
• •

THE ISTAR ENVIRONMENT

V. Stenning

Rapp:>rteur: Mr. P. Ezhilchel van

185

An Introduetion to ISTAR

Vie stanninq

Imparial: sottware Taehnoloqy, utt

1. INTRODUCTION

ISTAR is an environment for use on computer systems
development projects. It addresses the three critical
"dimensions" of such a project - technical development,
project management and configuration management - in a
coordinated way, and is thereby able to support all members of
the project team throughout the project life cycle.

The environment is not specific to any particular
development method or programming language, but rather
provides a controlled overall structure within which
particular methods and languages can be employed as required.

This paper discusses the contractual approach on which
ISTAR is based, describes the structure and organisation of
the environment, and summarises the available tools and
facilities.

2 • OBJECTIVES

Concern here is with Integrated Project Support
Environments (IPSEs). The scope of an IPSE can conveniently
be identified by contrast with a program development system
and a programming support environment.

Program development systems have traditionally been
supplied by computer manufacturers. They provide only those
facilities that are essential to implement programs in some
chosen programming language. Thus they would typically offer
facilities for editing, compiling, linking and debugging.

Programming support environments recognise that actual
implementation in some chosen programming language is only one
small part of the complete process of software development.
(The term "development" is used consistently here to encompass
not only initial development but also subsequent maintenance
and evolution during the operational life of the software and
system.) They therefore provide facilities to support all
development activities throughout the complete life cycle,
from initial concept formulation and requirements analysis,
right through operational use and into controlled phasing out
and replacement. In some cases this system life cycle can
last for tens ot years. Version control and configuration
management are obvious issues that must be addressed by a
programming support environment.

186

•

Project support environments go oeyond proqramming
support environments in that they provide support to all
project statt, not just to development statt. Thus they
should provide tacilities tor project management, quality
assurance, document preparation, and so on. Ideally, a
project support environment should otter tacilities tor
complete system development, not just sottware. Thus one
would expect to see support tor total system design methods,
with smooth transition into individual design methods tor the
hardware and sottware elements.

ISTAR is a tull integrated project support environment.
In addition to the general requirements for life cycle support
and project team support, a number of specific oOjectives were
identified for the product. It should oe portaole across a
wide range of machines, and in particular should oe suitable
for ooth shared development machines and single user
workstations . Indeed, there must oe a smooth transition path
from use of shared machines to use of workstations, and this
ooviously involves a stage of using the two toqether. It
should oe open-ended, in that user organisations should oe
able to incorporate new tools without recourse to the
environment supplier. It should support use of existing tools
without modification. And it should oe able to support
projects that are geographically distriouted across several
sites.

3. THE CONTRACTUAL APPROACH

3.1 The Contract

ISTAR is organised to support a powertul but general
approach to software and systems development - the contractual
approach. This approach is based upon the hierarchical
decomposition of work units into smaller work units that is
typically employed for any complex project.

with the contractual approach, each identified task
within a project is organised as an individual contract. This
contract takes as input a precise specification of ·the task to
be performed, and produces as output the deliverables that are
required from the task. Where those responsible for a
contract can identify various suO-tasks which would help to
achieve the goal, and are able to precisely specify those
suO-tasks, then suO-contracts can be let to perform those
SUb-tasks. The whole structure is of course recursive, and
the suO-contracts may themselves have suO-contracts, and so
on. The net result is that any task typically involves a
complete hierarchy ot contracts, where each of those contracts
has the same basic form (Fig.l). Within this hierarchy, when
a given contract lets a suO-contract, we refer to the former
as the "client" and the latter as the "contractor".

As noted above, the main interface between a client and a
contractor is that the client supplies a specification to the
contractor, and the contractor returns deliverables to the
client. However, for coordination purposes the client will
typically need to be informed of the contractor's proqress and
any problems that are encountered. Further, the client may

1 ~

•

•

need to pass to the contractor information that is outside the
scope of the specification, for example some informal response
to a problem report. Thus there may be a flow of reports in
both directions between client and contractor, and the
complete client-contractor interface has three components:
specification, deliverables, and reports (Fiq . 2).

3.2 The Contract Specification

A contract specification is reqarded as havinq three
distinct parts

- a task specification, which precisely defines the task to be
performed (what rather than how)

- a set of verification criteria, which define an objective
test to show that the task has been performed satisfactorily

- and a set of manaqement constraints that qovern the
performance of the task. These may cover, for example, the
required timescale for the task, resources to be employed,
standards to be applied, and so on.

Of course, the nature of the contract specification will
vary with the task to be performed, and different kinds of
specification will be appropriate at different levels of the
hierarchy. Thus, for a top level step that encompasses a
major product development the task specification would
typically concentrate on the market requirement and the
verification criteria might call for acceptance testing
accordinq to established procedures. However, for a low-level
step the task specification might provide a detailed interface
specification for a software module to be implemented in
Pascal, and the verification criteria miqht define a specific
set of tests to be performed on the implemented module.

