers.

Unification requires switching on the type of an object. Therefore the data format must

include a tag field. The fastest method to do a .witch on a type is a multi-way branch in

microcode. Therefore elSe architecture. have advantage. over RISe de.ign •.

Every object in Prolog is acce~ed via a reference chain. A fast dereferencing mechanism hu

to be provided.

Some Prolog instructions can be used in different execution mode •. The decoding should take

this into account and treat different execution mode. of the same instruction just like different

instructiona.

When a variable is bound, three magnitude comparisons have to be performed in order to

determine if the variable has to be trailed or not. Special hardware can do this in parallel with

the binding.

It is not possible to hold variable. in registers. They need to be tran.fonned into references

when put into registers. Again special hardware can be provided to perform this operation very

quickly.

6

5. How to use a Prolog Processor - System Architectures

Numeric co-proceSSOl'3 execute single instructions of a program for the main CPU. A Prolog

program needs to be treated entirely by the co-processor.

Array processors take all input data and produce the result in batch-like manner. Prolog co

processors ha.ve to cope with a large amount of data. They produce random accesses to a large

data base. Prolog programs are non-deterministic and it therefore cannot be guaranteed that the

internal state of the co-processor will not he needed again after the delivery of 8. result.

Common processing of a Prolog program between the host machine and the co-processor

requires transferring the machine state from one machine to the other if one tues over. This

makes shared memory c~proce~~ors unattractive. Also for bu~ load and cache con~U!tency

problem~ it ~eem~ to be more interesting to use c~proces~ors with their own memory system.

A backend proce~~or is capable of treating an entire problem on its own, without help fro~

the host. It processes programs one &fter the other in a batch operating mode. It C&D, for

example, sit on a LAN and be used by several workstations. Current applicationa, however,

demand frequent interaction between ho~t and Prolog processor and the handling of non·

d.t.rminiam ia difficult.

A stand-&!on. AI workstation .x.cuting Prolog has advantag •• b.cau •• it ia fr •• d from all the

con.traints of a host machin.. It ia however difficult to integrate with an .xiating computing

environment. Also the hardware and software effort to produce an entire system is enormous.

6. Prolog Machines

Performance of Prolog systems i3 measured in Logical Inferences per Second. One inference,

u seen from the logical ~emantics of Prolog, corresponds to one execution of a procedure in the

procedural semantics. Peak performances are obtained with small, determin~tic programs.

The degradation from peak to average p.rformance ia much wo,... with g.n.r&! purpo ••

proc....., .. than with sp.ciallied Prolog proc ••• o

Some Prolog archit.ctures ar. pr •• ented. And th.ir mlWl charact.riatica d.scribed. The

intere.t.d read.r ia r.f.rred to the lit.ratur. for details on the archit.ctur ...

The ICMS [Noye and Syre 871 proj.ct waa the .tudy of a co-proc_or u.ing the .hared

memory approach. The project wu carried out down to chiJ>-level simulation. A software

environment including an optimising compiler is operational.

Nothing haa b.en published about the ICM4 .tudy. It ia a backend proc.ssor, thus having it.

own m.mory. Th. m.mory de.ign waa .uch that very faat dynamic RAMa w.re used in .. seri&!

mode in order to avoid the need for caches. The execution unit wu based on a two-stage

7

1

pipeline. The pipeline performed very well, for the same program as ICM3 around the same

number of cycles were used, i.e. the gain in cycle time could he fully exploited. The instruction

set was a mix between RISC.like instructions which made all pipeline stages visible to the

compiler, and high-level microcoded instructions for unification. The problem with this design is

that the RAM chips became not available (announced in 1985, stiIl no samples available). Also

the hardware overhead to restore the complex pipeline stages after an interrupt is quite

significant. This concerns the pipeline registers in the execution unit, but even more the ones in

the memory interface.

The new personal AI workstation designed at ICOT INakashima and Nakajima 871 i. a fairly

conventional machine, but uses many optimizations of the W AM. Therefore it has quite a good

performance and the most remarkable thing about it is its full system capability.

One of the early designs of a Prolog machine using the WAM was done at the University of

California, Berkeley IDobry et al. 84, Dobry et al. 851. The machine was named PLM. It i. the

design of a shared memory co-processor using a three stage pipeline in the execution unit.

Another very interesting study done at the same university is the SPUR processor IHill et a1.

86, Patterson 871. It i. a RISC chip set designed for the execution of Li.p. The implementation

of Prolog on thi. machine h ... been studied IBorrielIo et al. 871. The compari.on with the CISC

architecture of PLM shows that SPUR needs around 15 times more instructions and runs at half

the speed of PLM. In the opinion of the SPUR team this comparison i. in favour of the SPUR

architecture, because its hardware is much simpler. On the other hand it also shows clearly the

limitation. of a RISe approach toward. Prolog (in particular the lack of a multi-way branch

facility for unification i. a significant di.advantage of a RISC).

