
• 

CURRmr INDUSTRIAL SOF'lWARE ENGINEERING CONCERNS 

Rapporteurs: Mr. F .L . Hughes 
Mrs . A. Petrie 

B.C . Warboys 

21 3 



• 

Extended Abstract: 

1. Therre of lecture 

Changes in concerns lead to changes in the required support 
systems. These support systems then require differing skill bases for 
their exploitation and this in turn implies that curriculum planning 
needs to take into account the new scenario . 

2. Changes in Concerns 

A moverrent from a single discipline profession very much 
targetted towards the production of discrete components . The new 
scenario reflecting the increasingly endemic nature of IT in modern 
society is multi-discipline. Sane lll€mbers are still concerned with 
the production of discrete components, more are engaged in the glueing 
together of beught-in components, and in the future rrost will be 
concerned with "Systems developrent in the large". That is the 
production of total ecosystems with the IT components providing the 
enabling technology. 

2.1 .. Market Segmentation 

This multi-discipline scenario is leading to a moverrent towards 
two styles of developrent. A so called "professional" approach 
attempting to improve the predictability of software production by an 
emphasis on formalism. Such approach is inevitably based around the 
developnent of sound language theories. 

The other reflecting the "natural" developnent style based upon 
the views that human design activity is best attempted in a dialogue 
style. That the iterative nature of design is best achieved in an 
interactive style with designs being tried out, examined, discarded 
and then reiterated. This tends to be based around the developnent of 
"natural thought" languages with a view that the onus should be on the 
canputer system to understand and sympathise with the habitual human 
reasoning process. 

2. 2. Software as an enabling technology 

Whichever theology of developrent is accepted, and I believe that 
beth will continue to flourish, the key movement in industrial 
software engineering is towards its use as an enabling technology in 
broader system development. That is it is a partial process which 
needs embedding in a broader ecosystem design activity. 

Increasingly the IT components of total systems are formed fran a 
set of sub-components each with a "small" set of distinct 
characteristics . The creative software activity is concerned with the 
use of software as the embedding medium for beught-in components and 
the custanisation of this conglomerate system to satisfy end user 
demands. 

21 4 

• 



Further the trend to accelerated cost- reduction in hardware 
components l eads to the need for hardware component manufacturers to 
increase the intellectual added-value from their outputs to compensate 
for the lack of profit to be derived frcm the purely manufacturing 
content of the products. Thus the technology is producing both the 
capability and the need for higher functional content in hardware 
components. The speed of cost-reduction together with the automated 
nature of the manufacturing process leads to an ever-decreasing 
hardware camponent life- tinE. The higher functional content leads to 
an increasing reliance on software developrrent paradigms. This , in 
itself , tends to a greater integration of software and hardware 
concerns and hence again re-enfor ces the trend towards functional 
enhancement of hardware ccrnponents. 

Paradoxically the increasing. reliance on specific ·algorithms to 
help manage business concerns has the effect of extending software 
ccrnponent life- times. It is the software constructed embedding medium 
which must take the stress of this difference in hardware and software 
lifetimes . It is this stress which has resulted in an increased 
emphasis on multi-layered system standards and increasing concern for 
component reuse technology in operational systems. As we shall see 
later there are other developmental pressures which also lead to an 
increased pressure for the technology of camponent reuse. 

2.3. The Industrial Scenario 

Industrial software engineering 
influenced by four main factors . 

concerns are increasingly 

(a) The endemic nature of IT - leading to an emphasis on software as 
an enabling technology for the development of the IT camponents 
which contribute to a total ecosystan. This is r eflected in the 
breakdown of development costs wher e increasingly costs 
associated with issues of total system integration are dominant . 
This leads to an increasing emphasis on the technologies of 
systan specification , human interfacing and camponent 
integrati on. 

(b) The nature of the IT business - the added-value chain reflects 
the move towards ccrnponent integration . As hardware camponents 
gain added functionality so the base ccrnponent supplier moves 
further up this added-value chain. The user is gradually 
succeedi ng in pressur~s~g the industry into standard bui lding 
works and the application generator technology to support 
standard camponent usage . These gener ators are less cCIllplex to 
utilise than the ccrnponent construction languages and hence 
i ncreasingly the end-user is able to participate more fully in 
the construction of the IT components to suit his total system 
needs. Thus the end-user moves down the added-value chain and 
increasingly the characteristics of these total systems have a 
greater input on supporting component design. This integration 
leads to the development of more "natural " component 
relati onships and has led to a reawakening of interest in object 
oriented systems - a subject which to an extent has l aid dormant 
since the short era of capability machines at the end of the 
sixties . 