3.3 Amendment and Cancellation

It cannot be assumed that all contracts will proceed
smoothly and produce their deliverables as specified and
within the manaqement constraints. Some contracts will take
longer than planned, or consume more than the allocated
resources. It might prove impractical or impossible to
produce deliverables that meet the specification. Or the need
to revise the contract specification may arise externally.

Therefore it must be possible to amend contract
specifications. However, such amendments can only be made by
the client. Should a problem arise within a contract then
this must be reported to the client (usinq the normal
reportinq facilities) who may choose as a result to amend the
contract's specification. The contractor may use reports to
sugqest or neqotiate contract amendments, but cannot
unilaterally make such amendments . By contrast, the client
can make an amendment at any time - and of course must take
the responsibility for doing so.

Occasionally, due to chanqinq circumstances or

1~

insurmountable problems, it may become pointless to continue
with a contract. In this case the client may choose to
completely cancel the contract.

3.4 specification Issues

All main aspects of the contractual approach have now
been introduced - the letting of contracts, exchange of
reports, return of deliverables, amendment of contracts, and
cancellation. However, two further points should be made
concerning contract specifications.

First, although the specification must be precise, it
need not be detailed. Thus, for example, a contract
specification may call for a feasibility study to b.
performed, but may not detail the options to be investigated.
The "rules of the game" are that any deliverables that meet
the specification and satisfy the acceptance criteria are
legitimate. Thus it is the client's responsibility to provide
an appropriate specification of sufficient detail to ensure
that the returned deliverables will be satisfactory. Of
course, the client could misjudge the level of detail that is
needed, and as a consequence receive an unsuitable
deliverable. In this event it is necessary to produce a more
detailed specification, removing the area of freedom that
allowed the unsatisfactory deliverable, and then issue the
appropriate contract amendment (or perhaps even let a
completely new contract) .

The second point on the contract specification concerns
the acceptance criteria. It would have been possible to
regard the definition of acceptance criteria as part of the
task specification. However, by choice the acceptance
criteria are separated out, both to emphasise their importance
and to indicate that an objective means of assessment should
be defined before a contract is let, rather than while it is
proceeding. Of course, it may later prove necessary to modify
the acceptance criteria, but this must then be treated as a
contract amendment.

4. USING THE CONTRACTUAL APPROACH

The contractual approach reflects a common way of
organising projects that is completely general. It
corresponds to the "work breakdown" approach that is typically
employed (consciously or unconsciously) for any non-trivial
project . The objective in following this approach is primarily
to instil a basic level of project hygiene and to ensure that,
at all times, all the people involved in a project know
exactly what they are trying to do.

To appreciate the generality of this approach, first
consider an organisation that typically conducts its projects
in phases: feasibility study, requirements analysis, system
specification, and so on. Within ISTAR the complete project
would be a contract, and this contract would then let one sub­
contract for each phase. These sub-contracts would themselves
let sub-contracts as appropriate.

Of course, it is frequently the case that the different

1 ~

phases are not strictly sequential. Rather, the work on a
given phase can often be initiated as soon as the previous
phase has produced useful output. This again can be
accommodated within the contractual approach. Each
sub-contract is now required to produce not just a single
deliverable, but rather a set of deliverables. The
sub-contract for a new phase is initiated as soon aa the
previous phase produces a useful deliverable. This
sub-contract must then be amended as further relevant
information becomes available, but with proper planning these
amendments can be handled without disruption. Only in the
case where there is a genuine change of requirement or design
need there be any significant re-working, and in these cases
such re-working is inevitable. Obviously this parallel
working with overlapping phases requires more coordination
than the sequential case, and as always this coordination must
be the responsibility of the client contract.

within a given phase it is often possible for work to
proceed in parallel. The classic example is where a system
can be decomposed into component parts and, once specified,
each of these components can be developed independently. with
the contractual approach, the decomposition into components,
and the specification of these components, is performed within
a coordinating contract (or by a sub-contract on behalf of
that contract). The coordinating contract then leta
sub-contracts for the production of the individual components,
with all these sub-contracts proceeding in parallel. Any
interfacing problems that subsequently arise must be handled
by the coordinating contract, and this may of course involve
amendments to various sub-contracts. Eventually the required
deliverables will be returned by all the sub-contracts, and
these can be combined to yield the desired system.

Discussion thus far has been on the basis of sequential
phases, possibly with parallel development within the phases.
However, the contractual approach is obviously not limited to
such an arrangement, and in general any required combination
of sequential and parallel working can be employed. This is
achieved by letting sub-contracts at the appropriate times and
with the appropriate management constraints, particularly on
timescales. The degree of parallel working is constrained
only by practical considerations of retaining overall control
and avoiding excessive amounts of rework.