All the machine. introduced above have three things in common: they use the W AM ... a

base, have special hardware for tag handling, and special attention is given to the de.ign of the

memory system. A performance ev&!uation of these machines shows that for big programs they

have a significant advantage over gener&! purpose processors.

The most significant difference between a general purpose machine and a specialised AI

proceasor li.. in the u.e of tag hardware. Thi. i. also the most costly addition to general

purpose proce •• o All the other features for Prolog are rather inexpen.ive (in terms of hardware

complexity) little changes to a general purpose machine.

The performance evaluation gave ECRC enough confidence to start a new project aiming at

the hardware implementation of a Prolog proces.or. The characteri.tic. of the Knowledge

Crunching Machine KCM are private memory co-processor; code and data cachej memory

management system; 64 bit word length; synchronous prefetch unit.

8

References

[Abe et al. 871 S. Abe, T. Bandoh, S. Yamaguchi, K. Kurosawa, and K. Kiriyama.
High Performance Integrated Prolog Processor IPP.
In The IEEE Computer Society Press (editor), The 1.lth Annual International

Svmpo.ium on Computer Architecture, pages 100 - 107. IEEE/ ACM, June,
1987.

[Borriello et al. 871

[Bratko 861

[Clock.in 841

Gaetano Borriello, Andrew R. Cherenson, Peter B. Danzig and Michael
N. Nelson.
RISC vs. CISCs for Prolog: A C ... e Study.
1987.
To appear in ASPLOS-II 1987.

Ivan Bratko.
Prolog Programming lor Artificial Intelligence.
Addison- Wesley Publishers, 1986.

W. F. Clocksin and C. S. Mellish.
Programming in Prolog.
Springer Verlag, 1984.

[Dobry et al. 841
T.P. Dobry, Y.N. Patt, A.M. De.pain.
Design decisions influencing the micro architecture for a prolog machine.
In ACM Sigmicro New.letters (editor), MICRO-I 7, page. 217-231. U. California

Berkeley, New Orlean., 1984.

[Dobry et al. 85[
T.P. Dobry, A.M. De.pain and Y.N. Patt.
Performance Studies of a Prolog Machine Architecture.
In IEEE Computer Society Pre •• (editor), The Itth Annual International

SVmpo.ium on Computer Arehiteeture, page. 180 - 190. IEEE/ ACM, 1109
Spring Street - Suite SOO - Silver Spring, MD 20910, June, 1985.

[Hill et al. 861 M. Hill, S. Eggers, J. Laru., G. Taylor, G. Adam., B.K. Bo.e, G. Gib.on,
P. Han.en, J. Keller, S. Kong, C. Lee, D. Lee, J. Pendleton, S. Ritchie,
D. Wood, B. Zorn, p. Hilfinger, D. Hodge., R. Ken, J. Ou.terhout and
D. Patterson.
De.ign Decision. in SPUR.
Computer :8-22, November, 1986.

[Naltuhima and Nakajima 871
H. Nakashima, K. Nakajima.
Hardware architecture of the .equential inference machine PSI II.
1987.
ICOT .ubmitted to SLP87.

[NaIt&laki et al. 851
R. Nak&laki, A. Konagaya, S. Habata, H. Shimasu, M. Umemura,
M. Yamamoto, M. Yokota and T. Chikayama.
De.ign of a High-.peed Prolog Machine (RPM).
In IEEE Computer Society Pre •• (editor), The Itth Annual International

SVmpo.ium on Computer Architecture, page. 191 - 197. IEEE/ ACM, 1109
Spring Street - Suite 300 - Silver Spring, MD 20910, June, 1985.

9

[Noy. and Syre 87[
Jacques Noye and Jean-Claude Syre.
ICM3: Design and evaluation of an Inference Crunching Machine.
1987.
To be published in the proceedings of the 5th International Workshop on

Databa.se Machines.

[Patterson 871 Dave Patterson.

[Sterling 861

[Tick 84al

[Tick 84bl

A Progress Report on SPUR: February 1, 1987.
Computer Architecture New. 15(1}:15-21, March, 1987.

L. Sterling and E. Shapiro.
The Art of Prolog.
MIT Press, 1986.

Evan Tick.
Towards a multiple pipelined prolog processor.
In U. of Maryland (editor), Int'l work.hop on high level computer architecture,

pages 4.7-4.17. Stanford Lab, Lo. Angeles, May, 1984.

Evan Tick.
Sequential prolog machine: image and host architecture.
In ACM Sigmicro Newsletters (editor), MICRO-17, pages 204-216. Stanford lab,

New Orleans, December, 1984.

[Tick and Warren 841

[Warren 831

E. Tick and D.H.D Warren.
Towards a pipelined prolog processor.
In IEEE (editor), 198./ International S~mpo,ium on logic programming, pag ..

29-40. IEEE, Atlantic City, February, 1984.