21 5 



(c) Further the emphasis on business enabling has led to a move 
towards operational and decision support and away from scientific 
processing. This brings with it the needs of managenent as a 
user and hence in turn adds to the pressure for a move towards 
more "natural" hwnan interfaces. As the "naturalness" of 
interfaces increases so there is added difficulty in providing 
the sound theory which has characterised the developrent of 
computer languages hitherto. Paradoxically as IT components have 
become more integrated with business and operational systems 
there is a need to increase their reliability. Thus the stresses 
of trying to cope with the, as yet, divergent demands of 
"natural" interfaces/rule-based object managerrent systems and 
rigour in software developrent have led many to conclude that 
fault-tolerance is the only viable way forward. Whatever the 

.ultimate answer, the trend for some time will be towards 
technologies which can cope with this variety of development 
approaches. 

3. Changes in Support Systems 

The changes in concerns highlighted above lead to the desire for 
new properties in software engineering support systems. These support 
systems must recognise the importance and characteristics of:-

(a) Systems development in the large - the fact that the IT component 
is only a part of the total system. 

(b) The variety of development approaches - as the breadth of system 
design increases it is unlikely that a single generic developrent 
paradigm will errerge. 

(c) The importance of reuse 
operational component level 
As system design becomes 
process design increases as 
cost. 

as a technology not just at the 
but particularly at a process level. 
a larger concern so the time spent in 
a proportion of total developrent 

3. 1. What then is an IPSE? 

The term IPSE, in the UK attributable to the Alvey programme, is 
an acronym for Integrated Project Support Environrrent. It · is clear 
that given the wider definition of System Design outlined above that 
the IPSE must concern itself with process support issues much broader 
than those concerned with the mere development of software components. 
The lecture "IPSE 2.5 - one IPSE that is necessary" will address these 
issues (see next Section ). 

4. Changes in Skill Base 

The changes in the skill base derive from the 
above and reflect the two enduring issues which 
engaged the Software Engineering ccrnmunity. 

4.1. "The Software Crisis" 

background outlined 
have consistently 

Basically and consistently over the last decade the demand for 
software production has outstripped the capability of the industry. 
The increase in the number of software developers and the improvements 

216 

• • • 



in software production prcductivity have failed to keep pace with the 
need. 'filis is partially a function of the huge increase in the use of 
IT and partially that the total cost of production is spread so widely 
over a range of development concerns. Attempts to improve 
productivity have tended to deal with single aspects of the 
development process and rather like stamping on rugged balloons have 
only resulted in moving the hot air from one part of the surface to 
another. How much this is due to the sixties derived notion of the 
development process is still a matter of much great debate. However, 
it is clear that it is well understood that the cost of correcting 
errors is proportional to the phase of the development cycle in which 
they are found and further that most software systems do not meet 
their contractors original requirements. Yet there is little progress 
in responding to these difficulties on an Industrial scale. 'filis is 
at face value , an extraordinary state of affairs. Whatever the 
shortcomings of our industries, they usually solve problems once they 
have been identified. My contention is that the tools and methods 
which purport to assist these problems have taken too narrow a view of 
the total process and hence their solutions have had partial effects. 
'filis in turn led to more complication not less and hence the solutions 
have been rejected. 

4.2. On the Industrialisation Problem. 

'file industrialisation of software engineering techniques has 
three major implications. First that of scale horrendous 
development processes have derived from the linear scaling of 
acceptable techniques at small project levels. Secondly the problems 
of technology transfer have been underestimated. Particularly since 
the technology has a strong prooess content, it is by definition 
attempting to change the way people design. Since the human is a 
"natural" design animal this has a profound influence on the way 
people think. By definition the more successful software managers are 
the more experienced ones and hence one is trying to influence a 
method of thought which has evolved through relatively successful 
training by experience. Further the problem solving skills are 
developed to apply software technology in the small to the larger 
system concerns and little theoretical work is usually performed on 
this aspect of technology usage. 'file situation is further complicated 
by the variety of componentry which needs management integration and 
indeed many of the components are poorly identified because of the 
legacy of history and varying performance and integration constraints . 
My contention is that a complete unified solution to all these 
difficulties is not practicable and that instead emphasis needs to be 
placed on enabling infrastructures which allow differing 
instantiations to deal with differing problem sets . 

In particular recognition must be given to beth the volatil e 
nature of the technology and the rapidly changing shape of the 
"added-value" chain. Considerations which lead to the need to allow 
infrastructure change to oc= as new techniques arise and need to be 
embedded in rather than totally replace existing practices . 