Consider now some extensions to the basic scenario.
Suppose that, in order to assist with requirements analysis or
design, it is decided to construct a rapid prototype. This is
obviously handled by letting a sub-contract, with the
deliverable either being the prototype itself or the results
of building and experimenting with the prototype, whichever is
most appropriate.

Now suppose there is a need to construct a product and,
because of time constraints, to simultaneously develop a user
guide for that product. This might best be handled by
separate contracts, one for product development and one for
the user guide, with deliverables from the former being fed to
the latter as they become available. In this case it might be
appropriate for the specification of the user guide contract

190

to be expressed in terms of "reflecting the currant state of
knowledge of the product", so that the contract would not need
amending every time more information became available.

Finally, suppose that it is desired to develop a new
product and simultaneously develop a set of acceptance tests
for that product, both being based upon the same initial
specification. Again separate contracts will be let, one for
the product and one for the acceptance tests, but there are in
fact several possible ways of proceeding. However they all
involve initially defining some "working" acceptance criteria
for the production contract. One possibility would be to
allow the production contract to proceed to completion on the
basis of these working criteria, and then let a separate
contract to run the independent acceptance tests. Should any
of these tests fail the production contract could be amended
to reflect the detected problems, and the tests re-run on the
subsequent deliverable. Other approaches are also possible,
and these could be equally viable.

Obviously the above discussion has not been exhaustive.
The intention was simply to illustrate the generality of the
contractual approach and its relationship to some recognised
project organisations. As stated earlier, the objective of
this approach is primarily to encourage basic project hygiene
and to ensure that the people working on a project know
precisely what they are trying to do.

S. THE ORGANISATION OF ISTAR

ISTAR is based upon the contractual approach, and its
organisation directly reflects that approach. This perhaps
has its greatest impact in the area of the database. Rather
than having one large "environment database", ISTAR employs a
large number of small databases, one for each contract. As a
new contract is let, the database to hold inforaation
pertaining to that contract is created automatically. The
relationships between the individual databases, reflecting the
contract hierarchy, are maintained by ISTAR.

It is on the basis of these small databases that an ISTAR
system can be geographically distributed . Individual
databases within the same contract hierarchy can be held on
different machines. A single contract database must be held
in its entirety on a single machine, but related databases -
for example, the databases for two contracts where one is a
sub-contract of the other - can reside on different machines.
Thus the complete contract hierarchy within a given ISTAR
system can be dispersed over an entire network.

All the basic operations of the contractual approach, as
summarised at the beginning of section 3.4, are directly
supported as ISTAR primitive operations. All these
contractual operations (except reporting) involve a
"handshake" exchange between client and contractor. Thus a
new contract is let by a client assigning the contract to some
user of the environment, and that user must subsequently
acknowledge the assignment. That particular user thereby
accepts overall responsibility for the contract, although
other users may work on the contract as required.

19 1

The contractor can subsequently make deliveries, and
these are acknowledged by the client. Similarly the client
may either amend or cancel the contract, and again the ••
operations require acknowledgment trom the contractor. And,
of course, reports can be sent in either direction at any time
for any extant contract.

6. TRANSFER ITEMS AND CONFIGURATION ITEMS

Internally, an individual contract database is
partitioned into a number of distinct area.. specitically,
each contract database has precisely one "contractual" area
and an arbitrary number of "work" areas (Fig.3). A. these
names suggest, the contractual area is used primarily tor
coordination with other contracts, while the work areas are
used for performing work within this contract.

Two types ot information unit are particularly important
within ISTAR, namely the transfer item and the contiguration
item. A transfer item is a single self-contained unit ot
intormation ot a given type: META-IV specitication, Pascal
source, project plan, document, or whatever (Fig ••). A
configuration item is a set of transter items (Fig.S).

Information is held in the contractual area in the form
ot configuration items, and it is configuration items that are
moved between contract databases. (Such moves are achieved by
copying, so that following such a move the contiguration item
exists both in the source database and in the de.tination
database.) Thus, when the contract is established, its
specification is installed as a single configuration item in
the contractual area. Similarly, any subsequent amendments
are also installed as single configuration item. within this
area, with a relationship to the original specitication and
earlier amendments. And a deliverable from the contract aust
be established as a configuration item in this area betore the
actual delivery to the client can be made.

Similar arrangements apply for any sub-contracts that may
be let. Thus, the specification of a sub-contract will be
established as a single configuration item in the contractual
area before the sub-contract is assigned . Deliverables trom
the sub-contract will be installed in this area as they
arrive. And so on .

Once established in the contractual area, contiguration
items and their member transfer items are normally immutable.
Work within the contract does not modify established
configuration items, but rather produces new configuration
items - the contract deliverable, for example, or a new
sub-contract specification. This is done by first creating an
empty configuration item in the contractual area, and then
developing various transfer items in various work areas and
"exporting" these transfer items to the contractual area. In
order to produce a new transfer item it may be necessary to
consult or employ some existing transfer item - from the
contract specification, for example - and these can be
imported into work areas as required (Fig.6).