David H. D. Warren.
An ab.tract prolog in.struction let.
Technical Report tn309, SRI, October, 1983.

10

DISCUSSION

Dr. Gries made the observation that indirect reference chains of indefinite
length were not unique to logic programing implementations, as had been
suggested in the lecture , but were also required for example in the
implementation of ALGOL68.

Professor Randell asked whether incremental compilation, which was an
important part of the architecture presented, was also included in the Warren
Abstract Machine ("WAN") for PROLOG execution. Mr. Benker replied that the
WAM was concerned with providing an intermediate level for the efficient
execution of the basic PROLOG mechanisms and thus did not address issues such
as incremental compilation. Then Professor Randell also raised the question of
parallel addressing of tags as a natural mechanism for improving the
performance of this kind of architecture. In response to this Mr. Benker
commented that such mechanisms req,uire special purpose hardware, whereas the
architecture being presented is speclfically intended to employ "off·the·shelf'
components. Given that the PROLOG machine components and the conventional
host machine with which it interfaces both employ a standard 32·bit word lenltth,
the two alternatives in implementing tags are: (i) to store the tag of a 32·bit data
item in another (adjacent) complete 32·bit word, thus degrading performance by
requiring two memory cycles to access a single data item; or (ii) to use some of the
bits from a data item word to store its tag, thus reducing the number of bits for
the data value and so comprimising data compatibility with the host machine.

11

DISC USSION

During the discussion Professor Randell raised a number of questions
concerning the performance measures for a PROLOG machine and the
comparison of its performance with both other PROLOG machines and
conventional machines. In these questions and Mr. Benker's replies, the
following points were made. There are commonly accepted performance
"benchmarks" for PROLOG machines. However these are somewhat inadequate
in employing very simple programs, such as appending an item to a list or
reversmg a list, which under-utilise the specialised mechanisms of a logic
machine wherein lie its potential benefits for more sophisticated programs. The
resulting performance comparisions have the same limited degree of significance
as for using programs With few procedure calls in comparing machines all
optimised for efficient procedure calling. Also the "Logical Inferences Per
Second" performance measure used is misleading since the amount of
computation required for a single "Logical Inference" in these simple programs is
very much less than would be required for a single "Logical Inference" in more
sophisticated programs. Another problem in comparing performances is in
factoring out the effects of different implementation technologies used in different
implementations, such information not having been published for many of the
machines being compared. In fact, most performance results for these machine
designs are obtained from simulation studies or hardware implementations using
TTL technology. The necessity for experimental implementations of novel special
purpose architectures to use such "outdated" technology makes it difficult to
Justify the fuller development of such architectures since in evaluating their
performance against the conventional architectures with which they would have
to compete , the latter have the architecturally irrelevant advantage of
implementations using production quality custom chips. Despite this, it can be
hOl?ed that in the long term the work on special purpose architectures will make
a Significant impact on the commercial market. To acheive this it is increasingly
important to integrate these novel architectures into the existing computing
environment as co-processors to be hosted by conventional machines. One
particular commercial product that could arise from novel architecture research
would be microprocessors handling tagged data items as this is a requirement
common to the efficient realisation of most such architectures.

In response to a question from Dr. Gries concerning which aspects of
PROLOG execution would benefit from special purpose hardware, Mr. Benker
mentioned tag handling and also garbage collection. The latter is currently being
looked into by a group at the European Computer Industry Research Centre
(ERCC), but nothing has yet been implemented. Professor Randell raised the
relationship between PROLOG machmes and the anticipated future use of very
large "knowledge" databases. The approach proposed by Mr. Benker is that the
data base and PROLOG machine would both be co-processors for a conventional
host machine. There is a group at ERCC investigating the interactions between
such co-processors and how tightly coupled their connection needs to be. The
question of the handling of Input/Output within a PROLOG system was raised by
Dr. Schneider. Mr. Benker agreed that this was a problematic area,
emphasising the importance of off-loading input/output work from the PROLOG
processor by the use of an input/.output co-processor.

Finally, Professor Randell introduced the question of the extent to which
PROLOG programs exhibit exploitable parallelism, particularly in view of the
initial emphasis in the Japanese Fifth Generation Project on the parallel
execution of logic programs. Mr. Benker made the observation that before a
parallel machine could become a commercial possibility there must be a good
performamce sequential machine since the former will substantially be a
multiplicity of the latter. However for research purposes it is not unreasonable to

12

. j

build a parallel machine based on a sequential machine of poor performance. The
source of potential parallelism for lOgIc programs is in the parallel execution of
the alternative clauses for a goal (OR parallelisn) and/or parallel execution of the
sub-goals of a particular clause (AND parallelism). Most current logic
programming implementations are sequential, partly because programmers are
trained in sequential paradigms. He also commented that the examples, such as
solving the eight queens problem, usually used to illustrate the potential for
parallelism are not of much practical significance, and in fact it prooves difficult
to find useful applications of parallelism .

13

,
" I