'file life cycle support in the large which is implied needs to 
ensure that a gearing of individual effectiveness is obtained for a 
variety of roles within the development group. 'file needs of Personnel 
Managers, Salesmen, Researchers, Management must be addressed to 
ensure that any gains in productivity due to programming support are 
not eroded by the extra complications of fitting the new programming 
practices into existing and integrated business practices. 

217 



4.3. Possible solution strategies . 

Clearly the problem in the large is callpOIable to that of 
replacing a component in an operational system. We wish to reuse much 
of what exists and we wish to integrate sane new canponent into this 
existing structure. The same desires for process change as we have 
for product change. The sensible approach is therefore to apply the 
same principles of component design which lead to software component 
reuse to the problem of components in the large. Clearly technology 
is needed to create both an infrastructure for component reuse and for 
sound component production. Clearly component is used here in the 
widest sense of the word to cover both operational components at 
specification, design and implementation levels and the process for 
their development. 

Clearly such a flexible approach allowing for the instantiation 
of an endless-variety of local/personal practises needs sane coherent 
frame work which I like to call Departmental House Style. Issues 
which need such stylistic control are those concerned with 
Representation, Modularity, the Continuity of the development process 
and "Testing" I believe that !fOst other issues are amenable to a great 
variety of local "taste". 

4.4. Sane trends. 

As was stated earlier it is inevitable that as business canes to 
rely !fOre heavily on specific software so it will becane !fOre 
difficult to change them. Operational networks and corporate 
databases, even Departmental Mail systems, once installed will only 
allow the embedding of new components not their total replacement. 
This phenanenon applies equally to new techniques and to products 
obsoleted by differing product lifetimes. The stability of much of 
the infrastructure will lead to a greater capability both to measure 
the system and the improvements due to new canponents. Thus the 
science of quantification will grow. 

Discontinuities will abound due to business integration, the 
endemic nature of IT, new technologies and the integration and 
convergence of many components. Thus we are likely to see a growth in 
techniques rather than a convergence towards a single generic 
solution. This growth, coinciding with a broadening of system 
concerns will represent a great stress on the definition of the scope 
of Computer Science. They indeed may lead to the creation of a broad 
church of Information Technology together ·with a narrow definition of 
those concerns which should be studied under the heading of Computer 
Science. I believe such a division will also apply to Engineering 
Support Environments with the current software development style being 
but a small part of the process support. 

5. Changes in Curriculum Planning. 

These "in the large" concerns coupled with rapid change in "in 
the small" technology have many implications for the planners of the 
computer science curriculum. It suggests a greater concentration on a 
set of basic theories which will apply irrespective of technological 
change. As the world gets more complex and varied the art of 
recognising cc:mronality becanes !fOre effective. It is indeed an 
important attribute of the Component Engineering theme which this 
paper is suggesting. Thus I should like to see the Basic Themes of:-

21 8 



- Whole Process Concerns 
Abstraction and Representation 
Cumulative experience with ideas 
Recurrent Notions such as Hypothesis and Test , Problem Solving, 
Analysis and Synthesis, Abstraction and Realisation and Inductive 
Reasoning 

becorre the core of the Computer Science Curriculum. 

Lastly I should like to remind everybody about the biggest 
obstacle to Software Engineering progress over the last twenty years . 
The issue of Technology Transfer - we, as researchers and teachers 
should not forget that the technology when delivered always has a 
sociological ccrnponent and that , as yet , tools remain the only Irethod 
of technique enforcem=nt . These active attributes of the technology 
are usually poorty addressed and reflect the fact that our profession 
contains two self-contained cultures . One the researcher needs 
research success to justify new research support . The other the 
developer needs project success to justify new project opportunity. 
Natural selection and time (reliant as they are on experience derived 
criteria) will not improve this situation. Perhaps new organisational 
relationships are needed before in the large component engineering 
becomes a reality. 

21 9 



DISCUSSION 

Q: Are you an employee of ICL working for a University or vice versa? 

A: This is not a problem. It is not difficult to resolve, just don't get 
too obscessed. 

Q: Is it difficult to translate ideas into curriculum? Should live systems 
be used? What can be done to help the students? 

A: The science of prototyping should be taught. The students should be 
allowed to play with operational systems. Both individual and group 
projects should be taught. However, more technology is required. 

Q: Do you work with mechanical engineering? 

A: Yes. There is multidiscipline in many uni versi ties. However, there 
should be more thoughtful investment in IT. Currently it is a case of CS 
versus IT. 

Q: Many problems are not directly related to CS, for example, imbedded 
systems which are part of a larger environment. CS attempts to find 
solutions to these problems. 

A: Yes there are many broad environments, but I am making my plea to IPSE 
suppliers, not just CS Departments. 

220 

• 