Thus configuration items are held in contractual areas
and moved between contract databases, while their member

192

transfer items are imported from the contractual area into
work areas, or exported from work areas into the contractual
area.

Within the contractual area, both configuration items and
transfer items within configuration items can exist in many
distinct versions. A simple naming scheme is adopted, whereby
there are distict variant "threads" for each item, with many
successors within each thread. A particular version of an
item is then identified by specifying the variant and the
successor, thus: STACK SPEC(UNBOONDED,5). various naming
defaults can then be employed when accessing existing
versions, for example to access the latest version or some
preferred version . Although the naming scheme is deliberately
kept very simple, the data management facilities recognise a
richer versioning structure, involving arbitrary trees, and
record this structure by means of relationships within the
contractual area. These relationships can then be queried and
used where appropriate by users or tools.

The discussion thus far has perhaps suggested that
configuration items can only move up or down the contractual
hierarchy, between client and contractor. However this is not
in fact the case. Rather, a configuration item can be moved
on request from any database to any other database, subject
only to access right restrictions. Such moves are normally
recorded at both databases, with the source recording the
destination and the destination recording the source. Thus
detailed records of the movement of configuration items are
maintained.

This general facility for moving configuration items
between databases is employed extensively within ISTAR. For
example, when there is a need for a component library this is
achieved by establishing a contract to operate the library.
Library components are of course configuration items. New
components may be submitted to the library from any source,
and the source of each component is recorded. Contracts may
take components out of the library as required, and all usage
of a given component is again recorded . Defect reports can
easily be sent to the original donor and all users of a given
component, and any new version can readily be distributed to
all interested users .

7. WORKBENCHES

The many tools within ISTAR are not simply organised as
one large toolkit. Rather, the tools are grouped into
collections of related tools, termed "workbenches". Each
workbench typically operates on just a few transfer item types
that are in some way related. For example, a simple workbench
that supports development in some programming language might
operate on two transfer item types: source module in that
programming language, and executable program.

As might be expected, a workbench typically operates in
its own work areas within the contract. Thus a Pascal
workbench would operate in Pascal work areas, a VDM workbench
in VDM work areas, and so on. The workbench would support
import and export of transfer items of the relevant types, and

193

• • •

analy.i. and production ot items ot these type.. Each kind ot
work area - Pascal, VDM, or whatever - has a well-detined
"data model" that governs the organisation ot data within such
work areas. This data model is de tined solely to meet the
needs ot the workbench, and is independent ot the data model
tor the contractual area or that ot any other work area.

Indeed, achieving this independence ot data models was a
major oDjective ot the contractual area and work area
arrangement. A work area is completely selt-contained and
insulated trom the outside world, to which it intertaces
solely DY (workbench specitic) import and export operations .
This means that workbenches can De developed independently and
incorporated into ISTAR without danger ot clashing with
existing workbenches. This is obviously important to user
organisations that wish to extend the system, and is
particularly important when incorporating existing tools that
impose their own requirements on the organisation ot data. In
the latter case, a new kind ot work area is introduced, with a
data model conforming to the requirements ot the existing
tool. The tool is then incorporated into a workbench that
operates on this kind ot work area.

Transfer items are typed, in the sense that they will be
processed only by workbenches designed to operate on items ot
that type . In this context, it should be noted that the
contractual area and the contractual operations are completely
independent ot transfer item types. A useful analogy is that
ot shipment of standard containers on lorries or ships. A
workbench can process the contents of a transter item, but as
part of the export operation this transfer item is loaded into
a standard container that is then labelled with the type ot
the transfer item. These containers can be held in
contractual areas, and moved between databases, without any
need to examine their contents. However, when these contents
are required in some other work area the container is unloaded
into that work area as part ot the import operation. ot
course, such unloading will only be performed by a workbench
capable ot processing transfer items of that particular type.

8. THE USER INTERFACE

All ISTAR workbenches and tools interact with the user
via a common user interface system . This user interface
provides a range of facilities, to be used by workbenches as
appropriate

- full screen editing
- multiple windows
- pop-up menus and windows
- forms with protected tields
- syntax-directed editing

194

•

In addition, an extended version of the user interface
system supports graphical display (see section 10.5).

The user normally directs the system by aeans of menu
selection. Direct entry of commands is also possible.

Since there is a single common user interface package,
all editing commands are common throughout the system and for
the different modes of editing . Thus, screen editing, forms
editing and syntax-directed editing all employ the same basic
set of commands.

9. THE USER'S VIEW OF THE SYSTEM

As might be expected, the user's overall view of ISTAR is
dominated by the contractual structure.

When a user first logs in to the system, the log-in
display presents basic information on all contracts in which
that user has some involvement. Specifically, the display
lists the established contracts for which the user has some
responsibility, highlights for each such contract any
significant events that are awaiting acknowledgment, and also
indicates any new contract assignments to this user. Recall
that a user can have some responsibility on a given contract
either because that contract was initially assigned to that
user, or because that user was subsequently given a task to be
performed within the contract. A significant event for a
contract is the arrival of an amendment, a deliverable from a
sub- contract, any kind of report, an incoming configuration
item from another database, or a cancellation order.

As an example, the large window in the log-in display
shown in Fig.7 indicates that the user is currently
responsible for three contracts, called "ddtest", "dd ugH, and
"feas rpt". This latter contract has been cancelled by its
client, and this user has not yet acknowledged the
cancellation.

Typically, having examined the log-in display the user
will select a contract on which to work. Selection of
"ddtest" from Fig.7 leads to the display of Fig.S, where the
window dedicated to "ddtest" indicates that this contract has
been opened.

Because ISTAR offers a large number of workbenches they
have been grouped into five categories. Selection of the
"function" option within the "ddtest" window pops up a menu
listing these categories. Selection of a category, such as
"technical development", then pops up a menu listing the
workbenches in this category. An individual workbench can
then be selected from this menu to operate on a work area
within contract "ddtest" . A workbench would typically employ
the whole screen for its interactions, with similar usage of
windows and pop-up menus, and on exit from the workbench the
display would revert to that shown in Fig.s.

195

•

10. AVAILABLE WORKBENCHES

An ISTAR workbench typically operates within a single
work area and interacts with the remainder of the system by
importing and exporting transfer items. Workbenches normally
employ a number of discrete tools, but the boundaries between
the individual tools are often obscured from the user. The
objective of a workbench is not to present a set of disjoint
tools, but rather to provide a coordinated range of facilities
for performing work of a given kind. Thus a complete
workbench, including its component tools, is designed and
presented to users as a single coherent whole.

As mentioned in the previous section, ISTAR workbenches
are grouped into five categories: general, project
management, technical development, configuration management,
and tool development. These categories are discussed
individually below.

10.1 General

The "general" category includes three workbenches: text,
documentation, and time sheet completion. (A personal mail
facility is also provided by ISTAR, but this facility is
generally available throughout the system, rather than
provided by a specific workbench.)

The text workbench offers simple word processing
facilities, and is used for preparing transfer items of type
"text" . This is a common transfer item type, since most
specifications and deliverables feature a text item that
summarises their more formal content.

The documentation workbench offers similar word
processing facilities, but recognises the concept of a
document that has chapters and sections. These partial
documents can be held in several versions, and a complete
document can be assembled from selected versions. A spelling
checker is also provided.

Inclusion of text processing and mail facilities reflects
the philosophy that all personnel on a project should regard
ISTAR as their normal working environment. Much of the work
on any project is concerned with preparation of documents, and
personal mail is now in common use. ISTAR therefore provides
facilities in these areas so that users can remain within the
environment, with no need to invoke some other system or tool.

The timesheet completion workbench supports the filling
and submission of weekly timesheets. This workbench is
closely related to the resource management system, which is
discussed below.

10.2 Project Management

The project management category includes two workbenches:
contract management and resource management .

The contract management workbench directly supports the
management of an individual contract and its sub-contracts .
Specifically the workbench includes tools for work breakdown
structuring, estimation, scheduling, detailed task definition,

196

•

and progress monitoring. These tools are used in combination
to support the activities of coordination, planning and
monitoring.

The work breakdown tools supports the decomposition of a
given task into its component sub-tasks and the identification
of dependencies between those sub-tasks. The estimation tool
provides estimates of the effort profile for a task, using the
COCOMO model . The scheduling tool produces plans for
completion of a task, based upon its work breakdown structure
and a knowledge of available resources. The task definition
tool allows a task within a work breakdown structure to be
specified in detail, covering task specification, verification
criteria and management constraints (section 3.2). And the
monitoring tool produces performance reports for a task based
upon reported progress and actual resource usage of its
component sub-tasks.

The workbench can produce both textual and graphical
reports, with the latter being used, for example, for the
presentation of PERT networks.

The contract management workbench is in many ways
comparable to a "conventional" management toolkit, albeit a
particularly good one. It would therefore have been possible
to build this workbench from some existing set of tools,
exploiting ISTAR's ability to run such tool. without
modification . However, it was decided to build new tools
specifically for ISTAR, because we wanted the management
workbench to be very closely coordinated with the overall
contractual structure. Thus, for example, the scheduling tool
interacts closely with resource management centres (see
below), new sub-contracts can be let directly from the task
definition tool, the monitoring tool monitors progress on
sub-contracts as well as on local tasks within this contract,
and so on.

The resource management workbench is used to control the
deployment of people and other resources across contracts,
where these contracts may be in different project hierarchies.
Any individual resource that is to be managed within ISTAR is
affiliated with a specific resource management centre. These
centres are created in the normal way, by letting contracts,
and a given ISTAR system can have as many centres as required .
Thus, for example, when a given organisation is sub- divided
into groups - a communications group, a user interface group,
and so on - there could be one centre corresponding to each
group.

Each centre maintains records of the types and current
allocations of the resources under its control. When a
contract requires a resource of a particular type it obtains
this resource from an appropriate centre, which then records
the new allocation.

The resource management workbench interacts closely with
the project management workbench and the timesheet completion
workbench (section 10 . 1). The scheduling tool requests
information on resource availability from resource management
centres, and subsequently forwards bookings for resources
whose use has been scheduled. The task definition tool
notifies appropriate resource management centres when each

1~

task i. activated, and of any subsequent change to the status
of the task (e.g. when it is completed). The timesheet
collection tool forwards completed timesheets to the
appropriate resource management centre for validation against
active tasks, and the centre then forwards validated entries
to the monitoring function of the appropriate contracts. And
if a contract shows signs of falling behind schedule the
monitoring tool may request data on resource allocations in
order to perform a forward projection.

10.3 Technical Development

The technical development category includes workbenches
for CORE, SDL, VDM, Pascal and Unix/C(*).

CORE is a method of requirements analysis that places
considerable emphasis on a "whole world" view (rather than
modelling just a system's interfaces or internal operation)
and on extensive analysis of the emerging ·world model". It
is a genuine method with a well-defined procedure to be
followed. The ISTAR workbench supports all steps of the
method and provides a very extensive range of analyses, going
beyond those that are conventionally associated with manual
use of the method to incorporate some powerful checks that are
only feasible with an automated tool operating on a model
residing in a database .

SDL (System Description Language) is the
CCITT-recommended specification notation for concurrent
systems. A system is modelled as a set of "blocks" that
communicate with each other and with their environment by
exchanging "signals" over "channels". Blocks can recursively
be decomposed into sub-blocks. At the lowest level the blocks
contain processes that receive and send the signals of the
block. An SDL process has a discrete set of "waiting states"
where it is awaiting an incoming signal. When such a signal
arrives the process performs a transition to a new waiting
state; during this transition the process would normally
perform some computation and perhaps send some signals. The
ISTAR workbench supports progressive decomposition with
consistency checking, definition of processes at the lowest
level, and code generation directly. from the process
definitions. The latter two facilities are actually provided
by the SXl tool, developed by British Telecommunications,
which has been integrated into the ISTAR workbench.

VDM (Vienna Development Method) is a formal development
method for sequential programs, with strong emphasis on
abstract data types. The method supports both initial
specification and sequential refinement from this initial
specification, if required with formal verification at every
step. The ISTAR workbench currently provides only limited
support for the method; specifically it supports
syntax-directed editing of the method's specification language
(META-IV) and simple type and signature checking of this
language .

As discussed in section 7, the design of ISTAR allows
existing tools to be incorporated into workbenches without
modification. This was exploited in the case of the SDL

workbench, where SXl was incorporated, and ia also exploited
in the cas. of workbenches that support implementation
languages. Thus, both the Pascal and UniX/C workbenches are
based upon pre-existing compilers and other tools. The Pascal
workbench supports syntax-directed editing and compilation.
The Unix/C workbench is simply one that provides direct access
to the facilities of Unix; because of the close association in
this case between language and operating system there is no
separate "C workbench". An Ada workbench is currently under
development.

The technical development workbenches that are currently
available reflect the initial interest in one particular
application area, namely that of real-time systems. However,
the overall design of ISTAR is in no way specific to that
application area, and other areas could be supported by
providing appropriate workbenches in the technical development
category. For example, consideration is being given to a
workbench for SSADM, a method that is typically employed for
the design of DP systems.

10.4 Configuration Management

There are two workbenches in the configuration management
category, namely component management and build.

It should be emphasised that the basic configuration
management facilities of ISTAR - version identification,
freezing of items, tracking of item usage and movement - are
not the responsibility of any individual workbench. Rather,
these facilities are "built in" to the underlying structure,
and are pervasive throughout the system.

Thus the configuration management workbench does not
implement the basic versioning and control mechanisms, but
rather is more concerned with administrative issues.
Specifically the workbench supports such operations as setting
and querying preferred versions, querying version histories,
establishing and querying relationships between items, and so
on. It should be noted that all such operations are available
to other workbenches, and indeed these operations would
normally be performed by tools as part of their normal
function rather than explicitly by the user. However, the
configuration management workbench provides a direct user
interface to these operations, should this in some
circumstances be required.

The configuration management workbench also provides
support for component libraries, as discussed at the end of
section 6, and for the submission and control of problem
reports. The facilities in these areas are heavily dependent
upon the more general configuration management facilities, and
these functions are therefore included in this workbench for
reasons of user convenience.

The build workbench supports the construction of new
transfer items by applying tools to existing transfer items.
An obvious special case is the production of some required
"system" by integration of its component sub-systems.
However, the workbench is not limited to this special case.
In ISTAR it is common for a contract deliverable to be formed

199

by combining deliverables from sub- contracts, and this applies
whether the required deliverable is a program, a
specification, a document, or whatever. In all these cases
the build workbench would be used to construct the
deliverable.

Basically, the workbench is given a "construction plan"
for the required construction process and a "bill of parts"
identifying the specific transfer items to be input to that
process. The workbench then constructs the required transfer
item(s) and also generates a precise record of the build.
This record serves both to show the dependencies between
transfer items and also as a possible input to subsequent
builds. For example, suppose that a new version of one of the
input transfer items is produced and it is required to re-run
the build using this new version as an input but with all
other inputs remaining unchanged. This can be done simply and
reliably by using the record from the previous build.

10.5 Tool Development

The tool development category includes three workbenches :
APCR, interface definition, and ARLO. As the name suggests,
the workbenches in this category support the develop.ent of
new ISTAR tools and workbenches. These workbenches are
therefore of interest to those who wish to extend the system
to support a particular method or address a particular need .

The APCR (analyser/prompter/checker/reporter) workbench
is used to develop new workbenches to support specific
"structured" methods. There are a large number of such
methods - SADT, SA/SO, and so on - each with their own
particular features but all with a great deal in comaon.
Essentially, any structured method involves construction of a
model of the desired system using a small number of entity
types and relationship types. Typically such models are
presented graphically, with entities of different types being
represented by boxes of different shapes and relationships
being represented by lines between boxes. A particular method
defines the entity and relationship types to be employed and a
sequence of stages for constructing the model, typically with
specific checks to be performed at each stage.

In ISTAR, all structured methods are supported in the
same way. The model is held explicitly in a database, with
entities and relationships in the database corresponding to
those in the model. Checks on the model are implemented by
running analysis programs on the database, and reports are
generated from the database.

The APCR workbench generates other workbenches to support
particular structured methods. The user of the APCR workbench
is prompted for a definition of the method to be supported, in
terms of its entity and relationship types, the stages of the
method, and the prompts and checks associated with each stage.
The APCR workbench then generates a new workbench that
supports the various stages of the defined method.

An example of the use of the APCR workbench is provided
by the CORE workbench, which was generated in this manner.
FUrther, the method used for defining structured methods is

200

itselt a structured method, and the facilities ot the APCR
workbench were therefore used to generate the workbench - in
much the same way that compilers are bootstrapped and
eventually used to compile themselves.

with most structured methods it is desirable to present
various "views" ot the model in graphical torm. This can be
done by using the graphics facilities of the extended user
intertace system. However, this requires the production of a
"tilter" that extracts the appropriate information trom the
database and presents it to the user interface system in a
generic torm. At present such filters are implemented by
writinq a program, making extensive use of a database query
language, or by using ISTAR's report generator. Typically,
new tilters are produced by modifying some existing filter,
rather than by starting "from scratch". It would be possible
to largely automate filter production, and a workbench to do
so may be produced in the near future.

The graphics presentation facilities are not restricted
to use in conjunction with the APCR kit, but are generally
available. For example, the contract management workbench
uses the graphics interface for presenting PERT networks, and
the SOL workbench uses the interface for presenting block
hierarchies.

The interface definition workbench relates to the torms
and syntax-directed editing capabilities of the user interface
system. For each kind of form to be edited the user interface
system requires a table defining the form. Similarly,
syntax-directed editing requires tables defining the syntax of
the language and required layout. When introducing a new form
or language the interface definition workbench is used to
generate the required tables from, respectively, a forms
detinition notation or an augmented BNF notation.

The ARLO workbench can be used to rapidly develop new
workbenches and individual tools. ARLO is an interpretive
language specifically designed for easy development of
interactive tools. Using the language it is possible to
quickly produce a working prototype or production tool and
then incrementally improve and extend the tool as desired.
ARLO is also useful for incorporating existing tools into an
ISTAR workbench. A major problem with such tools is that they
do not operate on ISTAR databases, but rather on files. This
problem, and the problem of user interface consistency, can be
addressed by wrapping the existing tool in an "envelope".
This envelope initially interacts with the user and the
appropriate ISTAR database, sets up access to the required
files, and then invokes the existing tool. Upon return the
envelope updates the ISTAR database as appropriate, dependent
upon the completion status of the tool. ARLO is a convenient
language in which to implement such envelopes.

The workbenches in the tool development category are
delivered to users as an integral part of the system. This is
in keeping with the overall objective that user organisations
should themselves be able to extend the system to meet their
own particular needs.

201

11. STATUS

The ISTAR system, including the workbenches discussed in
section 10, is available from Imperial sottware Technology as
a commercial product.

The system is currently implemented under Unix. It will
run under any "real" Unix (as opposed to wunix-like"),
including System V and BSD 4.2. It has been ported to several
machines, including VAX, Pyramid, AT&T 3B2, and 68000-based
workstations. Ports to other machines with a real Unix are
straighttorward. A port to VAX/VMS(**) is scheduled during
1986.

Communications tacilities are not implemented as part ot
ISTAR itselt. Rather, the system is interfaced to whatever
communications facilities are available. The only requirement
is that the communication medium should be able to transfer a
file (i.e. a large block of data) from one machine to another
with a reasonable level of reliability. The current
implementation communicates using any combination of Ethernet
TCP/IP, RS232 using UUCP, and physical transfer of magnetic
media. ISO protocols will be supported as soon as a suitable
Unix implementation becomes available.

For its graphics, ISTAR uses GKS.

12. FINAL REMARKS

ISTAR is a rich environment, and inevitably the latter
parts of this introduction have concentrated on the available
workbenches and tools. However, the path to success with
ISTAR does not lie with making optimum use of some individual
facility. Rather, it is important to make effective use of
the system as a whole, and particularly to exploit the overall
contractual structure.

Thus any consideration of ISTAR should not begin at the
level of individual tools or facilities, or with details of
the database system or the user interface. It should instead
begin with consideration of the contractual structure and the
way in which this can be deployed to achieve overall project
control and visibility and to ensure a basic level of hygiene.
This in itself can make a major contribution in the areas of
quality and productivity, and is also an essential
prerequisite to the introduction of better methods and tools
that can offer further improvements.

ISTAR addresses the concerns at both levels - overall
structure and hygiene, and individual methods and tools - but
it is important that these concerns are taken in the right
order: first overall structure, then methods, then tools.
This was the order in which ISTAR was designed, and it is the
order that should be followed in any consideration or use of
the system.

202

13 • TRADEMARKS

(*) Unix is a trademark of AT&T Bell Laboratori ••
(**) VAX and VMS are trademarks of Diqital Equipment

. Corporation

14 • ACKNOWLEDGMENTS

ISTAR is a collaborative development by Imperial Software
Technoloqy and British Telecommunications PLC, and many people at
both orqanisations have contributed to its desiqn and
implementation.

203

• •

/

/

/

\

\

\

_____ ~~~ SPECIFICATION

- - - -.. DELIVERABLE

Fig . 1 A contract hierarchy

204

Spec if lca lion

Reports

DeUverables

Fig 2 The c lient / c ontrac to r interface

205

• •

•

ewl.ACT
DATMAIE

CONTRACTUAL
AREA

Fig. 3 A contract database

206

•

function sqrl ex);
~
if lC <0 ttwn Hr.-' ;
flu ~ ; •.... ... ;

...cI

Pro;.ct p~

Fig . 4 Transfer items

func;tlon s~ (x);
b~WI
If lC <0 th.n .rr" -, ; .1s. \t : •...... ~

.114

Fig. 5

conf1qUr ilion it""

contract
specification

Pro 'pct PI¥!

A configuration item

207

•

IMPORT

CONTRACTUAL
AREA

Import and export

208

• •

I\)

o
'!)

lSTAR (BT_ PHASE_l,S)
)

USBRt dd HOST. t.lrta
ooDtraot. .cIai. mail

S8SSION START&D AT 11.00 You h .. .,. ..il I"~ per.ollal db OGoupaaoy) I lOCJout.

CURRINT CONTRACTS,
rt ddt-at

dd_ug update,a)
f _rpt a.noel1 .. l:1oD;.)

Fig. 7 A log-in display

•

ISTAR (BT_PHAS£_~ , 5)

)

usn. dd HOST, lalrta SESSION STAATBD AT 11.00 You. h.". ..11 (" peraoaa! db oooupe_err)
Gootr.at ocla1. .. 11 1(4)out

CONTaACT. ddt •• t (25\ full) CORRINT CONTRACTS I
~-tf\&DotloD opo • tatu. clo •• delt •• t.

dd_ug update(G)
f ••• _rpt aIlDo.ll.tioL'.)

I\)
~

o

Fig.8 A selected contract

D1SCUSS1OO

The post talk discussions were sparked off by Professor Brown ' s
question on development costs and the market prospects of the 1STAR
project support er.vironment . The speaker repli ed by admit ting that
the development was expensive ; since the project itself is i n the
early stages of being under experimentation and evaluation , he found
i t hard to pr edict its market potential. However , he quoted a few
organisations that are interested in buying the tools.

Professor Kopetz was interested in knowing if
has been done usi ng the contr actual approach. The
1ST and other organisations using his methodology .

any implementations
speaker menti oned

Professor Habermann was concerned abcut training
personnels working with the 1STAR. The speaker replied
training programme was being run in collabcration
Telecom.

programrres for
that such a
with Briti sh

Pr ofessor Atkinson asked about the threshold s ize of the projects
the speaker would reccmrend for the 1STAR environment. Tr,e speaker
replied that the threshold size tended to be small.

2 11

• • •

